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Algebraic spinor spaces determined by spinorial idempotents are considered in the case of two
and four-dimensional, real and complexified Minkowski spaces. The form of the idempotents 
and their classification is given. 

I. INTRODUCTION 

A spinor space is conventionally defined as a space in 
which a representation of a Clifford algebra acts irreducibly 
and equivalence of spin or spaces is understood in the sense of 
the representation theory. It follows that if the Clifford alge
bra is simple (for instance, in the even-dimensional case), all 
spinor spaces are equivalent. 

There is, however, another approach to spinors. The 
algebraic spinor spaces are defined as minimal left ideals of a 
Clifford algebra. They provide a representation space for the 
Clifford algebra and the groups Pin and Spin related to that 
algebra. In the mathematical literature this approach to 
spinors was put forward by Chevalley I and in the physical 
literature by Sommerfeld2 and Sauter.3 For more informa
tion about the history of various approaches to spinors con
sult Budinich and Trautman.4 It was also pointed by Banks, 
Dothan, and Horn5 that the "ideal" approach may be useful 
in the description of fermionic generations. 

For algebraic spinor spaces, as it was emphasized by 
Graf,6 there is another notion of equivalence than that from 
the representation theory. The algebraic spinor spaces are 
equivalent if there exists a Clifford automorphism (i.e., an 
element of the orthogonal group) that maps one space onto 
the other. Nonequivalent spinor spaces might in principle 
correspond to different fermions. Motivated by this idea, I 
consider in this paper a step in the direction of a classifica
tion of algebraic spin or spaces. Namely, a classification of 
spinorial idempotents generating algebraic spinor spaces is 
given. The classification is based on topological properties of 
the space of orbits of the orthogonal group. 

In Sec. II, I discuss some general definitions. In Sec. III, 
I consider spinorial idempotents, which determine algebraic 
spinor spaces, in the two-dimensional Minkowski space for 
the real and complexified cases. Section IV is devoted to 
spinorial idempotents in the four-dimensional Minkowski 
space. In Sees. IV A and IV B, I consider the two real cases 
corresponding to the signatures (+, + , + , -) and 
( +, -, -, - ), respectively, and in Sec. IV C, the com
plexified case is considered. 

II. GENERAL NOTIONS 

Let V be a real vector space and g a bilinear symmetric 
form on V. We consider a two-sided ideal Jg in the tensor 
algebra T( V) generated by the elements of the form u ® u 
- g(u,u), where uEV. The Clifford algebra C( v,g) is the 

quotient algebra T( V) / Jg • The natural projection of the ten-
sor algebra onto C( V,g) when restricted to skew tensors is 
one-to-one. Therefore we have a natural linear space isomor-

phism between the exterior algebra and the Clifford algebra, 
x: A V -+ C( V,g) and the direct sum decomposition 

n p 

C( v,g) = Ell X(AV), n = dim V. 
p=O 

The Clifford algebra is l2 graded, C( V,g) 
= C+( V,g) Ell C -( v,g), where 

[n121 2p 

C+(V,g) = Ell X(AV), 
p=O 

[(n - 1)/21 2p+ I 

C-(V,g) = Ell X( A V). 
p=O 

We write lsi = 0 if SEC + and lsi = 1 if SEC -. 
The Clifford automorphism f of C( V,g) is an automor

phism in the category of algebras with unity such that there 
exists a linear automorphism/, of Vand the following dia
gram is commutative: 

/' 
V---_ •• V 
, f , 

C( V,g) • C( V,g) 

The vertical arrows denote the natural inclusion. One can 
easily show that /' is an orthogonal transformation. Con
versely, for each /,EO( v,g) there exists a unique Clifford 
automorphism f, so we can identify the group of Clifford 
automorphisms with the orthogonal group,jEO( V,g). The 
Clifford automorphisms have the following form: 

!s(c) = (- 1)lsllclscs-l, 

where s is an element of C( v,g) ofthe form 

Such elements constitute the group Pine V,g). We have the 
epimorphism Pine v,g) 3~!sEO( V,g) , its kernel is l2' We 
shall be interested mainly in the connected component of 
unity SOl (V,g) and its counterimage Spino( V,g). 

A spinorial idempotent p is an element of C( v,g) such 
that p2 = P and the rank of the linear map 
C( V,g) 3 Ct---+CpEC( V,g) is minimal nonzero. A spinorial 
idempotent p generates a minimal left ideal (spinor space) 

.!f p = C( V,g)p = {CEC( V,g): cp = p}. 

Any minimal left ideal is generated by a spinorial idempo
tent, but such an idempotent is not, in general, uniquely de
termined by the ideal. 

The spinorial idempotents p and p' are equivalent, p - p', 
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if there exists!EQ( v,g) such thatJP = p'. They are strongly 
equivalent,p:::::p', ifmoreover!ESQ' (V,g). 

We shall consider also the complexified Clifford algebra 
C( v,g)c, the complex algebraic spinor spaces, and complex 
spinorial idempotents; the equivalence of spinorial idem po
tents will be defined under the action of real orthogonal 
groups. 

III. SPINORIAL IDEMPOTENTS IN TWO-DIMENSIONAL 
MINKOWSKI SPACE 

Let (k,/) be a null basis of two-dimensional Minkowski 
space V(1, 1): g( k,k) = g(l'/) = 0, g( k,/) = !. It generates a 
basis 

1, k, I, (kl- Ik)12 

of the Clifford algebra C( 1,1 ). We look for solutions of the 
equation p2 = P such that the rank of the map c I---+Cp is 1 or, 
equivalently,p#O,1. The solutions have the form 

p = ! + bk + cl + d[ (kl- Ik)/2], 

where the parameters b,e,d are constrained by 

be = A(1 - d 2
). 

First, we consider the strong equivalence of real spin or
ial idempotents. The action of the special orthochronous 
Lorentz group SQ' (1,1) is given by Io---+e.pk, II---+e - .pl. It acts 
on the topological space M R ( 1,1) of real spinorial idem po
tents and M R ( 1,1 ) ISQ' ( 1,1) is the set of strongly nonequi
valent classes of spinorial idempotents. Let us note that we 
have the following invariants under the action of SQ' ( 1,1 ) : 

d, sgn b, sgn e. 

Considering the quotient topology on M R (1,1) ISQ' (1,1) 
leads to an interesting classification of spinorial idem po
tents. 

(1) Continuous idempotents: These are idempotents for 
whichd # + 1. The orbits ofSQ'(1,1) are grouped into six 
branches. A branch is given, if we specify one of the open 
intervals (- 00, -1), (-1, + 1), (+ 1, + 00) to which 
belongs the invariant d and sgn b (or sgn e-both are relat
ed). Each orbit of this type is one-dimensional. 

(2) Bridge-type idempotents: These are idempotents for 
which d = + 1 and b,e do not vanish simultaneously. There 
are eight orbits of this type, each is one-dimensional. Each 
open neighborhood of such an orbit contains orbits belong
ing to at least two branches of type (1). 

(3) Multicross-type idempotents: These are 

p = ! + !(kl-Ik) 

and lead to left ideals used by Chevalley' for the case of the 
neutral signature. Let us note that there is only one element 
of an orbit of this type. Each neighborhood of an orbit of this 
type contains orbits belonging to four branches of type (1) 
and four orbits of type (2). 

In order to consider Mil. (1,1 )/IO( 1,1) we have to take 
into account the action of a space reflection k-<--+I and of the 
space-time reflection kl---+ - k, 11---+ - I on Mil. (1,1)1 
SIO' (1,1). On Fig. 1, the space reflection and the space-time 
reflection are represented as reflections with respect to the 
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FIG. I. The orbit 
M" (I,I)/SO'(l,I). The 
sgn (b). sgn (c) is indicated. 

space 
pair 

vertical and horizontal symmetry axes, respectively. Generi
cally an orbit of 10(1, 1) consists of four orbits of SIO' (1,1). 
There are two exceptional orbits of 10 ( 1,1) that consist of 
two orbits ofSIO( 1,1). These are the orbit of multi cross-type 
idempotents and the orbit for which d = O. The last orbit is 
of boundary type in the topological space MR (1,1 )/Q( 1,1). 
Therefore we can distinguish in the internal branches the 
continuous idempotents of boundary type. 

Next we consider the spaceMc (2) of complex idempo
tents. They are given by the same equations as real ones, the 
parameters b,e,d now being complex. The space 
M c (2) ISIO (1 , 1) consists of (1) one three-dimensional 
sheet of continuous idempotent orbits (d # + 1), (2) four 
one-dimensional circles of orbits of bridge-type idempotents 
(d = + 1; b, c do not vanish simultaneously), and (3) two 
multicross-type idempotents (d = + 1, b = e = 0). The or
bits of continuous type and of bridge type are one-dimen
sional, whereas orbits of multicross type consist of single 
points. Reflections distinguish the complex idempotents of 
boundary type for which d = O. 

IV. SPINORIAL IDEMPOTENTS IN FOUR-DIMENSIONAL 
MINKOWSKI SPACES 

We shall look for spinorial idempotents in the real Clif
ford algebras C( 1,3) (signature +, - , - , - ), C(3,I) 
(signature +, + , + , - ), and in their complexification 
C( 1,3)c. 

Let (e '") be an orthonormal basis of the Minkowski 
space and let 

e5 = eOe,e2e3 = - (1/4!)17,"vP"e,"e"epe'70 

where ifvpa is skew and normalized by the condition 
17°123 = - 1. An idempotent p can be decomposed as fol
lows: 

p = a + u'"e," + !!'""e,"e" + ife,"e5 + be5 • 

The condition p2 = P leads to the following set of equa
tions: 

a 2 _ b 2 + u2 + v2 _ 1 I' J'"v = ! 
2) ,""" 4' 

!!,"v*!'"v = - 2ab, 

*!,"vv" = au'", 

*!,""uv = - aif, 

a!'"v + b *!'"v = - 17,"vpaUpva' 

(1) 

(2) 

(3) 

(4) 

(5) 

where a = a - ! and *1;LV = !17/Lvpa !pa. Dualization of (5) 
gives 

- bl'"v + a*!'"" = u'"UV 
_ dLu" 

and both (5) and (5') lead to 
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(6) 

Assume that a#O, a 2 + b 2#0. Under the second as
sumption we can eliminate fl-'v' Rejecting the trivial solu
tions p = 0,1, Eqs. (1 )-( 5) are satisfied if and only if the 
vectors u, v satisfy the constraints 

uv = 0, (7) 

u2 = v2 = a 2 + b 2, (8) 

and moreover a 2 = rt,. The last condition leads either to 

a =1 and a = ~ 
or to 

a = -1 and a = 1. (9) 

The case (9) corresponds to idempotents of the minimal 
rank 1 if Eqs. (7) and (8) have solutions. 

If the signature is (1,3) there are no real solutions of (7) 
and (8). 

A. Signature (3,1) 

In the case of the signature (3,1) the real solutions of 
(7) and (8) exist and give all minimal idempotents of 
C(3,1) ~R(4). Each orbit of the action ofSO'(3,1) on the 
space of spinorial idempotents M R (3,1) is five-dimensional. 
The space of orbits MR (3,1 )/SO' (3,1) is one-dimensional, 
the unique invariant is the parameter b. The unique invariant 
under the action of the full Lorentz group is I b I and once 
more we can distinguish idempotents of the boundary type 
for which b = O. 

B. Signature (1,3) 

In the case of signature ( 1,3) we have to look for idem
potents of rank 2 of C( 1,3) ~1HI(2) for which a =! and 
a = O. Since a = 0, the bivector fl-'v is simple. If moreover 
b #0, then we get from (5) 

fl-'v = - (l/b)(ul-'vV - ul-'uV). (10) 

Equations (2)-( 4) are satisfied identically and (1) gives the 
biquadratic equation for b, 

b 4 - f3b 2 + r = 0, (11) 

where f3 = u2 + v2 -1 and r = U
2

V
2 

- (UV)2. In the case 
r> 0, (11) could have solutions under the conditions f3> 0 
and f3 2 > 4r. But r> 0 implies that both vectors u and v are 
spacelike, therefore f3 > 0 cannot be satisfied. 

Types II :f and II i: In the case r < 0, i.e., 

(12) 

we have two solutions ± b of ( 11 ). In this case the vectors 
u,v span a two-dimensional timelike surface. We have two 
disjoint types: lIt for which b> 0 and IIi for which b < O. 
Equation (12) restricts the values of the scalar products 
U

2
,V

2
,UV to the exterior of a cone in three-dimensional space; 

it can be written as 

t 2 _ r 2 <0, 

where we have introduced the new parameters: 

t = u2 + v2 
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(12') 

and r,¢ defined by 

u2 
_ v2 + 2i(uv) = rei"'. 

If we turn around the cone following a continuous closed 
curve, the vectors /,l,v become - u, - v and they determine a 
different orbit ofSO r (1,3) than that determined by u,v. The 
space of orbits in both types is a 1':2 bundle over exterior of the 
cone. As parameters in lIt and IIi we can take t, rsatisfy
ing the inequality (12') and the angle ¢, O<,¢ < 41T. The di
mension of the orbit is 5. 

Types I t.ext and I r.ext: In the case r = 0 the solutions 
± b # 0 of ( 11) exist under the condition f3 > O. Therefore 

the vectors u,v span a one-dimensional timelike subspace 
and the parameters t, r satisfy the restrictions 

t=r>1· (13) 

So r> 1 and O<,¢ < 41T are parameters on the space of orbits 
for types I text (for which b > 0) and Ir.ext (for which b < 0). 
Note thatfl-'V = 0 according to (10). The dimension of the 
orbit is 3. 

Consider now the case b = O. This implies ullv. At first 
assume that the subspace spanned by u and v is one-dimen
sional and let n be a nonzero vector in this subspace. Then, 
from (2)-( 4 ),JI-'V has the form 

fl-'V = uf'nV - nl-'wV
• 

It remains to solve (1), which becomes 

2(nw)2 - 2n2w2 = 1- t. (14) 

Types I T.int and I T.circle: If the one-dimensional subspace 
spanned by u and v is timelike, we can determine nl-' unique
ly, requiring that it is future oriented and normalized to 1. 
Then uf' can be determined by the requirement wn = O. 
Then, Eq. (14) can be solved if 

(15 ) 

and if 

t = r = 1. (16) 

In the limiting case (16)fl-'" = O. The range of the parameter 
¢ is form 0 to 41T. We have two types: IT,int corresponding to 
the case (15) and I T,circle corresponding to the case (16). 
The dimension of the orbit in the type IT,int is 5 and in the 
type I T,circle is 3. 

Type Is: If the one-dimensional subspace spanned by the 
vectors u and v is spacelike, we can determine uf' uniquely 
requiring that wn = 0 and w is future oriented and normal
ized to 1. Thenfl-'" determines uniquely nil. We have in this 
case 

- t= r>O, (17) 

and the range of ¢ is from 0 to 41T since the triads n,u,v and 
n, - u, - v determine different orbits. The dimension of the 
orbit is 5. 

Types I Jv and I Jv: If the one-dimensional subspace 
spanned by u and v is null, we can determine n uniquely 
requiring that n be future oriented and u + iv = zn, where 
Izl = 1. Then, if we impose the condition w2 = 0, the vector 
w will be chosen uniquely. From (14) we get (nw)2 = !. We 
have two disjoint types: I Jv for which w is future oriented and 
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I;' for which w is past oriented. The parameter is ZEU ( 1 ) and 
the dimension ofthe orbit is 5. 

Type 0: The last type, for which ulL = vY = b = 0. The 
bivector flL Y is simple and satisfies 

- !fILJ,.y = i, 
so it spans a two-dimensional timelike surface. There is only 
one orbit of this type. The dimension of the orbit is 4. 

Figure 2 displays all types and relations between them. 
An arrow on this diagram means that there exists a sequence 
converging to a type pointed by it. We do not draw an arrow 
if it is possible to pass from one type to another with the help 
of arrows already indicated. 

C. Complex Idempotents 

In the complex case C(1,3)c~C(4) and the rank of 
minimal idempotents is 1, so a = i. Therefore Eqs. (6)-(8) 
give idempotents for which b i= ± i/4. Let us discuss this 
generic case. 

We shall introduce the real vectors 'IT, 7', P, u defined by 

u = ('IT + u)/2 + i[ (p - 7')/2] 

v = (p + 7')/2 + i[ ('IT - u)/2]. 

Equations (7) and (8) now take the form 

r = r, 'lT7' = 0, p2 = ~, pu = 0, 

~('lTu + p7') = m, !( 'lTP - U7') = n, 

where 

b 2 + -h = m + in. 

The numbers r, r, m, n, and 

x = ~('lTU - P7'), y = ~('lTP + U7'), 

parametrize all nontrivial scalar products. In the discussion 
below we shall also use the polar coordinates '1' ¢ll' '2' ¢l2 
defined by 

m + in ='1 exp(i¢ll), x + iy ='2 exp(i¢l2)' 

The scalar products of the vectors 'IT,7' ,p,u belong to the 
space with signature (1,3) if and only if r.;;;O, p2.;;;0, and 

r ° 'lTP 'lTU 

° r 7'P 7'U 
.;;;0. (18) 11= p2 ° 'lTP 7'P 

'lTU 7'U ° p2 

The determinant 11 can be factorized as 

246 

11 = (rp2 - ('1 - '2)2)(rp2 - (rl +'2)2) 

FIG. 2. Types of spinorial idempo
tents in the Clifford algebra C(1,3) 
and relations between them. 
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so ( 18) can be written as 

('1 - '2)2.;;;rp2';;;(r1 + '2)2. 

If r < 0, we can introduce the orthogonal projections 
PH U 1 of the vectors p, u onto the surface orthogonal to the 
surface spanned by 'IT and 7'. Their scalar products are 

rp1 2 = Q + 2'1'2 COS(¢l1 + ¢l2)' 

ru1
2 = Q - 2'1'2 COS(¢l1 + ¢l2)' 

rpl u1 = - 2'1'2 sin(¢ll + ¢l2)' 

(19) 

where Q = rp2 - '12 -,/ satisfies - 2'I'2.;;;Q.;;;2'I'2' If 
p2 < 0, we can introduce orthogonal projections 'lTl' 7'1 of the 
vectors 'IT,7' onto the surface orthogonal to the surface 
spanned by p and u and their scalar products are 

p2'IT12 = Q - 2'1'2 COS(¢l1 - ¢l2)' 

p27'12 = Q + 2'1'2 COS(¢l1 - ¢l2)' 

p2'IT17'1 = 2'1'2 sin(¢ll - ¢l2)' 

(20) 

Types IV + and IV -: The space spanned by the vectors 
'IT, p, u, and 7' is four-dimensional. The parameters Re b, 
1m b, r, p2, x, and y satisfy the restrictions r < 0, p2 < 0, 
'1> 0, '2> 0, and ('1 - '2)2 < rp2 < ('1 + '2)2. The orbits 
corresponding to different space-time orientations of the ba
sis ('IT,7',p,u) form disjoint subsets in the topology of 
Me (4 )/SO! (1,3). Thus we have subtypes IV+ and IV-. It 
can be seen from (19) and (20) that the continuous change 
of ¢l I or ¢l2 from ° to 2'IT leads to the change of all vectors 'IT, 7', 
p, and u. Thus there is no further subdivision of the type IV. 
To describe fully the configuration we need a 1:2 bundle over 
the space of the parameters b, x + iy, i.e., over (C 
- { - i/4, + i/4}) X (C - {O}), which is nontrivial if we 
tum b once around - i/4 or + i/4 or if we tum x + iyonce 
around 0. A point of Me (4 )/SO! (1,3) of type IV+ or IV
corresponds to a point of this bundle and to the values of the 
parameters rand p2. The dimension of the orbit is 6. 

Type Ills: The space spanned by 'IT,7' ,p,uis three-dimen
sional spacelike. The parameters b, x, y, and r satisfy the 
restrictions r < 0, , I > 0, and p2 is determined by 
r p2 = ('1 + '2) 2. The bundle structure remains the same as 
in type IV. The dimension of the orbit is 6. 

Type III p' The space spanned by 'IT, 7', p, u is three
dimensional timelike. The parameters b, x, y, and r + p2 
satisfy the restrictions r + p2 < 0, '1> 0, and '2> 0. The 
squares rand p2 satisfy the condition rp2 = ('1 - '2)2. 
The bundle structure remains as in type IV. The dimension 
of the orbit is 6. 

Type IIp' The space spanned by 'IT, 7', p, u is two-dimen
sional timelike. Here 'I = '2> ° and r = p2 = 0. We now 
have a 1:2 bundle over the space of the parameters band ¢l2' 
i.e., over (C{ - i/4, + i/4}) XU( 1). The dimension of the 
orbit is 5. 

Types III t, III iV, and lIs: They correspond to '2 = 0, 
'1> 0, which implies rp2 = ,/. It follows from (19) that 
the space spanned by Pi and U 1 is either one-dimensional 
null (type IIIN) or both vectors Pi and U 1 vanish (type lIs). 
Since there are two null directions in the space orthogonal to 
that spanned by 'IT and 7', type IIIN decomposes on subtypes 
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III: and IIIH. If we choose a vector k so that Pi + iUi 
= k exp (it/!) , the angle t/! is the only one invariant construct

ed out of Pi and U l . The parameters in types III: and IIIH 
are b, rr < 0, and the angle f/r, the dimension of the orbit is 6. 
In type lIs the parameters are band rr < 0; the dimension of 
the orbit is 5. 

Consider now the case b = ± i/4. Equation (5) now 
gives only one part of jlw: self-dual or anti-self-dual. We 
have 

+ 
b = - i/4, J"v = - 2i(u"uV -If'uV

), (21) 

or 

(22) 

Equations (6), (3), and (4) lead to 

u2 = u2 = uu = 0, 

which is the limiting case of (7) and (8). Thus we can use 
the same parametrization of the vectors u and u as in the 
generic case; b = ± ;/4 leads to rl = 0 and rrp2 = r/. 

We shall use a null basis (k,l,m,iii) such that kl =~, 
miii = -! and all other products vanish; the real vectors k 
and 1 are future oriented and the space-time orientation of 
the null basis is established by 

1J"vpuk "I vmPiiiu = i/4. 

Ifill = ..r=-;rr ¥= 0, the vector m can be uniquely determined 
by 

m = (1/21l1) (1r + ;1'). 

We shall also use the notation Ilz = .,[=pz. In the case when. 
the space spanned by 1T, 1', P, U is three-dimensional and null, 
we can choose the vectors k and 1 uniquely requiring that 
Pl + iUl = k exp(it/!) or Pi + iUl = 1 exp(it/!). This leads 
either to 

u =!k exp( - il/J) + Vtl -Ilz exp(itPz»)iii, 

u =!k exp( - il/J) + iVtI + Ilz exp(itP2»)iii, 

or to 

u = F exp( - it/!) + Vtl -1l2 expUtP2) )m, 

u = !I exp( - ;t/!) + ;Vtl + Ilz expUtP2) )m. 

(23) 

(24) 

Since k /\ iii is self-dual and 1/\ m is anti-self-dual, (23) cor
responds to the case (21) and (24) to the case (22). Consid
er b = - i/4. Anti-self-dual bivectors have a basis 

k /\ I - m /\ iii, k /\ m, 1/\ iii. 

Substituting J !-'v, expressed as a linear combination of this 

basis, into (3) and (4) and solving these equations, we ob
tain 

+ 
Consider b = ;/4. The self-dual bivector J "V can be written 

as a combination of 
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k /\ 1 - m /\ iii, k /\ m, 1/\ m. 

From (3) and (4) we obtain 

+ 
J"v = !(k"l v -I"k v + m"mv _ m"mV) 

+ 2illz exp(;(l/J + tP2»)(k!-'mv - m!-'k V). (26) 

Equations ( 1 ) and (2) are in both cases satisfied identically. 
Types III N - and III N +: The space spanned by 1T, 1', P, U 

is three-dimensional null and b = - i/4 (type IIIN-) or 
b = i/4 (type III N + ). The parameters are x, y, rr + p2 < 0 
and the angle t/!. The squares rr, p2 satisfy the condition 
rrpz = r/. If rr < 0 the solution is given: for the type IIIN-
by (21), (23), and (25), whereas for the type IIIN+ by (22), 
(24), and (26). If the space spanned by 1T, l' is null (so 
rr = 0), we can use pu instead of 1T, l' in the definition of the 
basis vector m. This leads to replacements u~u and 
o = III ~1l2 in (23 ) and (24) and to the change of the overall 
sign in (25) and (26). The dimension of the orbit is 6. 

Ifr2 > Obutthe space spanned by 1T, 1',p, uis two-dimen
sional spacelike (3) and (4)' cannot be satisfied. 

Types IIL_, IIL+, II~+_, II~++, and IIL_, 
IIL+, II~+ _, II~+ +: The space spanned by 1T, 1', p, U is 
two-dimensional spacelike and b = - i/4 (types lIs __ 
and IIs_ + ) or b = i/4 (types lIs + _ and lIs + + ). This 
can be achieved only if p = U = 0 (types IIs_ _ and 
IIs+ _ ) or 1T = l' = 0 (types IIs_ + and lIs + + ). For the 
types lIs _ _ and lIs + _ we have 

u = iu = illliii 
and for the types IIs_ + and IIs+ + 

u = iu = ill2iii. 

Equations (3) and ( 4 ) give for the types lIs _ _ and lIs _ + 
(the upper sign applies for the first of these types): 

J"V= =F!(k!-'Iv _I"kv - m"iiiV + iii"mV) 

+ {j(/!-'iiiv - m"P) 

and for the types lIs + _ and lIs + + 
+ 
J!-'v = ± !(k!-'P -I"k v + m"iiiV _ iii"mV) 

(27) 

(28) 

where {j is arbitrary. Equations (1) and (2) are satisfied 
identically. If tP¥=O (subtypes 111) we can, performing a 
Lorentz boost in the plane spanned by k and I, normalize it. 
So for the types 111 the parameters are either rr < 0 (then 
p2 = 0) or p2 < 0 (then rr = 0) and the parameter {jEV (1 ); 

the dimension of the orbit is 6. For the types II~ (i.e., if 
{j = 0) there is only one parameter: either rr < 0 or p2 < 0; 
the dimension of the orbit is 5. 

Types I N __ , I N_+, I N+_, and IN++: The space 
spanned by 1T, 1', p, U is one-dimensional null. From (3) and 
(4) both vectors u, u¥=O, so we can fix the basis vector k so 
that u = k exp ( - il/J). Equations (3) and (4) can be satis
fied if and only ifu = iu (types IN __ and IN + _ ) or u = iv 
(types IN _ + and IN + + ). We can choose the null basis so 
that (27) and (28) hold with {j = 0; (27) holds for the types 
IN __ , IN_ + ' (28) holds for the types IN+ _ and IN+ + 
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FIG. 3. Types of spino rial idempotents in the Clifford algebra C( 1,3)' and 
relations between them. 

( respecting the signs in both cases). The angle r/J is the single 
parameter. The dimension of the orbit is 5. 

Types 0_ and 0+: The vectors u and v vanish. Equations 

(1) and (2) remain to be solved. They lead to f I-'V f I-'V 
+ + + 

-! (type 0_ if b = - i/4 so fl-'v = 0) or fl-'vf I-'V 

-! (type 0+ if b = i/4 so fl-'v = 0). A convenient 

choice of the null tetrad leads in the case 0 _ to 
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and in the case 0 + to 
+ 
fl-'v = - !(kl-'/v -/I-'k v + ml-'iiiv _ iiil-'mV). 

There are no continuous parameters in both types 0 _ and 
0+. The dimension of the orbit is 4. 

Figure 3 shows the relations between various types of 
the complex idempotents. 
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The Clifford algebra of a real infinite-dimensional vector space is constructed. This algebra 
contains all finite- and infinite-dimensional Clifford algebras over the real and complex 
numbers. Some of the mathematical properties of these algebras are discussed; the 
automorphisms and involutions are specifically addressed. The special case with metric 
g,,!, = /)"!,, v. f.L = 1.2 •...• follows as a corollary to the more general results. 

I. INTRODUCTION 

The spaces that appear in quantum mechanics usually 
have a countably infinite number of complex coordinates. As 
Dirac l noted. a real space with a countably infinite number 
of coordinates is the more elementary concept. A complex 
space can be looked upon as a real space in which a pairing of 
coordinates has been introduced. each pair being considered 
as a complex number. 

This fundamental concept is illustrated by Shale and 
Stinespring2 who. beginning with a real pre-Hilbert space M. 
construct an infinite-dimensional Clifford algebra C(Jo(M) 

over the complex numbers. They define a state of C(J oeM) as 
a linear functional Eon Ctf oeM) such that E( 1) = 1 and 
E(u*u»O. for all u in Ctf oeM). The algebra Ctf{)(M) then 
has a unique central state Eo [Eo (uu) = Eo (uu) ], for all u, U 

in Ctf oeM), that is invariant under the orthogonal group of 
M. 

Plymen3 begins with an infinite-dimensional Hilbert 
space and constructs two real infinite-dimensional Clifford 
algebras. We present his construction in considerable detail 
because it illustrates the fundamental nature of the infinite
dimensional real Clifford algebras. 

Let dY be an infinite-dimensional real Hilbert space 
with orthonormal basis hi' i = 1,2, .... Let sf' be the canoni
cal anticommutation relation (CAR) algebra over dY, and 
let Jbe a complex structure in dY. Let dY and 1T be the Fock J J 

space and representation determined by J. Let Fbe dY. as a 
real Hilbert space; i.e., we restrict scalars from the co~plex 
numbers to the real numbers and take the inner product in F 
to be the real part of the inner product in dYj • 

Let UbeanopensetindYandletj: U .... Fbe a differen
tiable map such that its Frechet derivative is nuclear for all 
XEU. The Dirac operator Pf(x), for XEU. is given by 

'" 
Pf(x) = I c"/n (x), (1) 

;= 1 

wherefn (x) is the nth partial derivative ofJatx evaluated at 
h". The Ci , i = 1,2, ... , are given by 

Ci = 1Tj (ej ). 

and satisfy 

(2) 

cicj + cjci = 2oij . (3) 

An orthonormal basis for F can be chosen in which each c· is 
an infinite matrix that is symmetric and orthogonal. The 
operator (Pf)2 acts as Gross's4 Laplacian. 

We will show that a real infinite-dimensional Clifford 
algebra is the fundamental structure in the sense that any 
real or complex, finite-dimensional or not, Clifford algebra 
can be embedded in it. 

The interplay between infinite-dimensional real Clifford 
algebras and complex Clifford algebras is further shown in 
Shale and Stinespring5 where they discover the infinite-di
mensional spinors relative to SO(H); de la Harpe6 con
structs the universal covering group Spin(dY) 00 of 
SO (dY) I' and Plymen 7 constructs the spin representation of 
Spin(dY) 00 • Carey and O'Brien8 continue the discussion of 
the group of automorphisms of the infinite-dimensional Clif
ford algebra. The interested reader is referred to the refer
ences of the cited literature for a more complete set of refer
ences. 

We begin with a real. countably infinite-dimensional 
vector space and will assume sufficient structure on this 
space in order to generate a Clifford algebra. The mathemat
ical properties of this algebra are discussed. with rather arbi
trary limitations being imposed to keep the paper relatively 
short. There is extensive literature on finite-dimensional 
Clifford algebras (see the listing in Salingaros and Wene9

). 

II. THE CONSTRUCTION 

Let A be a well-ordered, countably infinite set. Proceed
ing as in Chevalley,1O we will denote by ~ the vector space 
over the field R of real numbers spanned by all finite prod
uctse'!,e'!2" ·eA., whereAjEAandA j <Ai + l' The dimension 
of Ctf over R will be countably infinite. An associative prod
uct is defined in ~ by 

eiej + ejei = 2oija j , i.jEA. (4) 

where a j = - 1. 0, or 1. Hence we must add an identity 
element to C(J. 

The set A can be written as the union of sets M, Z. and P, 
where 

M = {AEAle~ = -l}, (5) 

Z = {AEAle~ = O}, (6) 

and 

P = {AEAle~ = l}. (7) 

Lemmas 1 and 2 exploit the fact that the set A has infinite 
cardinality. 
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Lemma 1: If one of the sets M and P is infinite, then 
there exist elements Pi,qi' i = 1,2, ... , of the Clifford algebra 
CG' such that for all i,j = 1,2, ... , 

and 

P7 = 1, 

q7 = - 1, 

PiPj + PjPi = 20ij 1, 

qiqj + qjqi = 2oij ,l, 

(8) 

(9) 

( 10) 

(11) 

Piqj + qjPi = 0. (12) 

Proof If the set M of all iEA such that e7 = - 1 is an 
infinite subset of the well-ordered set A, we can put the ele
ments of M into a one-to-one correspondence with the natu
ral numbers 1,2, .... Define 

(13) 

and 

(14) 

for all ei , i = 1,2, .... 
If the set P of all iEA such that e7 = 1 is an infinite subset 

of the well-ordered set A, we can put the elements of Pinto a 
one-to-one correspondence with the material 1,2, .... Define 

Pi =e2i _ l , (15) 

and 

(16) 

for all ei , i = 1,2, .... 
Lemma 2: Let Pi' i = 1,2, ... , be a set of elements of ~ 

such that 

PiPj+pjPi=2oij l, ij=I,2,.... (17) 

Then ~ contains elements e,J;,gi' i = 1,2, ... , such that 

and 

e2 = - 1, 

eJ; = J;e and egi = gie, 

J; fj + If; = 20ij 1, 

gigj + gjgi = - 20ij 1, 

J;gj + gf; = 0, 

for all i,j = 1,2, .... 
Proof Define 

J; =P2i+ I' 

and 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

gi =P4P6P6+2i' (25) 

The metric of a Clifford algebra with generators ei , 

i= 1,2, ... , is the mappinggjlY =!(eyejl +ejley ) =!ojlyay, 
JW = 1,2, .... Ifll = MUZUPis finite we will write A p,m,qfor 

the Clifford algebra with the metric determined by IP I = P, 
1M I = m, and IZ I = q. If Z = 0, we write A p,rn in place of 
A p,rn,D. Most of the literature discusses the algebras A p,m; the 
algebras A p,m,q are discussed in Ablamowicz. II ,12 
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Theorem 3: If the set MU P is infinite, then the real Clif
ford algebra ~ contains all finite-dimensional Clifford alge
bras A p,rn over the field of real numbers and those over the 
field of complex numbers. 

Proof By Lemma 1, ~ contains a set of elements Pi' 
i = 1,2, ... ,P7 = 1. Construct elementsc,J;, andgi , i = 1,2, ... , 
as in Lemma 2. 

Let F={f;li= 1,2, ... } and G={gili= 1,2, ... }. Then 
any set Wof m elements of G and p elements of F under the 
product of ~ will generate the real Clifford algebra A p,rn. 

Since the element c of Lemma 2 can play the role of a 
complex unit, the set WU {c} will generate the complex Clif
ford algebra A p,rn. 

Corollary 4: The Clifford algebra associated with the 
metric gVjl = oYjl' v,/l = 1,2, ... , contains all Clifford algebras 
A p,m, p,m = 0,1,2, .... 

Corollary 5: If each of the sets MU P and Z are infinite, 
then the real Clifford algebra ~ contains all finite-dimen
sional Clifford algebras A p,m.q (real and complex). 

Proof Let MU P be as in Theorem 3 and Z infinite. De
fine elements c, J;, and gi as before. Let H be the set of ele
ments{ziliEZ}. If Hq is a set of qelements of H, then the set 
WUHq generates the real algebra A p,m,q. The complex alge
bra will be generated by WUHq U{c}. 

III. THE IDEAL STRUCTURE 

The ideal structure of the algebras A p,m is well known 
(see, for example, Chevalley 10). We can easily determine the 
ideal structure of the Clifford algebra of an infinite-dimen
sional vector space. 

Theorem 6: Let A = PU MU U be infinite. The algebra 
~ is simple if and only if Z = 0. 

Proof Suppose Z is not the empty set. Then there is 
some eoEZ, ~ = 0, and the algebra eo ~ is an ideal in ~. 

Now if Z = 0, then any element a of CG' is an element of 
some A p,rn. If A p,m is not simple, that is, P + m = 2r + 1, 
then (without constructing a new basis) either A p,m + 1 or 
A p+ \,m is also in ~ and contains A p,m. But thenp + m + 1 
is even and the ideal generated by a contains 1 (see Cheval
ley, 10 p. 47). 

Compare our Theorem 5 with Lemma 1 of Shale and 
Stinespring.2 

An ideal I in an algebra .sf is nil if for each xEl, 
xn(x) = 0, for some positive integer n(x). The nil radical [% 

of an algebra is the sum of all nil ideals. We get as a corollary 
to Theorem 5 that the algebra ~ has a nil ideal if and only if 
Z #0. There are many additional things that can be said 
about the nil radical; we end our current discussion with the 
following theorem. 

Theorem 7: Let A = MUPUZ be infinite and Z #0. 
Then ~ can be written as a vector space direct sum 

(26) 

where [% is the nil radical of ~ and .sf the Clifford algebra 
generated by {ei liEPUM} is isomorphic to the factor algebra 
~ /[%. If IZ 1= n, then [%n+ 1 = o. 

Proof' Let .sf be the Clifford algebra generated by the set 
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{ei liEMUP}. The radical :?It is the ideal in CtJ generated by 
the set k 1 iEZ }. Then 

CtJ = sf Ell:?lt (27) 

as a vector space. The map 

a + :?It-+a (28) 

is an isomorphism of CtJ 1:?It and sf. Clearly if IZ 1 = n, 
:?It n + I = O. 

IV. AUTOMORPHISMS AND INVOLUTIONS 

Let CiJ.' be an algebra over the field K. A vector space 
isomorphism a: CiJ.' -+ CiJ.' is an automorphism of CiJ.' if 

a(xy) = a(x)a(y), (29) 

for all x,y in CiJ.'. 
Let Ctf be the Clifford algebra generated by the elements 

eo iEA, A = MUZUP and the set MUP is infinite. 
Denote by Ctf # the group of invertible elements of CtJ • If 

CECtf # then the map a: 9!f -+ Ctf defined by a(x) = cxc- I is 
an (inner) automorphism of Ctf. The group of inner auto
morphism is isomorphic to the factor group 

Ctf # Icenter( Ctf #). 

We determine all the automorphism of the real Clifford 
algebra A p,m contained in Ctf and generated by a finite set of 
ei , iEMUP. For a discussion of the automorphisms of an 
infinite-dimensional Clifford algebra see Refs. 2, 3, 5-8. 

Theorem 8: Let A p,m be a real Clifford algebra generated 
by a finite set of elements eo iEMUP. If P is an automor
phism of A p,m, then there exists an element CECtJ # such that 
p(x) = cxc- I for all x in A p,m. 

Proof' If A p,m is simple, then by the Noether-Skolem 
theorem (Herstein,13 p. 99) all automorphisms are inner 
and c is an element of A p,rn. The term A p.rn is not simple if and 
only if P + m = 2r + 1 and 2 ( - 1) r ( - 1) q is a square in R 
(Chevalley,1O p. 47). 

Since the set MU P is infinite we can construct a simple 
algebra sf that is isomorphic to either A p + I ,q or A p,q + I. Let 
e: sf -+ sf be defined by linearity and 

(30) 

where PI and P2 are products of the ei's, i = 1,2, ... ,p + q. 
Then e is an automorphism of sf that fixes A p,q setwise. 
Since sf is simple, e is inner. 

A linear transformation (superscript u) of an algebra 
CiJ.' is an involution if (aU) U = a and (ab) U = b U aU for all a, b 
in CiJ.'. 

The main involution * in a Clifford algebra is defined by 
linearity and 
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er = ei , i = 1,2, ... , (31) 

(32) 

The main involution • in the algebra CtJ when restricted to 
A p,q induces the main involution in A M. 

Theorem 9: Let A p,m be a real Clifford algebra generated 
by a finite set ei , iEMUP. If u is an involution in A p,m, then 
there exists an involution e in Ctf such that e restricted to 
A p,rn is u. 

Proof: Let F be the subset of MUP such that eo iEF 
generates A p,m. 

Extend u to all of Ctf by linearity and, for each product f.L 
of e;' s, if$.F, 

U(PI UP2) =p~u·pf, (33) 

where • is the main involution in the algebra generated by 
the ei's, if$.F, and PI and P2EAP,m . 

V. CONCLUSION 

The Clifford algebra Ctf associated with an infinite-di
mensional real vector space is a suitable background for the 
mathematical study of finite-dimensional real and complex 
Clifford algebras. If A p,q is a real Clifford algebra contained 
in CtJ, then any automorphism of A p,q is induced by an inner 
automorphism of Ctf. Similarly, any involution in A p,q is in
duced by an involution in Ctf. 
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Using the theory of finite groups, the spectrum of a regular "tetrahedron" in four and more 
space dimensions is analyzed. 

I. INTRODUCTION 

The theory of finite groups is useful for the analysis of 
small oscillations of molecules when one is only interested in 
certain qualitative properties of the spectrum, such as degen
eracies. In particular, when one does not know the details of 
the interactions between the atoms but only their symmetry 
properties, or when the interactions are too complicated to 
allow a direct solution of the Lagrange equations, group the
ory is a useful tool for analyzing the spectrum. The standard 
examples treated in textbooks of classical mechanics are the 
H 20 and NH3 molecules, whose symmetries under rotations 
and reflections form the Klein group of order 4 and the dihe
dral group of order 6. However, more amusing are the appli
cations of group theory to the five Platonic solids: the tetra
hedron (simplex), hexahedron (cube) and its dual the 
octahedron, and the icosahedron (20-face) together with its 
dual the dodecahedron (12-face). Their symmetry groups 
are S4' S4 + aS4, and As + uAs, respectively, where u de
notes the space inversion. (The dual is obtained by drawing 
lines from the center to the vertices and erecting planes or
thogonal to these lines at the vertices.) 

In this paper we shall analyze the spectrum of the sim
plest polytope in four space dimensions, the hypersimplex, 
by means of finite group theory. We do this out of curiosity 
and not because there are obvious physical applications (see, 
however, Ref. 1). 

Polytopes are the objects that come after polyhedra in 
the series 

point, segment, polygon, polyhedron, polytope. 
(1.1 ) 

. In four space dimensions there are six regular polytopes but 
in d>5 space dimensions there are only three regular poly
topes: the hypersimplex (which is self-dual) and the hyper
cube which is dual to a solid which may be called the dual 
hypercube. One may visualize the hypersimplex in d dimen
sions as obtained by adding a point "somewhere above" the 
hypersimplex in (d - 1) dimensions and drawing all edges 
from this extra point to the vertices. In four space dimen
sions, the hypersimplex contains therefore V = 5 vertices, 
E = 6 + 4 = 10 edges, F = 4 + (i) = 10 faces, and S = 5 
tetrahedra, in agreement with Euler's formula V - E + F 
- S = O. Since it is self-dual, V = S. 

The hypercube is obtained by transporting the hyper
cube in one lower dimension parallel to itself, and drawing 
edges between corresponding vertices. In d space dimensions 

.j Current address: The Enrico Fermi Institute, University of Chicago, Chi
cago, Illinois 60637. 

the hypercube has 2d vertices with coordinates 
( ± ~, ± ~, ... , ± ~), and it is bounded by 2d regular polytopes 
of maximal lower dimension (d - 1). Hence the dual hyper
cube contains 2d vertices and 2d (d - 1 )-dimensional poly
topes. Euler's formula for the hypercube in d space dimen
sions reads 

2d - (J2d- t + (J2d - 2 
-'" +2d= (2 _1)d + 1 

= {O (d even), 
2 (d odd), (1.2) 

while for the hypersimplex one has 

(d + 1) _ (d ; 1) + (d ; 1) _ ... + (d ~ 1) 
(d even), 

(d odd). 
(1.3 ) 

The three "exceptional" regular polytopes in four di
mensions are 

the self-dual 24-tope with 24 vertices, 

the 120-tope with 600 vertices, 

the 600-tope with 120 vertices. 

(1.4) 

It is easy to prove that there are only five Platonic solids. 
At each vertex q faces meet (q> 3) and each face is a polygon 
withp vertices (p>3). If the angle between two edges bor
dering a face is a, one has qa < 211". (If qa = 211", the q faces 
would lie in a plane.) The p edges of a face are parallel to p 
vectors through the origin, and it follows that 
p( 11" - a) = 211". Eliminating a from these two relations, one 
obtains the inequality 

l/p+ 1!q>!. (1.5) 

The only solutions for (p,q) are (3,3), (3,4), and (4,3), and 
(3,5) and (5,3). 

To see that there are six polytopes in four space dimen
sions, and only three polytopes in more than four space di
mensions, is less easy. 2 The general procedure for construct
ing polytopes in d space dimensions consists of piecing 
together suitable polytopes in d - 1 dimensions. Not all 
(d - 1 )-dimensional polytopes are suitable, e.g., for d = 3, 
the p-gon is suitable only if p < 6, as we have seen. Let us 
piece together the three-dimensional polyhedra (p,q) to con
struct the four-dimensional polytopes. Just as one may con
struct a polyhedron by starting in one dimension lower and 
putting there q polygons around a vertex but with a deficit 
angle 211" - qa, which, when closed, moves the whole figure 
into three dimensions and then yields a polyhedron, also 
here one may start with r polyhedra around an edge in three 
dimensions with a deficit angle 211" - r/3, and by closing this 
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angle the whole figure moves into four space dimensions and 
yields a polytope. Then rfl < 21T and r> 2. [Alternatively, 
one may start directly in four space dimensions and consider 
an S 2 erected at the middle of the edge and orthogonal to the 
edge. Then the intersection of this S2 with the (d - 1) poly
tope (with d = 4 here) yields a closed sequence of arcs, and 
again one obtains rfl < 21T.] Consider now the dihedral angle 
fl between two adjacent faces of (p,q). This immediately 
rules out the icosahedron (3,5) as a possible building block 
since it has fl> 120°. 

The only solutions to the constraints on fl and rare 
(p,q,r) = (3,3,3), (3,3,4), (3,3,5), (3,4,3), (4,3,3), and 
(5,3,3). This is easily seen by measuring the anglefl for each 
of the polyhedra. More analytically, one may use that for any 
polyhedron (p,q), one has for the dihedral angle the formula 
sin () 12 = (cos 1T 1 q) 1 (sin 1T 1 p ). Hence for a tetrahedron 
fl-70°, for the octohedron ()_109°, for the cubefl = 90°, for 
the dodecahedron fl-116°, while for the icosahedron 
fl-138°. This formula is most easily checked (and thus 
proved) by considering each case separately. (In particular, 
use the facts that an octahedron is cut in half by a square and 
that an icosahedron has a cap of five equilateral triangles, 
and then cut from the dodecahedron a pyramid whose four 
vertices are four nearest-neighbor vertices of the dodecahe
dron.) 

We thus know that there are at most six polytopes in 
four dimensions. The (3,3,3) is the hypersimplex and ex
tends to (3,3, ... ,3) for d dimensions. The (4,3,3) is the hy
percube and extends to (4,3, ... ,3) in d dimensions. Its dual is 
(3,3, ... ,4). These polytopes obviously exist since their con
struction is trivial. 

The (3,4,3) is the (self-dual) 24-tope consisting of 24 
octahedrons (and 24 vertices since it is self-dual). It can be 
constructed, nontrivially, from the hypercube (4,3,3) by 
joining the midpoints of the 24 faces of the (4,3,3). That the 
result is a regular polytope is not at all obvious. (For exam
ple, joining the midpoints of the edges of a cube in three 
space dimensions does not yield a polyhedron, but rather an 
object that contains squares and triangles, as one may ver
ify). Obviously, taking the midpoints of the faces of the eight 
cubes of the hypercube will give eight octahedra, but it is by 
no means obvious that 16 more octahedra are formed. How
ever, it is not too difficult to see where these extra 16 come 
from. 

Consider the hypercube as being obtained by parallel
transporting a cube "on the right" to a cube "on the left." 
Then the eight vertices on the right go to the eight vertices on 
the left. Each of these 16 vertices leads to an octahedron in 
the following way (and that yields then the remaining 16 
octahedra). Consider a vertex V, say, of the right cube. It is 
common to three faces. Take the middle of these three faces; 
these will be three of the six vertices of the sought-after octa
hedron. The other three vertices of the desired octahedron 
are the middles of those three faces that are obtained by 
parallel transporting the three edges that meet at vertex V. 

The (3,3,5) and its dual (5,3,3) can also be constructed 
but it is not so simple to prove that they are regular.2 

When an N-atom molecule in its equilibrium position is 
invariant under a set of rotations and reflections, these sym-
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metries form a finite group G. Denoting the position, equilib
rium position, and the deviation of atomj in d-dimensional 
space by 

rj = rJ + Sj, (1.6) 

one can plot the deviations Sj of the atoms as a dN-dimen
sional vector in a dN-dimensional vector space R dN, 

R = {SI,S2,,,,,SN}' (1.7) 

Thus R (t) gives the deviation of the whole molecule at time 
t. A normal mode corresponds to the motion 
R (t) = Ro cos (UJt + a), and the general motion is a linear 
combination of the dN normal modes. Among the dN de
grees offreedom there are, in d space dimensions, d transla
tions and !d(d - 1) rotations, while the remaining modes 
are genuine normal modes. For example, in d = 4 space di
mensions there are ten genuine normal vibrations for the 
hypersimplex. A normal mode with frequency OJ is mapped 
by a symmetry g in G into another normal mode with the 
same frequency. Hence R dN splits into subspaces 
S(OJ I ),S(OJ2) , ... , which are invariant under G and any vector 
in S(OJj ) corresponds to a motion of the molecule that is a 
linear combination of normal modes with the same frequen
cy OJj , and that is a harmonic motion inS(OJj ). The invariant 
subspaces S(OJj ) are the carrier spaces of representations of 
G, because any element gin G maps a vector in S(OJj ) into 
another in vector in S(OJj ). In general, the subspaces S(OJj ) 

will be irreducible representations (irreps) of G but if one 
chooses the interactions between the atoms in a special way, 
it may happen that two irreps correspond to the same fre
quency. We shall not consider such special cases. 

It is physically clear that the translations and rotations, 

rj = rOj + a, r'; = rr + (b k
1 - bik)rF, (1.8) 

form invariant subspaces under G. (They need not be irreps: 
for example, for the H20 molecule all irreps are one dimen
sional.) One can find out how many times a given irrep of G 
is contained in R dNby using characters. To explain this, we 
briefly review some elements of finite group theory. 

A given group G splits up into r classes (gag-I with g 
arbitrary). If there are r classes there are r irreps. A charac
ter X is the trace of the matrices that form a representation of 
G. The characters are class functions, not only group func
tions, because x(gag- I ) = x(a). The order of G (i.e., the 
number of elements it contains) is related to the dimensions 
ds (s = 1, ... ,r) of the irreps by 

r 

order G = L (ds )2. ( 1.9) 
s= I 

Usually, there are only a few one-dimensional irreps of G. 
The number of them is given by the ratio of the order of G 
and the order of the commutator subgroup C( G) 

number of one-dimensional irreps 

= (order G)/order C(G). ( 1.10) 

The commutator subgroup C( G) is generated by all ele
ments aba-Ib -I. It is an invariant subgroup (because 
gaba-Ib-Ig-I=a'b'a'-Ib,-I with a' = gag-I and 
b' = gbg- I). Any invariant subgroup consists of entire 
classes, so to determine C( G) we evaluate aba-I b -I for a 
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few elements a and b, and each time the result lies in class C, 
the whole class C is part of C{ G). 

A most useful formula states that the characters are or
thogonal functions of the classes 

L Xi(g)Xj(g) = L Xi(Ck)Xj(C k) 
geG classes C k 

X order C k = tjij order G. ( 1.11 ) 

The symbol "order C k" is the number of elements in class 
C k (k = 1, ... ,r), which is a divisor of the order of G. This 
allows a quick check on the enumeration of classes. Another 
check is the theorem that for any subgroup H of G, in partic
ular C{ G), the order of H is a divisor of the order of G 
( Lagrange) . 

Conceptually important is Cayley's theorem, which 
states that every group G is a (proper or improper) subgroup 
of the symmetric group SN with N = order G. (SN is the 
group of permutations of N objects and is of order N!) Thus 
every group element of a group G can be written as a product 
of permutation cycles. For example, the Abelian Klein 
group with elements e,a, b, ab satisfying a2 = b 2 = e, con
sists of the cycles e, (12)(34), (13 )(24), and (14 )(23). The 
conjugation relation a' = gag- I can then simply be inter
preted as changing the names of the cycles according to the 
recipeg. [For example, (123) (345) (321) equals (145) and 
is obtained from (345) by changing the name of 3 into 1.] It 
follows that the classes of S N contain with each element a 
also its inverse a-I. Hence for S N one can generate C( G) by 
multiplying all elements of a given class (and that for all 
classes). 

II. THE CHARACTERS OF 55 DERIVED BY 
ELEMENTARY MEANS 

The regular simplex in four space dimensions has five 
vertices, whose Cartesian coordinates we take at 

(2,0,0,0), (0,2,0,0,), (0,0,2,0), 
(2.1) 

(0,0,0,2), ( 7,7,7,7), 

where 7 = ~(1 - $) is the "golden ratio," satisfying".z - 7 
- I = O. The center is then at a( 7,7,7,7) with a = 7/ 
( 7 + 2). From the center to the five vertices one has the 
vectors el, ... ,es with 

(7+2)-1(7+3,-7-1, -7-1, -7-1) 

and three others; (2.2) 

(7 + 2) -I (27,27,27,27), 

The oscillations have 5 X 4 = 20 degrees of freedom, of 
which four are translations and six are rotations. Thus there 
are ten genuine normal modes. 

The isometries of the simplex in equilibrium permute 
the vertices. In fact, pair exchange of two vertices is an iso
metry so that the full isometry group is Ss. To see that pair 
exchange is an isometry, we consider the two vertices at 
(2,0,0,0) and (0,2,0,0), and choose as a basis in R 4 the 
vectors (2, - 2,0,0), (0,0,2,2), (0,0,2, - 2), and 
(1 - a) (7,7,7,7), i.e., the vectors el - e2, e3 + e4 + res, 
e3 - e4 , and es. On this basis the isometry takes the form 
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(

-1 

M(pair exchange) = J 1 
(2.3 ) 

and thus corresponds to a reflection. It follows that the rota
tions correspond to the alternating group As and the pure 
reflections to Ss - As. 

Since we must eventually reduce the 20-dimensional rep 
of Ss that is produced by the small oscillations, into irreps of 
Ss, we will first deduce the characters of Ss. We can then use 
the orthogonality relation of the characters for the reduc
tion. 

To find the one-dimensional irreps, we need the commu
tator subgroup, as explained before. The commutator sub
group C( G) of S N contains the products of all elements of a 
given class. Thus it contains all even permutations, and thus 

(2.4) 

It follows that there are only two one-dimensional irreps. It 
is easy to identify them: one is the unit representation itself, 
while the otheris + 1 on As and - 1 on the odd elements of 
Ss· 

The number of irreps is equal to the number of classes. 
There are seven classes, namely the unit element, all pair 
exchanges (12), (23), etc., the three-cycles (123), etc., and 
so on. Denoting a permutation by the number of vertices it 
permutes among themselves, we have the following seven 
classes: 

1 S. 132, 123, 1 4, 
(1), (10), (20), (30), 

5, 1 22
, 2 3 

(24), (15), (20) 
(2.5) 

Below each class we have written its order, and as a check 
one may note that they are divisors of the order of Ss (which 
is 120). There are thus seven irreps, of which two are one 
dimensional. To determine the dimensionality of the other 
five irreps we use ( 1.9). We obtain the Diophantine equation 

120 = 1 + 1 + x 2 + y2 + r + 12 + uZ
• (2.6) 

If we order such that x.q<;z<J<;u, it is clear that u<; 10. 
Since x = y = z = 1 = 2 is not a solution, 1>3 so that u<;9. 
Continuing in this way we find only one solution 

x=y=4, z=I=5, u=6. (2.7) 

We will now identify these irreps by various elementary 
methods. 

First of all, the isometries of the hypersimplex as an 
object in R 4 form a discrete subgroup of 0 ( 4); in fact, we 
already saw that the rotations are elements of SO ( 4 ). Hence 
there are at least two four-dimensional representations of Ss, 
as matrices Min 0 ( 4 ) and as M times det M. The character 
X4 of the 4 X 4 matrix representation of Ss as an isometry 
group in R 4 can be explicitly evaluated on the seven classes. 
For the pair exchanges we already obtained X4 = 2, while on 
the unit class it equals + 4. On the three-cycles (123), etc., 
we find its value by noting that the matrix that cyclically 
permutes el, ez, and e3 but keeps e4 and es fixed, is a rotation 
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in the three-volume (a, {3,y,O) around the axis (1,1,1,0) 
over an angle 21T/3. Hence 

o 

M= 
1 0 

o 
o 1 

tr M(three-cycles) = 1. (2.8) 

The permutation (12) (34) can be represented on the basis 
e l + e2, e l - e2, e3 + e4 , e3 - e4 as a diagonal matrix with 
entries + 1, - 1, + 1, - 1. Hence X4 vanishes on the class 
122. For the class 23 with element (123) (45), we choose the 
basis e l - e2, ez - e3, e4 , es. Since e2 - e3 goes over into 
e3 - e l = - (e l - e2 ) - (e2 - e3 ), the matrix representa
tion reads 

-1 0 

U' 
-1 0 

0 0 
tr M(23-cycles) = - 1. 

0 
(2.9) 

That leaves us with the characters for the classes 14 and 5. 
The class 14 contains the permutation (1234) which maps 
e l , ez, e3 , e4 cyclically into each other, hence X4 (14) = O. On 
the other hand, the permutation ( 12345) can also be written 
down on the basis e l , ... ,e4 , but since e l + .. , + es = 0, the 
vertex e4 is mapped into e5 which is equal to 
- e l - e.2 - e3 - e4 • Hence 

o 
o 

o 

o 
o 
o = :), x4

(five-cycles) = - 1. 

-1 
(2.10) 

Summarizing, the character of S5 as the isometry group in R 4 

has the following value on the classes: 

class 

order 

15 132 14 5 122 23 

(1) (10) (30) (24) (15) (20). (2.11 ) 
character 4 2 o -1 o 

In principle this character could be a sum of irreducible 
characters. In that case we would find 

L X4(C k)X4(C k) order C k = (L nJ) order G. 
classes c k 

(2.12) 

However, in this case we find for this sum 

16X 1 + 4X 10 + 1 X20 + 1 X24 + 1 X20 = 120. (2.13) 

Thus the four-dimensional representation of Ss as the iso
metry group in R 4 is irreducible. 

The other four-dimensional representation can now at 
once be written down; it is the product of the nontrivial one
dimensional representation with X4. This is the representa
tion M det M, whose character tr M det M is obviously 
again an irreducible representation. To distinguish them we 
will denote (2.11) by xiI) and this irrep by Xi2)' 

The six-dimensional representation of Ss can also readi
ly be identified. It should only be nonzero on As (the classes 
with even permutations), because otherwise one could con
struct another six-dimensional irrep (by multiplication with 
the nontrivial one-dimensional irrep). By orthogonality one 
could further narrow it down. However, we can directly ob
tain it by noting that O( 4) has the six-dimensional irrep Aij 
= - Aji (i,j = 1,4), which suggests that this representa-

tion as a representation of S5 might also be an irrep. On the 
unit class the trace of the six-dimensional rep is obviously 6. 
The isometry (12) keeps e3, e4 , and es fixed. Hence 

A 12 ..... -Aw Alk +AZk ..... A lk +A2k> k= 3,4, 

A 34 ..... A 34' Alk -A2k ..... - (Alk -A2k ), k=3,4. 
(2.14) 
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-1 

Clearly the trace of this. matrix representation is zero, as 
expected (see above). The isometry (123) acts on the six 
components of Aij as follows: 

A 12 ..... A23' An-+ -A13' A 13 ..... -A12' 

A I4 ..... A24' A Z4 -+A34, A34 ..... A I4· 
(2.15 ) 

Hence X6 equals zero on the class with three-cycles. On the 
class with (12) ( 34) one finds that 

A 12..... - A 12' A I ± 2,3 + 4 -+ ± A I ± 2,3 + 4 , 

A34-+ -A34' A I±z,3-4-+ =t=A I ±2,3-4, 

(2.16) 

whereA I _ 2,3 +4 = A13 - A Z3 + AI4 - A 24. Hence X6 on 122 
equals - 2. Finally, for the class with (12345) we have 
e4 ..... - e l - e2 - e3 - e4 • Hence 

A I2 -+A 23, A 13--+A24' 

A 23 ...... A 34' AZ4--+ A 13 +AZ3 -A34' (2.17) 

A34-+A 14 +A24 +A34, A 14 ...... A 12 -A23 -A24· 

Clearly, on this class X6 takes on the value + 1. 
Summarizing, we get for the six-dimensional represen

tation of S5' 

15 132 
(l) (10) 

6 o 

14 

(30) 

o 

5 
(24) 

122 

(15) 

-2 

23 

(20). 

o 
(2.18 ) 

This representation is indeed irreducible, and as a check one 
may verify that its character is orthogonal to the characters 
previously obtained. 
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Weare left with the problem of finding the two five
dimensional characters. A natural guess would be to consid
er the five-dimensional matrix representation of Ss as the 
permutation group of the vertices. Its character is the num
ber of vertices that are left fixed. One has 

15 132 123 14 5 122 23 

(1) (10) (20) (30) (24) (15) (20). (2.19) 

5 3 2 o o 
However, this representation is not irreducible since .IX(g) 
XX(g) = 240. Using the orthogonality relations it is easy to 
see that the unit trace is contained once in it. Subtracting it, 
one is left with the character X11) that we determined before. 

We can, however, also consider the action of Ss on the 
ten edges. Each edge can be written as (ij) with i <j = 1,5. 
The character is the number of edges that is kept fixed. 
Hence 

23 15 132 123 
(1) (10) (20) 

14 
(30) 

o 

5 

(24) 

o 

122 

(15) 

2 

(20). (2.20) 

10 4 
From the orthogonality relations we get 

100+ 16X1O+ lX20+4X15+ lX20=3xI20, 
(2.21) 

so that it contains three irreps (.In] = 3). The unit trace is 
contained once. Thus one of the four-dimensional irreps 
must be contained in it. As one may verify, X11) is contained 
in it. Hence one is left with the following five-dimensional 
irrep: 

15 132 14 5 23 
(1) ( 10) (30) (24) (20). (2.22) 

5 -1 o 
One may directly verify that it is irreducible by using the 
orthogonality relations. 

The other five-dimensional irrep is now at once found, 
by multiplication with the nontrivial one-dimensional irrep. 
The complete set of characters is given in Table I, and agrees 
with the standard results in the literature. 3 

III. THE SPECTRUM OF THE OSCILLATING 
HYPERSIMPLEX 

To each symmetry of a molecule corresponds a mapping 
of the linear vector space of deviations of the atoms from 
their equilibrium positions. Let g be a symmetry (rotation or 
reflection) that maps the eqUilibrium position rJ ofatomjto 
the equilibrium position r~ of atom k. Then under g the 
atoms are permuted according to the element 1T g of a permu-

TABLE I. Characters and classes of the hyper simplex. 

Class/irrep X:" X:2) xt,) Xt2) xi" Xi2) x6 tr Ag 

ISO) 1 4 4 5 5 6 20 
132(10) -1 2 -2 1 -1 0 6 
123 (20) 1 1 1 -1 -1 0 2 
14(30) -1 0 0 -1 1 0 0 
5 (24) 1 -1 -1 0 0 1 0 
122 (5) 1 0 0 1 1 -2 0 
23 (20) -1 -1 1 1 -1 0 0 
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tation group 1T of the N atoms that is a proper or improper 
subgroup ofthe symmetric group SN' 

grJ=r~, 1TJ=k. (3.1) 

Thus both 1Tg and g form a representation of the symmetry 
group G, but 1T acts on the set of N atoms while g acts on the 
linear vector space R d.Given a position rj = rJ + Sj of atom 
j, where Sj is its deviation, which we take small, then grj will 
be a vector near the equilibrium position r~ of atom k. Hence 

grj = r~ + S(g)k' (3.2) 

In other words, given a deviation Sj of atom j the operator g 
leads to a corresponding deviation of atom k. We can take all 
deviations lij (j = 1,N) of the atoms together, and construct 
a dN-diJIlensional vector R, 

R = {SI,S2,,,,,SN}ER dN, (3.3) 

which gives the deviation of the whole molecule. We can also 
define a projection operator Pj that selects the deviation Sj 
and replaces it by the position rj = rJ + Sj of atom}, 

PjR = rj = rJ + Sj' (3.4) 

Note that Pj is not a linear operator in R dN because the 
origin 0 of R dN is mapped to the equilibrium positions of the 
atoms 

PjO=rJ. (3.5) 

The group elements g map deviations of one atom to 
deviations of another atom as we have discussed. It is there
fore natural to investigate how the group G acts on the vec
tors R that constitute the deviation of the whole molecule. 
Let grj be equal to r k' Then we can write rj in terms of the 
deviation vectors R of the whole molecule as rj = PjR. From 
the set of deviations Sj of all atoms one obtains a new set of 
deviations s(g)j after acting with g. These new deviations 
constitute a new deviation vector R' of the whole molecule. 
The new deviation at atom k is then given by sic = grj - r~. 
We can view the new position vector ric = r~ + sic of atom k 
as coming from R' according to the usual recipe: ric = PkR'. 
Let the transformation R-R', which is due to the group 
element g, be denoted by 

R' = AgR. (3.6) 

Then we can rewrite the d-dimensional linear transforma
tion grj = rk as follows: 

gPjR = PkAgR. (3.7) 

Or, since k = 1Tg }, we obtain 

P"gjAgR = g1'.iR. (3.8) 

The mapping Ag is a linear operator in R dN. (Note that 
if R is equal to the origin 0 then 

P A 0 =gro= rOk =PkO = P .0 (3.9) "gJ g) 'TrgJ 

so that AgO = 0.) In fact, Ag forms an (in general reduc
ible) representation of G in R dN. Hence, we now have three 
representations for G: 

(i) the permutation representation 1T acting on the atoms, 

(ii) the linear operator g acting in R d, (3.10) 

(iii) the linear operator Ag acting in R dN. 
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As discussed in Sec. I, the linear vector space R dN splits 
up into subspaces S(w I ), S(w2 ), ••• , which are invariant un
der G. If there is no accidental degeneracy, each S(wj ) will 
be the carrier space of an irrep of G. To find out how often a 
particular irrep of G is contained in R dN (Ref. 4) we need the 
character of A g. and the characters of the irreps of G. Using 
the orthogonality relations of the characters we can then 
decompose the character of Ag as follows: 

r 

tr Ag = L njxj(g). (3.11 ) 
j= I 

where nj are non-negative integers that give the number of 
times a given irrep with character X j is contained in Ag • 

Moreover. since we know how g acts inside a given S(wj ). we 
will also be able to deduce how the normal modes with a 
given frequency Wj transform into each other under the sym
metry operation g. and from that knowledge we will try to 
identify the various normal modes. 

To obtain the character of Ag we proceed as follows. The 
linear vector space R dN is the direct sum of N d-dimensional 
linear vector spaces R I. R 2 ••••• R N. one for each atom. Since 
Ag maps a deviation vector Sj in R j to a deviation vector sk in 
R \ only those subspaces R j can contribute to the trace of A g 

that are not permuted but held fixed. Inside such a given 
subspace R j. A g acts just like g acts in the physical d-dimen
sional space. Hence 

tr Ag = Ng tr g. (3.12) 

where Ng is the number of atoms that is held fixed by g. and 
tr g is the character of the matrix representation of g in the d
dimensional space. In our case, we already established the 
identification 

trg=xil)' (3.13) 

Hence the character of the representation Ag of G on the 
deviation space of the molecule is given by 

tr Ag = NgXil)' (3.14) 

The result for tr Ag is given in Table I, where of course also 
xi I) is given, and where N g can be found as the superscript p 
in the notation IP2Q

)" etc., for the classes as products of 
cycles. 

From the orthogonality relations in (1.11) we can find 
the non-negative numbers nj in (3.11). Since ~(tr Ag)2 

= 7X 120. it follows that ~nj = 7. On the other hand, we 
also know that the dimension of the representation Ag is 
equal to 5 X 4 = 20. Hence 

(3.15 ) 

where dj can be 1,4.5, or 6, and nj = 0, I, or 2. Using the 
orthogonality relations, we find the following multiplicities 
of the irreps contained in A g: 

n(X)I) = 1, n(xI2» = 0, n(xil) = 2, n(xi2» = o. 
n(X~l) = I, n(X~2» = 0, n(x6

) = 1. (3.16) 

Among these irreps, the translations and rotations are still 
present, and we will now remove them. 

The translations and rotations form invariant sub
spaces. In fact, under an infinitesimal translation rj = rJ 
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+ a. the subspaces R j are not permuted and the deviations a 
inside each d-dimensional subspace R j are transformed into 
gao Hence the d-dimensional subspace of R dN corresponding 
to the translations is transformed by g just as g acts in R d. 

Thus the translations correspond to the character xi l) • 
In this case, the subspace of the translation vectors in 

R dN forms an irrep of G. This need not always be the case. 
For example. for the H 20 molecule, G is Abelian and all 
irreps are one dimensional, so that the translations form a 
reducible rep. 

The !d (d - 1) infinitesimal rotations in R d are of the 
form 

..k . .k kim .. "md 'b .1 r-r+E - m"'m r. 
I d- 2 

( 3.17) 

In particular, under an infinitesimal rotation, atomj is dis
placed from its eqUilibrium position rJ as follows: 

JJ,k .D,k+Eklm .... md-'b 1?,1=:I?k+S(b)k 
rj -+rj m.···md _ 2 J J J. 

(3.18 ) 

The deviations s(b)j again form a vector R(b) in R dN that 
describes the rotation of the whole molecule, and Ag acts on 
these vectors R (b) as follows: 

P1Tg }.Ag R(b) = gPjR(b), 

PjR(b) = rJ + EbrJ, 

gPjR(b) = grJ + detgE(gb)(grJ) 

Hence 

= r~ + E(detg)(gb)r~ 
= PkR(detg) (gb)} 

= P1TgjR(det g) (gb)}. 

AgR(b) = R«detg)(gb»). 

(3.19) 

(3.20) 

Thus g acts on the labels bij = - bji =:Eij m, "'md_ 'b", ... ''''d-' 

as the antisymmetric tensor representation times det g. The 
antisymmetric tensor representation was denoted by X6

; it 
was irreducible and vanished on the classes with odd permu
tations. Hence the six-dimensional subspace of R dN corre
sponding to the rotational deviations transforms under Gas 
an irrep with character X6

• 

After subtracting the translations and rotations, we are 
left with a ten-dimensional reducible representation, which 
contains the irreps corresponding to the characters xl I) , 

xi 1)' and X~ 1) each once. Thus we have one normal mode 
with frequency WI' four normal modes with frequency WII , 

and five normal modes with frequency Wm' The singlet nor
mal mode with frequency WI is mapped by all symmetries of 
S5 into itself. Clearly, this is the dilational mode in which all 
five atoms move harmonically, radially, and in phase. To 
identify the quartet and quintet of modes, we compare with 
the spectrum of the tetrahedron in three space dimensions. 

A similar analysis for the tetrahedron yields 
4 X 3 - 3 - 3 = 6 genuine normal modes, which split into a 
singlet, a doublet. and a triplet. The doublet consists of two 
normal modes that are transformed into a linear combina
tion of them under the action of g in G, where G now is S4' 
The characters of these two-dimensional and three-dimen
sional irreps of S4 are given by 
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class 14 122 13 4 22 

order (1) (6) (8) (6) (3) 
i 2 ) 2 0 -1 0 2 

(3.21 ) 

i 3 ) 3 0 -1 -1 

Hence the normal modes of the doublet are invariant under 
the Klein group, which is in this case the set of rotations 
around an axis connecting the middles of two opposite edges 
[corresponding to the cycles (12)(34), etc.]. The triplet 
forms the same irrep as the translations, so that this triplet 
seems similar to the quartet of the hypersimplex. 

To get a clearer picture, we consider instead of the tetra
hedron the ammonia molecule NH3, and consider what hap
pens if we let the N atom become similar in mass and interac
tions to the three H atoms. The symmetry group of the NH3 
molecule is D3 = S3' the symmetry group of a triangle in a 
plane, and has order 6. There are of course again six genuine 
normal modes, which, however, now fall into two singlets 
and two doublets. Clearly, one singlet is the dilational mode, 
while the other singlet is the motion with the N atom moving 
radially towards and from the center while the three H 
atoms make counteroscillations, (a "pumper motion"). One 
of the doublets is due to a similar motion but with the role of 
the N atom taken over by the H atoms. Although there are 
three such motions, because there are three H atoms, their 
sum vanishes by symmetry arguments, so that these motions 
form a doublet. (From the fact that the sum of the three "H 
pumpers" vanishes, it also follows that the N atom moves 
perpendicular to the vector connecting it to the center.) If 
the N atom becomes an H atom, the "N pumper" and the 
doublet of H pumpers are expected to fuse into a triplet of 
"tetrahedron pumpers." The other doublet of the NH3 mole
cule must then remain a doublet of the tetrahedron. This 
suggests that this doublet is a motion of, roughly, atom 1 and 
2 along the edge connecting them, and atom 3 and 4 along 
the edge connecting them. There are three pairs of opposite 
edges for the tetrahedron, but the sum of these three vibra
tions vanishes again due to symmetry considerations, so that 
these "Klein modes" indeed form a doublet. 

One can write down these motions in Cartesian coordi
nates. Denoting by a,b,c,d the equilibrium positions of the 
four atoms, one has a + b + c + d = 0; hence a2 = b2 = c2 

= d2 = 1 and aob = - j, etc. The translational deviations 
can be written as 

{a,b,c,d}-+{a,b,c,d} + ETa (or Tb,Tc,Td ), 

(3.22) 

with the constraint Ta + Tb + Tc + Td = 0, while the rota
tional deviations are given by 

{a,b,c,d}-+{a,b,c,d} + ERa (or Rb,Rc,Rd ), 
(3.23) 

Ra = {a A a,a A b,a A c,a A d}, idem Rb,Rc,Rd, 

with the constraint Ra + Rb + Rc + Rd = O. Hence there 
are three translational and three rotational modes. 

The dilational mode of the tetrahedron is given by 

D = {a,b,c,d}. (3.24 ) 

For the "pumper mode" with atom A moving along the radi
us vector a connecting A to the origin 0, any other atom R 
moves in the OAR plane. Hence P a = {a, aa 
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+ {3b, aa + {3c, aa + {3 d}. To fix a and {3 we use the ortho
gonality of the modes belonging to different frequencies. Ac
cording to the Lagrange equations, (M~{Ji, - V~ )J{ = 0, 
so that for two normal modes with frequencies w, and Wn 

one has the orthogonality relation 
3N 
~ j j j 2 2 ~ M jS,S n (w, - Wn ) = 0, (3.25 ) 

j,j= 1 

where M j is the mass matrix, which is the unit matrix in our 
case. 

Hence the pumper modes must be orthogonal to the 
translational, rotational, and dilatational modes. Orthogo
nality to the translational modes (conservation of momen
tum) gives 1 + 3 a - {3 = 0, and orthogonality to the dilata
tional mode ( the center of mass is at rest) leads to 
1 + 3{3 - a = O. Hence, a = {3 = ~ and the pumper modes 
of the tetrahedron are 

Pa = {a, - !(a + b), - ~(a + c), - !(a + d)}, 

Pb = {- ~(b + a),b, - !(b + c), - !(b + d)}, 

Pc = {- !(c + a), - !(c + b),c, - !(c + d)}, 

Pd = {- !(d + a), - !(d + b), - !(d + c),d}. 

(3.26) 

Obviously their sum vanishes so that only three are indepen
dent. 

For the NH3 atom, the N pumper must be orthogonal to 
the H pumpers. In the limit that the N atom becomes an H 
atom, one finds that (Pa)2 = (Pb )2 = 2 and PaoPb = -~. 
Hence the N-pumper mode is given by Pa , while the H
pumper mode for the atom at b is given by PI, = P b + jP a' 

From the explicit expressions for P a and P b it follows that 
the N atom moves perpendicularly to its radius vector a, as 
we already anticipated. It is also clear that the PI" P;, and Pd 
modes form a doublet for the NH3 molecule since their sum 
vanishes. 

To identify the other doublet of the NH3 molecule, the 
doublet which remains a doublet of the tetrahedron, it suf
fices to find three modes that are orthogonal to all previous 
modes and whose sum vanishes. We begin with the ansatz 

K(12,34) = {a - b,b - a,c - d,d - c} (3.27) 

and a similar expression for K ( 13,24) and K ( 14,23). Clear
ly, these modes are orthogonal to the T and R vectors. For 
the inner product with D one finds ¥, so that after subtrac
tion of the dilatational mode one obtains 

K(12,34)' = K(12,34) - ~D 

= {- ja - b, - jb - a, - jc - a, - jd - b}. 
(3.28 ) 

This mode is already orthogonal to all P's, so that K' are the 
three Klein modes, whose sum indeed vanishes 

K(13,24)' = {- ja - c, - jb - d, - jc - a, - jd - b}, 

K(14,23)' = {- ja - d, - jb - c, - jc - b, - jd - a}. 
(3.29) 

Geometrically, the motion of these modes, say ofK (12,34) 
is such that the angle if> between a and b and the angle if> 
between c and d both increase and decrease harmonically 
and in phase, while the lengths of r a' r b' r c' and r d do not 
change but stay equal to (r~ ) 2. In other words, one can view 
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this Klein mode as follows. Connect the middles of r~ - r~ 
and r~ - r~ by a vector v, and erect a plane Pat !v, orthogo
nal to v. Thus atoms 1 and 2 lie on one side of the plane, and 
atoms 3 and 4 on the other side. Then the four atoms move 
towards and away from P, and when they move towards P, 
all four move away from each other (and from v), while 
when they move away from P, they approach the line v. 

Returning to the hypersimplex, we now readily identify 
the quartet as describing the five "pumper motions" where 
one atom (A) moves radially and the other four atoms (B) 

make countermotions in the plane through the origin, atom 
A and an atom B. The sum of these five vibrations vanishes; 
hence the pumpers form a quartet. In fact, as one makes a 
one-to-one correspondence between a pumper mode and the 
vector from the origin to atom A, the action of g on the five 
pumper modes is the same as the action of g on the five 
vectors from the origin to the edges. In general, for a hyper
simplex in d space dimensions, the pumper modes always 
correspond to the representation of g in R d. 

To identify the quintet of normal modes, we first ana
lyze the hypersimplex in d = 5 and d = 6 space dimensions. 
Using the same techniques as before, and employing the 
character tables for S6 and S7 of Ref. 3, we find the following 
results . 

. d = 5: The group G = S6 has order 720 and 11 classes. 
There are pairs ofirreps of dimensions 1, 5, again 5, 9, 10, 
and one irrep of dimension 16. Further Ag has l:nJ = 7 and 
contains X:l) once (the dilation), X~I) twice (the transla
tions and the pumpers), X~~) once (the rotations), and final
ly X (l) once. 

d = 6: The group S7 has order 5040, and 15 classes. 
There are pairs of irreps of dimension 1, 6, 14, again 14, 15, 
21,35, and one irrep of dimension 20. Now Ag has l:n; = 7 
and contains X: I) once, X~ I) twice, x~i) once, and X:t) once. 

The characters X~ I) in d = 5, and X:t) in d = 6, as well 
as the characters X~ I) in d = 4 and X~ I) in d = 3, correspond 
to the normal modes we want to identify. The sequence 
2,5,9,14 for d = 3,4,5,6 can easily be extended to all values of 
d. We now proceed as in the case of the tetrahedron, and 
make an ansatz, which we then complete by requiring ortho
gonality to all other modes. 

If a2 = 1, one has in d space dimensions thata·b = - 1/ 
(n - 1) where n = d + 1 is the number of atoms. The 
pumper modes are then d-dimensional vectors; for example 

Po = {a, - (a + b)/(n - 2»), - (a + e)/(n - 2»), ... }. 
(3.30) 

They satisfy p 2
a = nl(n - 2) and PooPb = - n/ 

(n - 1) (n - 2»). From now on we consider the case d = 4. 
The pumper modes Po, Pb, Pc, Pd, and Pe, whose sum 

equals zero, can be made orthogonaL The resulting modes 
are 

Po, Pb + !Pa, Po, Pc + j(Pa + Pb), 

Pd+HPa+Pb+Pc)' 
(3.31) 

As an ansatz for the Klein modes we consider K(l2,34) 
= {a - b,b - a,e - d,d - e,O}. There are ten such expres

sions because K(l2,34) + K(l3,24) + K(14,23) = O. We 
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will therefore have to explain how this decuplet is reduced to 
a quintet. 

Using that K·D = 5 and D2 = 5, we find that the mode 
orthogonal to D is given by 

K(l2,34)' = {- b, - a, - d, - e, - e}. (3.32) 

Next we orthogonalize it to the pumper modes. Straightfor
ward but slightly tedious algebra yields 

K(l2,34)H = K(l2,34)' - Pa - P b - Pc - Pd 

= K(l2,34), + P e 

= {1a - b - je, - ~b - a - !e, 

-!e - d - je, - jd - e - je,O}. (3.33) 

It is clear that K" in (3.33) is orthogonal to the translations 
(Ta and Te are enough to check), dilatations, and pumpers 
(P a is enough to check). The rotational deviations of a vec
torvcan be written as Vi_Vi + (aib j 

- b iaj)v j and ninesim
itar expressions, of which only six are independent. The rota
tional deviations of the molecule are then 

Rob = { - la - b,a + lb, 

- l(a - b), - l(a - b), - l(a - b)}, 

Rae = {- 1a - e, - l(a - e),a 

+ ae, -!(a - C), - 1(a - e)}, 

Rde = { - a (d - e), - a (d - e), 

- a(d - e), - ld - e,d + le}. 

(3.34) 

It is straightforward to verify that Rob is orthogonal to T", 
T e , D, Pa , and Pe (use Po = {ja,O,O,O} - jTa - ~D) and to 
K" in (3.33). Also Rae and Rae are orthogonal to K". We 
have therefore identified the Klein modes in d = 4. In order 
to interpret them, we shift the origin to the center of mass of 
the (1234) system by defining a' = a + le, b'b + le, etc., 
such that a' + b' + e' + d' = O. We then obtain 

K02,34)" = {- la' - b', - ~b' - a', - ~c' - d ' , 

- !d ' - c',O}. (3.35) 

These are just the Klein modes of the (1234) system with 
atom 5 at rest. Similarly the other Klein modes in d = 4 can 
be interpreted as Klein modes in d = 3 of four atoms in their 
center of mass frame, the fifth atom being a spectator. 

IV. CONCLUSIONS 

In d space dimensions the small oscillations of a hyper
simplex have only three nonzero frequencies: the dilatation
al mode (a singlet), the pumper modes (degeneracy d), and 
the Klein modes [degeneracy ~d (d - 1) - 1]. In the pump
er modes, one atom (A) moves to and away from the center 
while the other d atoms make counter motions such that an 
atom B moves in the OAB plane. If the displacement of atom 
A is a, the displacement of atom B is - (a + b)/(d - 1), 
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and it is clear that the sum of the deviations of the dB atoms 
cancels the deviation of atom A. 

In the Klein modes, two pairs of atoms, (1,2) and (3,4), 
oscillate roughly as follows: 1 and 2 oscillate harmonically 
along the edge ( 12) connecting them, and also 3 and 4 along 
the edge (34); moreover, when 1 and 2 (and 3 and 4) move 
apart, the edges (12) and (34) approach each other, while 
when 1 and 2 (and 3 and 4) come together, the edges (12) 
and (34) move apart. The edges (12) and (34) remain or
thogonal. In d = 4, there are 15 such doublets of pairs, but 
since the sum of the three Klein modes in d = 3 vanishes 
[K(12,34) + K(13,24) + K(14,23) = 0], we can restrict 
our attentions to ten modes. These are still linearly depen
dent, for example, K(12,34)" + K(12,35)" + K(12,45)" 
+ K ( 13,45)" + K (23,45)" = 0, and this leaves five inde-
pendent Klein modes. 
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All SOC 1,9)-irreducible bases composed of tensors and tensor-spinors, which span the whole 
space up to 16th-order polynomials in (), ()j (j = 1-16) being Majorana-Weyl spinors of 
SOC 1,9), are explicitly constructed. Any superfield q;(xm

,() in ten-dimensional superspace can 
be expanded by these bases, expansion coefficients being ordinary tensor and tensor-spinor 
fields. Then explicit formulas are given for q;(x,()$(x,() ($ being another superfield) up to 
sixth order in () in terms of ordinary fields, while those for (a laO)q;(x,() and rm() amq;(x,() 
are given up to eighth order in (). 

I. INTRODUCTION AND PRELIMINARIES 

Historically four-dimensional supersymmetry 1.2 has at
tracted much attention since fermions are related with bo
sons by supercharge operators, which generate translations 
in four-dimensional superspace. If supersymmetry is re
spected by physical vacuum, there should exist mass degen
eracy between bosons and fermions. However, our real 
world has no such degeneracy, but nevertheless there is no 
candidate for the Goldstino particle2 that is present when 
global supersymmetry is spontaneously broken. Absence of 
Goldstino can be explained by the super-Higgs mechanism,2 

provided that we have a gauge theory having local supersym
metry. Since energy-momentum operators are constructed 
from supercharge operators, we are led to local translations 
in space-time, so that gravity appears naturally in such gauge 
theories (i.e., supergravity theories3

•
4

). Furthermore, it has 
been found that nice properties such as vanishing anomalies 
and counterterms at one loop level5 exist in extended super
gravity theories that are arrived at by using dimensional re
duction from a ten-dimensional supergravity, and as a bonus 
we have Yang-Mills particles as well as gravitons in four
dimensional space-time. On the other hand, the superstring 
model has long been known to be consistent only in ten
dimensional space-time, and Yang-Mills (gravitational) 
fields appear as excited modes of open (closed) strings. 
Moreover, Green and Schwarz6 have proposed a superstring 
Lagrangian, where a superstring moves in ten-dimensional 
superspace. Thus ten-dimensional superspace has been 
found from two approaches (i.e., supergravity4 and super
string 7 ) by physicists trying to unify Yang-Mills interac
tions with gravitational ones. Therefore we believe that the 
superfield in ten-dimensional superspace (xm

,() will play an 
important role in various possible unified theories of all in
teractions. However, it is necessary to transform proposed 
equations8

•
9 for superfields into those for fields. For this pur

pose, we must expand superfields in terms of (), in such a way 
that coefficients turn out to be fields that are irreducible un
der SOC 1,9) transformations. Therefore, we must explicitly 
construct all SO ( 1,9) -irreducible bases composed of tensors 
and tensor-spinors that span the whole space up to 16th 
order of polynomials in (), and they are given in this section. 

a) On leave of absence from Department of Physics, Kanazawa University, 
Kanazawa 920, Japan. 

We consider the ten-dimensional superspace 

f1 = (xm'()j)' (1.1) 

where space-time coordinate xm (supercoordinate ()j) trans
forms as a ten-dimensional vector (16-dimensional Major
ana-Weyl spinor) representation ofS0(1,9), so that vector 
(spinor) indices m (j) run over 1 + 9 (16) values. In inves
tigating the spinor representation ofS0(1,9) it is useful to 
introduce rm matrices satisfying the Clifford algebra 

rm'rm, + rm'rm, = 211m ,m" 

where 

{

I, for m I = m 2 = 0, 
lIm

,m, = - 1, for m l = m2 = 1-9, 

0, otherwise. 

( 1.2) 

( 1.3) 

Then the Majorana-Weyl property of ()j is characterized by 
the Majorana condition 

()=CO r (i.e., 0= _()rC- I ) 

and the Weyl (or chirality) condition 

rll() = ± (), 

( 1.4) 

(1.5 ) 

where r ll == rOrlr2r3r4r5r6r7rRr9 and C is the (anti
symmetric) charge conjugation matrix satisfying 

( 1.6) 

where (rm) r is the transposed matrix of rm. The antisym
metrization operator [ 1 ,2, ... ,n] and the symmetrization one 
{1,2, .... n} are defined, respectively. by 

and 

1 
[1.2, ... ,nj = - 2. opP 

n! p 

1 
{1,2, ... ,n} = - 2. P, 

n! p 

( 1.7) 

( 1.8) 

where P represents any permutation among n indices 
(l,2 .... ,n) and 

Op = { 1, 
-1, 

for even P, 

for odd P. 
( 1.9) 

When calculating products of some r matrices, it is quite 
useful to introduce 

rm,m,"'m,,= [m m .. , m ] rm'rm , •• ·rm
" - I' 2, , n 
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and use the formulas 

( 1.10) 

The Fierz identity having two (}'s is easily derived by using 
the Majorana-Weyl property of () and is given bys 

- 1 -
(}j, (}j, = - -96 L ((}r m,m,m, ())( rm,m,m,) j,j, • (1.11) 

m.m;:!m, 

In (1.11), (}j, OJ, with only spinor indices j, and j2 is called 
open, while ((}r m,m,rn, ()) with only vector indices m,-m3 is 
called closed. For simplicity of notation, vector indices mj in 
( 1.11 ) are denoted by i, so that ( 1.11 ) is simply expressed by 

- - '23 (}·(}=~((}r123(})r , (1.12) 

where these and future dummy indices are to be summed 
over. These notations i for vector indices mj will be adopted 
throughout this paper and they should not be confused with 
definite values i among 0,1, ... ,9. 

First, we introduce diagrammatical expressions for the 
() polynomials, diagrams being composed of the following 
building blocks: 

2 3 Y ,= (Or 123(})' which is called Y, 

and 

1 

X = (0, which is called X, 

f =(Or'. 

1 

(1.13 ) 

These blocks can be connected by taking an (a,b) trace 

2 3 4 2 3 

Y Y=H' 
a b 4 

which is called H, and a r a trace 

1 2 

Y 
a 

a 

~ 
1 2 

f-~ 
2 

(1.14 ) 

a 

and connected lines will be called links. 
We can easily find the "mirror reflection" 

2 3 

Y 
3 2 

Y 
1 
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n 2 

V 
1 2 , n 

=(_)(n-'ln/2 V 
(1.15) 

We explicitly construct all S0(1,9)-irreducible bases 
composed of tensors and tensor-spinors that span the whole 
space up to 16th-order polynomials in (). They can be com
pactly expressed diagrammatically as follows (note that no
tations 1,2, ... are used to represent m"m2 , ... ): 

2 3 

((}4) 12,34 = ((}4)34,12 = ! H ' 
4 

2 3 5 6 yy, 
4 

2 3 4 5 

(0 5
)12345= [1,2,3,4,5] Y y 

1 * 
2 3 4 

= ! [1,2,4] ~ , 
5 

Naito, Nishimoto, and Hirokane 

(1.16) 

(1.17) 

(1.18) 

( 1.19) 

( 1.20) 

( 1.21 ) 

( 1.22) 

(1.23 ) 

(1.24 ) 

( 1.25) 
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263 

2 3 4 5 

= -~ [1,2,4][3,5,6] ~ 
16 II 

6 

(1.26 ) 

( 1.27) 

( 1.28) 

3 4 

= -~ [1,2,4][3,5,6] 2--Y"S ' 
16 J''C 

1 6 

:&
2 

-9 _ 1 «() )\23,4=- [1,2,3] , 
2 3 4 

«() \Q) 123,4,5 == «() 10) 1Z3,5,4 

~
2 

==~ [1,2,3] , 
3 S 3 

4 

2 3 4 5 6 

«() 10)23456,17 ==! [2,3,4,5,6] ~ 
7 
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( 1.29) 

( 1.30) 

( 1.31) 

( 1.32) 

3 1 4 7 S 

~, 1 
;::;- [2,3,4,5,6] 

8 
(1-33) 

2 6 

(1.34 ) 

203 

4 =4( 1,2,3,4,5] 

1 5 

(1.35 ) 

1 2X1X 3 
=2 [1,31 , 

1 4 

( 1.36) 

«() 12) 12345,6 ;::;+ [1,2,3,4,51 ~
s 3 

16 4 

:=2(1,2,3,4,5] 2¢5 3, (1.37) 

1 4 
6 

(8 ") ,,=' 1~2 (l.3S) 

(O")",~ '~2 0.39) 

(ii")~ ~~-~ , 0.40) 

(8")", ~ '" -~ . 0.41) 
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In (1.16 )-( 1.41 ), the notation 

( 1.42) 

explicitly shows that (1.42) is completely antisymmetric 
among blocks (of vector indices) divided by commas, i.e., 
we have 

[m(1,S) ,m(2.s) , ... ,m(g,.s) ] (for l<s<fl)' 

Furthermore, we have traceless properties 

"'lab«(}2n)"'Q"'b" = ° (for n = 1-8), 

and r -traceless properties 

(1.43 ) 

(1.44 ) 

p«(}2n+I)"'Q'" =0 (for h=2-7). (1.45) 

By using gl,g2, ... ,gf, in (1.42), we construct a Young dia
gram, the sth column being composed of gs boxes. Suppose 
that/; boxes exist irt the ith row of the ~hus obtained Young 
diagram. Then, ( 1.42) for even (odd) n are tensors (tensor
spinors) of SOC 1,9)-irreducible representations 
U;,/z,hJ4'/s) [U; + !,/z + !,h + !,j~ + !,/S + p 1. 10

.
11 

We can prove that our irreducible tensors and tensor
spinors in fact satisfy the following "antisymmetric proper-
ties": 

«(}4) 112.314 = 0, (1.19' ) 

( (} 4 ) 112345.6 I = 0, ( 1.20') 
-5 

«(} )112.31 = 0, (1.21') 

«(}6)1124,31.5 = 0, ( 1.23') 

«(}6)112567,314 = 0, (1.24' ) 

«(}6)112567.341 = 0, (1.24") 

(0 7
) 1124.31 = 0, ( 1.26') 

«(}M)12345.61.1 = (0), (1.28' ) 

«(}M)1124.3156 = 0, (1.29' ) 

«(}M) 1)24.56)3 = 0, (1.29" ) 
-9 «(} ) 1123.4 1 = 0, ( 1.31') 

(B 10)1123,41.5 = 0, ( 1.32') 

(B 10) 123456.1)7 = 0, 

(0 II ) 112.3 1 = 0, 

(B 12)113.214 = 0, 

«(}12)112345.61 =0 

(1.33' ) 

( 1.34') 

( 1.36') 

( 1.37') 

In Sec. II, the superfield <p(x,B) is expanded with respect to B 

by using irreducible tensors and tensor-spinors so that coef
ficients turn out to be tensor fields and tensor-spinor fields. 
Then, explicit formulas for tp(x,B)<I>(x,B) (<I> being another 
superfield) are given up to sixth order in B, while those for 
(B IBO)tp(x,O) , rmO(B IBxM)tp(x,B) are given up to eighth 
order in B, in terms of tensor and tensor-spinor fields. In the 
Appendix, we give various Fierz identities necessary in de
riving formulas in Sec. II. In Sec. III, we summarize and 
discuss our results. 

II. SUPERFIELDS 

Superfields in superspace (xm,Oj) are useful in con
structing physical models having supersymmetry. However, 
it is necessary to transform proposed equations for super
fieldsM

•
9 into those for fields. For this purpose, we must trans

form operations such as 

<p 2(X,O), ~ tp(x,O),r'"o ~ <p(x,B), 
BO Bxm 

for superfields tp(x,B)'s into those in various fields in x 

space, which appear as coefficients when superfields 
tp(x,O) 's are expanded in O. These analyses in four dimen
sions have been carried out completely by Salam and Strath
dee,2 while those in ten dimensions are lacking. (This situa
tion is unfortunate, since ten dimensions are used in both 
ten-dimensional supergravity and the superstring model, 
which are possible candidates for a unified theory of all inter
actions including gravity.) In this section, we carry out these 
analyses which are extremely tedious but straightforward. 
Since expansions in 0 can be treated similarly foi' any super
field, we give those for any scalar superfields tp(x,(}) only as 
examples: 

m(x B) = t(x) + O·t,(x) + «(}2) t 123(X) + (0 3) ,.t,12(X) + (0 4 ) t 12.34(X) + (0 4) t 12345.6(X) 
T , 'f' 123 I_'f' 12,34 12345.6 

+ (0 7) .t,I.2.3(X) + (0 7) .t,I23,4(X) + (BM) t 1.2.3,4(X) + (OM) t 1234.5.6(X) 1.2,3 'f' 123,4 'f' 1.2.3,4 1234.5.6 

+ (BM) t 123.456(X) + (0 9 ) A. 1.2.3(X) + (0 9 ) A. 123,4(X) 123,456 1.2.3 123.4 

+ (BIO)123.4.5fI23.4.5(X) + (OIO)I2345.67fI2345.67(X) + (011) 12y-l12.3(X) + (01l)12345A.I2345(X) 

+ (0 12 ) f I2.34 (X) + (0 12 ) f 12345.6(X) + (0 13 ) ,A. 12(X) + (B 14) , f I23 (X) 12.34 12345.6 L 1_3 

+ (0 15)A.(X) + «(} 16)f(x), (2.1) 

where fields t ... (x) and f .. (x) will be called tensor fields, 
while t/J ... (x) and A. ... (x) will be called tensor-spinor fields. 

ters. When calculating the product <p(x,B) '<I>(x,O), all ten
sor and tensor-spinor fields in tp(x,O) and <I>(x,O) are 
assumed to satisfy the same antisymmetric properties as 
those for corresponding (B ") -irred ucible bases, but they are 
not assumed to be traceless and r traceless, respectively. In 
order to analyze (B n) polynomials of the product 
tp(x,O) '<I>(x,B), which are denoted by [<p<l>1n, we need 

In order to derive formulas for transforming the prod
ucts of superfields into those of tensor (-spinor) fields, we 
introduce a new superfield <I>(x,B) obtained from (4.1) by 
replacing all (super-, tensor, and tensor-spinor) fields de
noted by lowercase letters with those denoted by capital let-
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Fierz identities expressing tensor products of two irreducible 
bases 8 i8 n - i (i = I-n - 1) in terms of irreducible bases 8 n. 

These Fierz identities are lacking in the literature, so we give 
them in the. Appendix. In the following, we give fOm1ulas 
[lP·<I>] n up to sixth order in 8, while previous authors have 
given them only up to n = 3. In order to express the results 

compactly, we introduce the notation (lP-<I» for those 
terms obtained from all other preceding terms by the oper
ation 

t... (x)-T.., (x), j" (x)-F." (x), 

"',,' (x)-'I' " , (x), A", (x)_A", (x). 
I 

The results obtained are as follows: 

[</,,.<1>]0 = t(x)T(x), 

[lP·<I>] 1 = (8t(x)'I'(x) + (lP-<I», 

[lP'<I>] 2 = (8 2) l23(t(X) T 123 (X) + ~¢.C(X) r 123'1' (X» + (lP-<I», 

where we have used 

8''''(x) =~(x)'8 

[with ~(X)=C¢.T(X)], 

[""<I>b = (8 3)n(t(X)'I'12(X) + Wa",(x)T I2a (x») + (lP-<I», 

(

t(X) T 12.34(X) + -p'~(x) r 12'1'34 (X») 

[lP'<I>]4 = (8
4

)12,34 + ta 12(x)Ta34(x) 

4 (t(X) T 12345,6(X) + ~t 123(X) T 456 (x») 

+ (8 )12345,6 _ il,~(x)r3456'1'12(x) + (lP-<I», 

(

t(X)'I'12'3(X) _ ~'I'3a(x)ta 12(X) ) 

[lP'<I>]s = (8 5 )12,3 - ~rab 'l'3a(x)t 12b(X) + ~rab 'l'12(X)t 3ab(X) 

+ ~t 12.3a(x)ra 'I'(x) + fsrabc 'I'(x)t 12abc,3(x) 

_ 5 (t(X)'I'12345(X) + 'l'45(X)t 123(X») 

+ (8 ) 12345 + tor a 'I'(x)t 12345,a(x) + (lP-<I», 

t(x) T 123,4,5 + ~~a4(x)rar123rb 'l'b5(X) 

+ -r&,~a5(x)rar12'1'34(x) _ -s'o~a4(x)r123'1'/(x) 

[lP·<I>]6 = (8 6) 123,4,5 + to~(X) r34'1' 12,5 (X) + to~(X)r123r a 'l'a4,5(X) 

- Wt/ 4(x)T 12,a5(X) - lst 123(X)Ta 4,a5(X) 

_ ~t ab 123,4(X) Tab 5(X) _ -In¢.c 14(X) r 2'1'35 (X) 

t(X)T12345,67(X) _ STa 1234,7(X)t a56(x) 

+ ~Ta1234'a (x)t 567 (x) _ ~T 12345'a (X)t a67 (x) 

_ f6~(X)rI237'1'45,6(X) _ !~(X)r67'1'12345(X) 

+ :f6~(X) r 567r a 'l'a1234(X) - 4t 123(X) T 45,67 (X) 

- fs~a 6(X)rI2345'1'u7(X) +!~ 12(X)r367'1'45(X) 

- -h~ 67 (X) r l234r a 'l'a5(X) - f-,¢.c 16(X) r 234'1'57 (X) 

+ rt& \lic 56(X) r 1234r a ","7 (X) 

+ (lP-<I» 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.S) 

(2.9) 

As we can see from [lP·<I>]0-[lP·<I>]6' tensor and tensor
spinor fields for lP(x,8)<I>(x,8) do not necessarily satisfy 
"antisymmetric properties" and traceless or r -traceless con
ditions. But GL( 10) projections specified by certain Young 
tableaux easily transform these fields into those satisfying 
"antisymmetric properties." The product lP(x,O)<I>(x,8) be
ing expanded by tensor or tensor-spinor fields obtained after 

this projection is denoted by l/J(x,8). Then, if we calculate 
lP(x,8)l/J(x,8), we obtain lP 2(x,8)<I>(x,8). In this manner, 
we can calculate arbitrary polynomials of superfields. (There 
are no essential difficulties in deriving expressions for 
[lP'<I>]n (n = 7-12). However, calculations are laborious 
and expressions are extremely lengthy, so we do not give 
explicit expressions for them in this paper.) 
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In the following, (0 n) polynomials for E(a laO)!p(x,O) 

and ErmO(a laxm)!p(x,O) are denoted, respectively, by 
[E(a laO)!p(x,O)] nand [ErmO(a laxm)!p(x,O)] n (E being 
an arbitrary Majorana-Weyl spinor), and they are explicitly 
given up to n = 8; 

[E~!P(X'O)] = Et/J(X), 
ao 0 

(2.10) 

[ Ermo ~ !P(X,O)] = 0, 
axm 

0 

(2.10') 

[ E ~ !P(X,O)] = 2(Or mE) X t 123(X), 
ao I 

(2.11 ) 

[Ermo~!p(x,O)] = - (OraE) Xaat(x), 
axm 

I 

(2.11') 

[E~!P(X'O)] = 3(02)I23XErl~3(x), 
ao 2 

(2.12) 

[ ErmO ~ !P(X,O)] 
axm 

2 

= _1_ (02) X Erar 123 a "'(x) 96 123 a'f/, 
(2.12' ) 

[ Ermo ~ !P(X,O)] 
axm 

3 

= - ~ (03)l2rbraEXaatI2b(x), (2.13') 

[- a L1 ] 5 L14) -rl.I.342( 
E ao !p(x,u) 4 = - 2" (u 12.34 E '1" x) 

_ ~ (0 4 ) X Er 123·,·45.6(x) 
16 12345.6 'f/ 

+ 5(0 4)12345.6 X Er6t/J12345 (x), (2.14) 

[ Ermo ~ !P(X,O)] 
axm 

4 

= _1_ (04) X Erar 12 a .'.~4(X) 24 12.34 a 'f/ 

+ 1~2 (0 4)12345,6 XErarl234 aa~6(x), (2.14') 

[E~m(XO)] =~(05) r EXt I23.4.5(X) ao T , 5 3 12,5 34 

- ~ (0 5)675 r 1234EX t 12345.67 (X) 
2 ' 

3 (Li5) r eXt 12345.67(X) - 4" u 12345 67'" , 

(2.15 ) 

[ Ermo ~ !P(X,O)] 
aXm 

5 

- ~ (0 5) r raEXa t 12.34(X) 5 12.3 4 a 
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2 -- - (0 5) r raEXa t 12345,6(X) 15 12.6 345 a 

1 -- - (0 5) r raEXa t 12345.6(X) 10 12345 6 a , 
(2,15') 

[E~m(xo)] =~ (0 6) X Er I2•/.3,4,5 (X) ao T , 6 5 123.4.5 'I' 

+ ~ (0 6) X Er123·,,456,7 (X) 27 12345,67 'f/ , 

(2,16 ) 

+ _5_ (06) XErar1234a .,,67.5(X) 
192 12345,67 a 'f/ 

_ ~ (0 6) XErar 67a .I,12345(X) (2.16') 6 12345,67 a'f/ , 

[E~m(XO)] =8(07) rEXt l ,2.3,4(X) ao T , 7 1,2,3 4 

+ 6(0 7) 123,4 r 56EX t 123,456(X) 

80 -+ - (0 7 ) r EX t 1235,4,6(X) 7 123,4 56 

4 -- - (0 7 ) r EXt4561.2,3(X) 21 1,2,3 456 , 

(2.17) 

[ Ermo ~ !P(X,O)] 
aXm 

7 

= _5_ (07) r raEXa t 123,4,5(X) 
168 1,4,5 23 a 

10 -+ - (0 7) r raEXa t 123,4,5 (X) 21 IU4 5 a 

5 -+ - (0 7 ) r raEXa t 123.4.5(X) 14 124,5 3 a 

9 -- - (0 7) r raEXa t 12345.67 (X) 28 671,2 345 a 

3 -- - (0 7) r raEXa t 12345,67 (X) (2.17') 14 123.6 457 a , 

[E~m(X'O)] = 2(0 8
) X Er4 ."I,2.3 (X) ao T 8 1,2,3,4 'f/ 

- 9(0 8 )1234.5,6 X Er123t/J4,5,6(X) 

_ 19(0 8 ) X ErI2./.345.6(X) 1234,5,6 'I' 

- 14(0 8 )123.456 X Er56t/J123,4(X), 

(2.18 ) 
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+ _1_ (08) X€rar56 a ol,123,4(X), 16 123,456 a 'f/ (2.18') 

where we have used various Fierz identities given in the Ap
pendix. 

III. SUMMARY AND DISCUSSION 

Superfields in superspace (xm'Oj) are useful in con
structing physical models having supersymmetry. However, 
it is necessary to transform proposed equations8

,9 for super
fields into those for fields. For this purpose, we must expand 
superfields in terms of 0, in such ways that coefficients tum 
out to be fields that are irreducible under SO ( 1,9) transfor
mations. Therefore, we have constructed all SOC 1,9)-irre
ducible bases (1.16)-( 1.41) that span the whole space up to 
16th order of polynomials in 0, and satisfy antisymmetric 
properties (1.43) and (1.19' )-( 1.37'). With the help of ex
pansion (2.1), we must transform operations such as 
rp 2(X,0), (a laO)rp(x,O), rmo(a laxm)rp(x,O), for super
fields rp(x,O) into those in various fields in x space. We have 
carried out these analyses and have obtained (2.3)-(2.19'), 
where it was necessary to have Fierz identities (AI )-(A35) 
expressing products of two S0(1,9)-irreducible bases 
o iO n - i in terms of SOC 1,9)-irreducible bases 0 n. Further
more, we have given the most general Fierz identities YnX, 
Yn + 1 for 2<n<3 in (A36)-(A39). Although our formulas 
are still not exhaustive, we have given formulas (A20)
(A35) for calculating YnX and Yn + 1 for 4<n<7. 

In this paper, we have proposed using diagrams that 
have one-to-one correspondence with (0 n) polynomials. 
Building blocks for these diagrams are given by (1.13) and 
these blocks can be connected by contracting operators such 
as shown in (1.14), where connected lines are called links. 
We have found that representing (0 n) polynomial by using 
diagrams are quite useful, since we can easily find out the 
existence of the following structures in (0 n) polynomials. 

(1) We have mirror reflection (1.15). 
(2) "Antisymmetric properties" (1.19') are expressed 

by 

2 3 2 3 

+ 2I3 H A (3.1 ) 

1 4 
4 4 

and 

2 3 

[ 1,2,3] H =0, (3.2) 

4 

so that (3.1) will be called a "crossing relation," while (3.2) 
will be named "erased H." 

(3) Any loop diagram composed of two or three links 
does not exist, and these facts are called the "vanishing root" 
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=0 (3.3 ) 

and "vanishing triangle" 

3 

-'\;7 =0, (3.4) 

where we have used (3.1) and (3.3). 
(4) We have complete symmetry among space-time in

dices for any loop diagram composed of four links, and this 
fact is called "completely symmetric square"; 

[ 1,2] 

(3.5) 

and 

(3.6) 

In (3.5) we have used "crossing relation" (3.1) and then 
"vanishing triangle" (3.4), while "mirror reflection" (1.15) 
has been used in (3.6). 

(5) Any loop diagram composed of five, six, etc., links 
can be reduced to loop diagram with four links, i.e., a com
pletely symmetric square, which can be concluded in the 
following way. First, we find 

1 L~ r a 

6 /3 a a 

2 

1 
6 

2 

= -- I 
3 /3 

X 

1 fl +-
6 

/3 

1 

I 1 +-
a 6 

r 2, 

a 

2 1 

Xl I rp 
a 

Naito, Nishimoto, and Hirokane 

a 

(3.7) 
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in the last step of which we have used 

which will be called the "bonding formula," since the right- (left-) hand side of (3.8) is connected (disconnected). 
With the help of (3.7) and (3.8), we have a new bonding formula 

2 

3 

2 3 

H 
4 

x 

1 
+-

6 

3 

r·+H 
1 4 

2 3 r,+ H r, 
4 1 

A similar technique leads to the "general bonding formula" 

2 3 n-l 2 i -1 

~ 
i+1 

I I I n 

I I I =-I 
4n - 6;= 1 

X n 

so that we obtain 

3 

2 ... i-1 

l' 
i+l 

2 
1 n I I I n-1 =-I 

4n - 6;= 1 

and 

2 n 
2 n 

4n 

n-1 

I riO 

n 

n-1 

I r;r 1n
, 

n 

+ (other (n - 1) terms obtained by cyclic permutations 1-2 - 3 - ... - n - 1). 
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(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

268 



                                                                                                                                    

With the help of the above five properties, we have 
proved that our irreducible tensors and tensor-spinors in 
fact satisfy the "antisymmetric properties" (1.43) and 
( 1.19' )-( 1.37') in addition to the "traceless and r -traceless 
conditions" (1.44) and (1.45). 

Our diagrammatical method makes it easy to divide giv
en diagrams into parts, so that Fierz identities for the origi
nal diagrams can be obtained by successively applying Fierz 
identities among parts, the final result being independent of 
the order of application because of the associative law. [See 
(All )-(A14).] Thus we have found that Fierz identities of 
(0 n) polynomials for 2<.n<.N are useful in calculating those 
of (0 N + 1) polynomials. 
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APPENDIX: FIERZ IDENTITIES 

We can derive any Fierz identity as follows. First, we 
notice that any (0 n) polynomial can be expanded in terms of 
S0(1,9)-irreducible bases (1.16)-(1.41), satisfying anti
symmetric properties ( 1.19' )-( 1.37') that lead to miscellan
eous "antisymmetric properties" in such a way that 

and 

2 - - 3 
(0 )\23(0=!(0 )[12r3J (called YX), 

o = (0
4

) [12345.6 [ 

= ! (0 4
) 1234[5,6 J + ~(0 4 ) 56[123,4 J 

= ~(04) 123[45,6 J - ~(04)456[ 12,3 J 

= f,(04) 12345,6 - ~(04)6[1234,5 J' 

All of these antisymmetric properties show that there exist 
various linear relations among irreducible tensors and ten
sor-spinors, Therefore, these antisymmetric properties play 
essential roles, when we express any (0 n) polynomials by 
sums of linearly independent terms, each of which is the 
product of 1/m,m,'S, r m,m,"" irreducible tensors or tensor
spinors and constants (i.e., coefficients). These coefficients 
are determined by equating traces or r traces of both sides in 
the above expansions, where we must take account of ( 1.44) 
and (1.45). We have carried out these analyses and we give 
some Fierz identities necessary for the calculations in Sec. II, 

1. Fierz identities necessary for calculating <p(x,O)cI»(x,O) 
and rmo am<p(x,O) 

Fierz identities expressing products of two SO( 1,9)-ir
reducible bases Oion-i in terms of SO(1,9)-irreducible 
bases 0 n are given in the following. (Hereafter, 
[SI,S2,,,,,Sn] and {SI,S2"",Sn} denote, respectively, anti
symmetrization and symmetrization operators among n 
sets, each set being composed of indices that appear in Si and 
are operated by Si') For example, 

(0
2
)\23(0

2
)456 (called Y2) = 2[4,5,6]1/4[1 (0 4

)23].56 + 5(0
4

) 123[45.6 J' 

(0 4
) 12.34 (0 = ~{[ 1,2], [3,4 ]}(O 5) 12,3 r 4, 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) (0
4

)12345,6 (0 = i2(OS)12345r6 + i2(05)6[1234 r 5 J + fs[ 1,2,3,4,5] (OS) 12,6 r 345, 

2 - 3 (~ ( 0 5 ) 12,4 r 35 + ~ ( 0 5) 45, 1 r 23 ) 
(0 )\23(0 )45= [1,2,3](4,5] +6 (-05) + (-OS) , 

31/14 23,5 12345 
(A6) 

(A7) 

(A8) 

(

- 5 (0 7
) r - \0(0 7

) r) (0 6 ) (0 = [12 4]{3 5} 168 _ 3,5,1 24 21 124,3 5 
124,3,5 , , , _ 5 (0 7 ) r ' 

14 123,5 4 
(A9) 

(

9 (07) r + .1.(0 7) r) 
( 0 6 ) (0=[12567][34] 28 341,2_567 14 125,3467 

12567,34 "", _3 (0 7 ) r ' .,1/13 256,4 7 
(AW) 
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(0 5) 12345 (IF)678 = ( 0 4) 12345,a (Or
a
)( 0 2)678 

= «( (0 4) 12345,a (0 2)678)(0) r a = [1,2,3,4,5][ 6,7,8] 

-7 -7 

( 

- H(O )671,2 r 3458 + ~(O )678,1 r 2345 ) 

X - ~(07)123,6r7845 + '!?77167727 (0 7)345,8 , 

-7 -7 + ~7716(0 )782,3 r 45 - '!?1J16(0 )234,7 r 85 

(All) 

where we have used (1.22) together with (1.20), "associative law," (0 6)-Fierz identity (A8) and finally (0 7)-Fierz identities 
(A9) and (AW), 

,7764(0
7

) 123,5 - 4i7761 (0
7

)234,5 

- W7714(07)236,5 + ~7714(07b5,6 
+ ~7714(07)2,5,6r 3 + ~(O 7) 1,4,6 r 235 

= [1,2,3][4,5] 
-7 -7 + ~ ( 0 ) 123,4 r 56 - ~ ( 0 ) 123,6 r 45 (AI2) 

+ ~(07)126,4r35 + R(07)124,6 r 35 

-7 -7 
+-!§(O )456,lr23-~(0 )451,6r23 

+ H(07)124,5 r 36 

where we have used (1.21) together with (1.19), the associative law, the (06)-Fierz identity (A7), and finally the (07)-Fierz 
identities (A9) and (AW). 

and 

270 

Similarly we can derive 

(0 4) 12345,6 (0 3h8 = (0 4) 12345,6 ( (0 2h8a (Ora) = «( (0
4

) 12345,6 (0 2)78a )(0) r
a 

= [1,2,3,4,5][ 7,8] 

(0 4) 12,34 (0 3 )56 = (0 4) 12,34 ( (0 2)56a (Ora) «( 0 4
) 12,34 (0

2
) 56a)(0 ) r a 

= {[ 1,2], [3,4] }[5,6] 

X 

ts77167727(08h,8,4,5 - 37756(0
8

) 1237,8,4 

+ fI7745 (0 8)678,123 - ~7746(08h85,123 

+ !¥7714(OK)678,235 - j7715(08)6782,3,4 , 

- 67716( 0 8) 2357,8,4 - Jf7716( 0
8

) 7823,4,5 

- J.f7716 ( 0 8 h85,234 
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(A13) 

(AI4) 

CAI5) 
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«(} 6) 12345,67 (0 2)abc = [1,2,3,4,5] [6,7] [a,b,c] 

J..f1J511J63 (0 8h89,a24 + J?1J 151J26 (0
8 

h89,34a 

+ to1Ja51J13(08)6789,2,4 - ~1Jal1J53(08)6789,2,4 

x - ro1JI31J25 (0 8) 6789,4,a + ¥1J151J26(08h893,4,a , 

+ ¥1Ja51J36 (0
8 

)7891,2,4 

+ ¥1J 151J36( 0 8) 7892,4,a 

(0 4)OI234,a (0 4 ) 56789,b = {a [0, 1,2,3,4 ],b[ 5,6, 7,S,9]} 

x 

- ~1J051J161J271J38 (0
8

) a,b,4,9 

+ 1f1Jab 1J051J 16 (0
8 

}z34,789 + 1f1J051J6a 1J1b (0
8

) 234,789 

-1f1J051J6b1J1a (OB)234,789 - ~1J051J161J7b (0 8) 234,89a 

- ¥1J051J161J27 (0 8) 34a,89b + Jf'1J051J161J27(08h4b,89a 

+ ¥1J051J161J7b (0 8) 2348,9,a 

+ ¥1J051J161J7a (08)2348,9,b 

+ ¥1J051J 161J27( 0 8h4a8,9,b 

- ¥1J051J161J27(08h4b8,9,a 

where we have used the operation defined by 

271 

{a[O, 1,2,3,4],b [5,6,7,S,9]}T aOl234b56789 =!( T a[01234]b [56789] + Tb [56789]a[01234])' 
- -9 

(0 8
)1,2,3,4 (0 = ~(O ){1,2,3r4}, 

(0 8
) 123,456 (0 = {[ 1,2,3], [4,5,6] }(to(09) 123,4 r 56 + io(O 9) 124,5 r 63)' 

(0 8
) 1,2,3,4 (OZ)567 = {1,2,3,4}[5,6,7]( - ~1J12(O 10)567,3,4 + ~1J15(O 1O)6n,3,4)' 

(0 8
) 1234,5,6 (0 2

),89 = [1,2,3,4 ]{5,6}[7,S,9] 

x 

- to1JI71JZ8(O IOh45,9,6 + to1JI71J28«(} IOh49,5,6 

+ to1J151J27«(} 10)893,4,6 + ro1J571J18«(} 10)234,9,6 

- ¥1J57(0 10)89612,34 + ¥1J57(O 10)89123,46 

- !Y1J15 (0
10

)78923,46 - !t1J15 «() 10)78962,34 

+ ¥1J17(0 1O>S9523,46 + ~1J56(O 10),8912,34 
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(AI7) 

(A1S) 

(AI9) 

(A20) 

(A2l) 

(A22) 

(A23) 
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- ~1/141/25(fJ 1°)789,6,3 + ~1/141/27(fJ 10)895,6,3 

- ~1/171/28(fJ 10)456,9,3 + ~1/171/48(fJ 10)135,6.9 

x - ¥1/ 17 (fJ 10) 89245,63 - ¥1/ 17 (fJ 10) 89456.23 

- ¥1/I7(fJ 10)89234,56 

+ ~1/14(fJ 1°)23789,56 - ~1/14(fJ IOh8952.36 

1~51/451/16(fJ 12h8.23 - m1/641/15(fJ 12)23,78 

+ ~1/161/Z4(fJ 12)53.78 + !s1/161/47(fJ 12)85,2.1 

+ -Ms 1/ 161/27 (fJ 12) 84.53 
x 

- i-,1/46(fJ 12)12378,5 - 171/46(fJ 12)12357,8 

- f,1/16(fJ 12)78234,5 + 1~41/45(fJ IZ)678IZ,3 

+ 7M1/'4(fJ 12)67823,5 - ~1/14(fJ 12)67852.3 

(fJ 10)12345,67 (fJZ)obc = [1,2,3,4,5] [6,7] [a,b,c] 

x 

(81/10 1/Zb 1/3c (fJ IZ)45,67 - -101/161/2a 1/3b (fJ IZ)c7,45 

+ 2101/161/271/3a (fJ IZ)bc,45 

+ i41/6a 1/7b (fJ 12) 12345,c + ~1/la 1/6b (fJ 12)C2345,7 

- m1/,o 1/6b (fJ 12h2345,C - H1/'a 1/2b (fJ IZ)c3456,7 

+ iB1/,o 1/Zb (fJ IZ) 34567,c - H1/ 161/20 (fJ 12) bc345,7 

+ H1/161/Zo (fJ IZ)7345b,c + Nt,1/161/70 (fJ 12h345b,(' 

+ is1/161/27(fJ 12)abc34,5 

2. Fierz Identities necessary in calculating (BIB9)q>(x,9) 

In addition to (AI )-(A3), we give 

2 2 - (~({;i5)'2345r6+~1/'4(05)23'5r6) 
(fJ )123(fJ )456(fJ (called YzX) = {[1,2,3],[4,5,6]} 2 -fJ5 r ' 

+ 3( )45,1 236 
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(A25) 

(A26) 

(A27) 

(A28) 

(A29) 

(A30) 

(A31 ) 

(A32) 

(A33) 

(A34) 

(A35) 

(A36) 
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(A37) 

(A38) 

and 

«()2)123«()2)4S6«()2)789«()2)abc (called Y4 ) = 4!{[1,2,3],[4,5,6],[7,8,9],[a,b,c]} 

- &'1J141J271J8a 1JSb «() 8) 3,6.9,c - ~1J141J2S1J7a 1J8b «() 8) 3.6.9.c 

+ H1J141J2S1Ja7 «()8)bc3.896 + t61J141J2S1Ja7 «()8)bc89.3.6 

x 

Suppose we have already obtamed the Fierz identity for 
Yn. Then, the Fierz identity for YnX [Yn + 1 ] (for n = 4-7) 
can be derived, provided we have Fierz identities that ex
press products of irreducible «()2n) tensors with (0 
[ ( () 2) 123] in terms of irreducible «() 2n + I) tensor-spinors 
[irreducible «() 2n + 2) tensors], and these necessary Fierz 
identities have already been given by (A21)-(A35). Fierz 
identities for Yn and YnX have a maximum number of vec
tor indices among all «() 2n) - and «() 2n + I) - Fierz identities. 
Taking traces of Yn or r traces of YnX gives any Fierz iden
tity with fewer numbers of vector indices, so that missing 
formulas in subsection 1 for () i() n - i __ () n (n = 9-16) can be 
derived by using the following procedures. We first trans
form () i() n - i into () n polynomials with the help of ( 1.16)
( 1.41 ), and the thus-obtained () n polynomials are expressed 
by () n bases by using above-mentioned Fierz identities. 
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An analysis of the coherent states for the noncompact supergroup Osp(2/2N,R) is presented. 
In contrast to Osp( 1I2N,R), both typical and atypical representations have to be considered. 
The measure of integration, in general, for Osp (2/2N,R) coherent states is calculated; it is 
then used to construct the decomposition of unity for the special case ofOsp(2I2,R). It is 
found, however, that the typical and atypical representations ofOsp(2I2,R) have to be treated 
separately. It is verified that the coherent states for Osp (2/2,R) are "closest to classical" in the 
sense of Perelomov. 

I. INTRODUCTION 

Coherent states have long been used to provide a natural 
link between classical and quantal physics,1 often providing 
better insight to a problem. Path integrals offer an alterna
tive to the Schrodinger and Heisenberg formalisms. 2 The use 
of group theoretical techniques to study the symmetry prop
erties of physical systems have likewise aided our under
standing. Recently, there has been some interest in unifying 
these ideas by studying path integrals over coherent states 
for both com pace and noncompact4 groups. 

In the past few years there has been great interest in the 
study of supersymmetries, and the use of supergroups has 
now entered many fields of physics. Within the interacting 
boson-fermion models (IBFM), the compact supergroups 
U(6/n) (Ref. 6) have been used to study nuclear spectra 
and compact superalgebras have recently been employed in 
statistical mechanics to study many fermion systems.7 The 
noncompact supergroups Osp(p/2N,R) have been em
ployed in general superfield theories.8 Among the simplest 
of these are Osp(2I2N,R) and their analysis would form a 
useful first step in understanding the Osp(p/2N,R) super
groups. An essential ingredient for any path integral con
struction is the measure of integration, and until now no 
systematic construction for the noncompact orthosymplec
tic supergroups has been given. 

In an earlier paper,9 the coherent states for the noncom
pact supergroup Osp( 1I2N,R) were studied, and a general 
method for calculating the corresponding measure of inte
gration was presented giving in detail various results for 
Osp ( 1I2,R) coherent states. We present an analysis of the 
coherent states for Osp(2I2N,R) supergroups, which tum 
out to have a more interesting structure than those for 
Osp ( 1I2N,R). One of the more interesting features of 
Osp (2I2N,R) is the vanishing of its quadratic Casimir oper
ator for some nontrivial representations: the atypical repre
sentations that must then be treated separately. 

In Sec. II, the superalgebra Osp(2I2,R) is defined, and 
its coherent states are introduced. These coherent states are 
shown to take on a much simpler form for the atypical repre
sentations, and can in fact be handled using the techniques of 
Ref. 9. The measure of integration is calculated for the gen
eral Osp(2!2N,R) supergroup in Sec. III, by studying the 

transformation properties of the supercoset variables. Sec
tion IV contains a summary of our results and a discussion of 
possible extensions and applications. We also include two 
appendices containing some of the more technical results for 
the representation theory and coherent states for Osp(2/ 
2,R). In Appendix A, the representation theory for Osp(2/ 
2,R) is worked out in detail; Appendix B contains the matrix 
elements of the various generators. 

II. COHERENT STATES FOR THE SUPERGROUP 
Osp{2/2,R) 

The noncompact supergroup Osp(2I2,R) is generated 
by eight elements.1O The four even generators close under 
commutation [see Eq. (2.2a) below] and generate the sub
group 

Sp(2,R) xSO(2) . (2.1 ) 

The superalgebra Osp(2!2,R) is defined by the following 
commutation and anticommutation relations 11: 

[Ko,K±] = ±K±, [K+,K_] = -2Ko , 

[B,K ± ] = [B,Ko] = 0, (2.2a) 

[ Ko, V ± ] = ±! V ±' [ Ko, W ± ] = ±! W ±' (2.2b) 

[ K ± ' V ± ] = [K ± ' W ± ] = 0, [ K ± ' V'l' ] = + V ± ' 

[K±,W=j=]=+W± ' 

[B, V ± ] =! V ±' [B, W ± ] = -! W ± ' 

{V ±,V ±} = {V ±,V =j=} = {W ±,W ±} 

={W±,W=j=}=O, 

{V ± ' W ± } = K ±' {V ± , W =j= } = Ko + B . 

(2.2c) 

(2.2d) 

(2.2e) 

(2.2f) 

We first define the lowest weight state for an Osp(2I 
2,R) representation as that state that is annihilated by all the 
lowering operators 

11' q; 1'1' q) . (2.3) 

In Eq. (2.3), the first two quantum numbers label the 
Osp (2I2,R) representation, while the next three labels are 
the Sp(2,R) quantum number, the corresponding third 

, component, and the SO(2) quantum number, respectively. 
In complete analogy with coherent states for SU ( 1,1) (Ref. 
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12) and Osp ( 1I2,R) (Ref. 9), we may then define the coher
ent states for the supergroup Osp(2I2,R) as 

IO,x,a) =..#"exp(aK+ + OV+ + xW+)lrq;rrq), 
(2.4) 

where a is a complex variable and 0 and X are Grassmann 
variables. J3 The factor..#" is introduced to ensure that the 
coherent state is normalized to unity. This normalization 
factor can be conveniently expressed in terms of the superde
terminant of 

- [ 1 M(w,(J';S,S) = t' (2.5) 

Explicitly, we find 

..#"-2 = [Sdet M(PP;X,X) r+q[Sdet N(u,a;O,B) r- q, 
(2.6a) 

where 

P = a - !OX and u = a - !xO . (2.6b) 

The superdeterminant of a graded matrix 

(2.7a) 

is given by 

Sdet G = det(A - BD -IC)/det D. (2.7b) 

We show in Appendix A that for r = q ( = - q), the gener
ator V + (W + ) annihilates the state Irq; r r q). Thus for the 
r = - q representation, we may simplify Eq. (2.4) to 

IOu) =..#" exp(uK+ + 8V+)lrq; r, rq = - r) , (2.4') 

and the normalization Eq. (2.5) reduces to 

..#"-2 = [Sdet M(u,O';O,B') ]2T . (2.6a') 

Likewise, for the atypical representation r = q, we find 

IO,P) =..#"exp(pK+ +xW+)lrq;rrq=r), 

and 

..#"-2 = [Sdet M(P,13 ';X,X')] 2T . 

(2.4" ) 

(2.6a") 

The variables u and pare defined as in Eq. (2.6b). In order 
to calculate the decomposition of unity, we will need to per
form integrations over the Grassmann variables. The inte
gration over Grassmann variables is only defined up to a 
normalization,13 which we take for convenience as 

f de dO( I,O,e) = 0 , 

f dB dO Oe = 1 . 

(2.8a) 

(2.8b) 

It is now possible to calculate the decomposition of unity for 
the Osp(2/2,R) coherent states. By using the integration 
measure derived in Sec. III, we can explicitly show [by sup
pressing the Osp(2/2,R) labels] 

f dJlIO,x,a) (O,x,al 

00 

= L Irr+mq)(rr+mql 
m=O 

00 

+ L Ir+ 1 r+ 1 +mq)(r+ 1 r+ 1 +mql 
m=O 
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00 I 1 1 1) + L 1'+-1'+-+mq--
m=O 2 2 2 

( 
1 1 1 I X 1'+-1'+-+mq--
222 

00 I 1 1 1) + L r+-1'+-+mq+-
m=O 2 2 2 

( 
1 1 1 I X 1'+-1'+-+mq+- =1 
2 2 2 

(2.9a) 

with 

dJl = (1' + q)( l' - q) dB dO dX dX da* da. (2.9b) 
21'1T 

Equation (2.9b) clearly indicates that the cases l' = ± q 
must be handled separately. However, we note that from 
Eqs. (2.4') and (2.4"), we can use the techniques developed 
for Osp( 1I2,R) coherent states. We merely quote the results 
here: 

"" = L l1'r+m -1')(rr+m -1'1 
m=O 

00 I 1 1 1) + L 1'+-r+-+m -1'+-
m=O 2 2 2 

X 1'+-1'+-+m -1'+- =1 ( 
1 1 1 I 
2 2 2' 

(2.lOa) 

with 

dJlT= _q = (2hT)dedOduduSdetM(u,ir,O,B) . 

Similarly, if l' = q, then. 

f dJlT= q Ix,P) (xJ31 

00 

= L l1'r+m1')(1'1'+m1'1 
m=O 

"" I 1 1 1 ) + L 1'+-1'+-+mr--
m=O 2 2 2 

X 1'+-1'+-+m1'-- =1 I 
1 1 1 I 
222 

and 

dJlT=q =J:....dXdxd13dPSdetM(p,p*;X,X). 
1T 

(2. lOb) 

(2.lIa) 

(2.lIb) 

In Ref. 14, it was shown that coherent states constructed 
from lowest weight states are "closest to classical" in the 
sense that they minimize the dispersion 

a = (C2 ) - ij(X) (X;) . (2.12) 

In Eq. (2.12), i j is the Cartan-Killing metric, the X j are 
generators of the supergroup Osp (2I2,R), and C2 = ijXjXj 
is the quadratic Casimir operator of Osp(2I2,R), where a 
sum over repeated indices is to be understood. By using the 
expectation values of the generators from Appendix B, it is 
possible to show that the coherent states as defined in Eq. 
(2.4) minimize 
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11 = (C2) - (Ko)(Ko) + !<K+) (K_) 

+ !(K_) (K+) + (B) (B) 

- !(V_)(W+) - !(W_)(V+) 

+!(V+)(W_) +!(W+)(V_) , (2.13a) 

where the quadratic Casimir C2 is given by 

(2.13b) 

It is interesting that the dispersion 11 vanishes for the typical 
as well as the atypical representations. 

III. INTEGRATION MEASURE FOR Osp(2/2N,R) 

In this section we consider the construction of coherent 
states for the supergroups Osp ( 2/2N,R) and the calculation 
of their measure of integration. Since we have treated 
Osp( l/2N,R) coherent states in detail in Ref. 9, we only 
sketch the calculations here, and the reader is referred there 
for more details. We introduce the boson creation and anni
hilation operators b J, b; and fermion creation and annihila
tion operators aJ, a;. These operators satisfy the standard 
commutation or anticommutation relations 

[b;.bj ] = 0, [b;.b J] = 8ij' [b;.aj ] = 0, [b;,aJ] = 0 , 

{a;.aJ}=8;J, {a;.a) =0. (3.1) 

For Osp(2I2N,R), we need N creation/annihilation opera
tors in the bosonic space, and only one creation/annihilation 
operator in the fermion space. The operators are then trans
formed among themselves with the most general mapping 
that preserves Hermiticity, 

- t t b; -+b; = uijbj + vijb j + ()lia + ()2;a , (3.2a) 

b i -+h i = utb J + vtbj - Oliat - 02;a, (3.2b) 

a-+a = Ala + A2at + Xlib; + X2;b i , (3.2c) 

at -+at = A Tat + A!a + Xlib T + X2ib; . (3.2d) 

Since we want the transformation to be canonical, we require 
the transformed (tilded) operators to satisfy the same rela
tions as the untransformed operators. This leads to the fol
lowing set of independent equations: 

Ui/VjI - vi/ujl - ()2;()lj - ()1i()2j = 0 , 

Ui/uJi - Vi/vJi + ()liOIj + ()2;02j = 8;J ' 

Ui/X21 - Vi/XII + ()liA2 + ()2;A I = 0 , 

Ui/XII - Vi/X21 + ()liA T + ()2;A! = 0, 

AlA T + A0! + XliXIi - X2;X2i = 1 , 

AIA2 + XIiX2i = 0 . 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

(3.3e) 

(3.3f) 

Here the uij' vij' AI' and A2 are complex numbers, while 
()w O2;, Xli' and X2i are Grassmann (anticommuting) 
numbers. It will be convenient to express the above condi
tions [Eqs. (3.3a)-(3.3f)] in matrix form. Therefore, uij 
will be interpreted as the ijth entry of the N X N matrix u, and 
so on. Next we introduce the supermatrix 
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~ 
v ()I 

9, ] U* -02 -OJ 
R= (3.4 ) 

XI X2 AI A2 . 

2 XI A! AT 

It is not hard to show then that the transformation in Eq. 
(3.2) is canonical if 

RHR ST =H, (3.5) 

where ST indicates the supertranspose of the matrix 

[A B] ST = [A T C T] . 
C D _BT DT 

(3.6) 

The matrix H in Eq. (3.5) is given by 

[°_ 1 

I 0 

rl 0 0 
H= (3.7) 

0 0 0 

0 0 

where lis the N XNunit matrix. It follows from Eq. (3.5) 
that the matrix R is an element of the supergroup Osp(2/ 
2N,R) . We can now put the transformation equations into 
matrix form: 

(3.8) 

It is clear from Eq. (3.8) that this transformation is a gener
alized Bogoliubov transformation for a mixed system ofbo
sons and fermions. 

We find it convenient to introduce the following opera
tor: 

T= exp[!Zijb ib J]exp[!¢;ab nexp[!1];atb n ' (3.9) 

with Zan N X N symmetric matrix, and ¢ and 1] N X 1 Grass
mann column vectors. It is then easy to verify that 

Tb;T- 1 = b; - Zijb J - !1];at - !¢;a. (3.lOa) 

Thus it follows that we can write the transformation of b; as 

(3.lOb) 

Zjk = - UJiIVlk' 1]j = - 2uJi l
()w ¢j = - 2UJlI()1I . 

(3.1Oc) 

We then define the Osp(2I2N,R) coherent state as 

IZ,¢,1]) = TIO) . (3.11 ) 

It then follows that the quasiparticle operators annihilating 
the coherent state are 

(3.12) 

In Eqs. (3.9)-(3.12), i,j = 1 - N, and a summation over 
repeated indices is implied. For the coherent state to be left 
invariant, we need Z, 1], and ¢ to transform as 

Z-+(ut +Zvt -!1]Of -!¢OD- I 

X(v T +ZuT +!1]()i +!¢()D, (3.13a) 

¢-+ (ut + Zvt - !1]O f - !¢O i)-I 

X (¢A T + 1]A ! - 2Zxf - 2xD , (3.13b) 
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11--+ (ut + Zvt - !l1B f - !¢'B n- I 

X (l1A r + ¢'A t - zxi - 2Xf> . (3.13c) 

By defining a = [Z,!l1,!¢'], we may express the transforma
tion of Z, ¢' and 11 as 

a--+a'=(A+2C)-I(B+2D) (3.14a) 

with 

A t B [T T -T] = U , = v - X2 - XI , (3.14b) 

[ 

vt ] rUT 
c= - ~~, D= O~ 

-0 1 O2 

-i1 At . 
A* I 

(3.14c) 

Now, by following the methods of Ref. 9, we find the follow
ing set of relations, which allow us to express one set of vari
ables in terms of the other: 

U = UB, Bt = B, uut = 1, (3.15a) 

xi =!(l - z*Z) -I [¢ - Zl1,1j - Z¢'] [~J, (3.15b) 

xf =!(l - ZZ*) -I [11- Z¢,¢' - Z1j] [~~], (3.15c) 

BTB= (l-zzt +!#T +!l11jT)-I, (3.15d) 

A rA I + A tA2 + xIii - x&f = 1 . (3.15e) 

The invariant measure Il (a) is defined by 

Il(a) = Il (E') IJ(2',2) I = 1l(0) IJ(0,2) I , (3.16 ) 

where J(a',a) is the Jacobian of the transformation that 
sends a to a'. We finally conclude that 

[det(A -BD- IC)j2(N-2)IJ(0,2)1 = (SdetD)2N. 
(3.17) 

Hence the invariant measure in the decomposition of unity is 

dll(Z,¢',l1) exdOdBdXdid2NZ 

(Sdet D)2N 
x----~~--~------

[det(A - BD -Ie) ]2(N-2) 
(3.18) 

For the case N = 1, this can be shown to be consistent with 
Eq. (2.9b). 

IV. CONCLUSION 

In this paper we have continued our treatment of coher
ent states for the Osp(p12N,R)-type noncompact super
groups by investigating those for Osp(2I2N,R). It should 
also be noted that there is no difficulty in extending this 
treatment to compact versions of these Osp(p/2N,R) super
groups. Since Osp(pI2m,R) supergroups have been used in 
generalized superfield theories,8 the study of coherent states, 
in general, and the measure of integration in particular, 
should prove useful. The supergroup Osp(2I2,R) is clearly 
among the simplest of the Osp(p/2m,R) supergroups. 
While we have not found any physical applications for 
Osp (2I2,R) superalgebras, it appears that Osp ( 4/2,R) su
peralgebras may be useful in the study of nuclear structure. 15 
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In Ref. 15, it was shown that Osp(4/2,R) has two possibly 
useful subgroup chains: 

Osp(4/2,R) ::JSp(2,R) XSO(4) , 

Osp(4/2,R) ::JU( 1/2) ~SU( 1/2) XU( 1) . 

( 4.1a) 

( 4.1b) 

The superalgebra SU ( 1/2) ~ Spl (2,1 ) is a compact superal
gebra whose representations have been studied by several 
authors,16 and, as we noted earlier, their coherent states 
could be studied by the techniques presented in this paper. 
Finally, it might be useful to study the coherent states for 
Osp( 4/2,R), although the difficulty of handling such super
groups increases rapidly. A start towards this end is now 
underway, beginning with an investigation of the representa
tions for Osp ( 4/2,R) superalgebras. 17 
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APPENDIX A: REPRESENTATION THEORY FOR THE 
SUPERALGEBRA Osp(2/2,R) 

We construct the irreducible representations of Osp ( 21 
2,R) by acting with the raising operators on the lowest 
weight state (L WS ), that state that is annihilated by all the 
lowering operators. We choose the first and second compo
nents of the weight to be the eigenvalues of Ko and B, respec
tively. From the commutation and anticommutation rela
tions [Eq. (2.2)], it is then clear that the lowering operators 
are V _, W _, and K _, whereas the raising operators are V +' 

W+, and K+. The Osp(2I2,R) representations can be la
beled by the Sp(2,R) xSO(2) quantum numbers of the 
L WS, the state vectors being further specified by including 
the labels k(k - 1) and Mk (the eigenvalues of K2 and Ko) 
and Q [the SO(2) label]. 

By using the anticommutation relations ofEq. (2.2), it 
can be shown that there are four independent combinations 
of the supercaret raising operators, 1, V +' W +' and V + W +. 
Thus each Osp(2/2,R) representation decomposes into at 
most four representations of the subgroup. Upon evaluating 
the norms of these states, we find that all four independent 
multiplets are not always realized; the conditions for the ex
istence of any multiplet can be expressed in terms of the 
Osp(2/2,R) quantum numbers 'T and q. The decomposition 
is (the conditions for the existence of each multiplet are giv
en below the corresponding labels) 
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(1"q)-(1")(q) $ (1"+!)(q+!) $ (1"+!>(q-!) $ (1"+ I)(q) 
(AI) 

1" - q#O 1" + q#O 1" - q#O, 1" + q#O. 

We denote the Sp(2,R) XSO(2) LWS by 

I "')-1"') 1" q; 1" 1" q = 1" q, 1" q , (A2) 

where the first two quantum numbers of the ket on the right
hand side of Eq. (A2) labelthe Osp (2I2,R) representation, 
while the second set denote those for Sp (2,R) X SOC 2). The 
four orthogonalized state vectors obtained from Osp (21 
2,R) on reduction to Sp(2,R) XSO(2), are 

l1"q; 1"q) = 11,60)' (A3a) 

(A3b) 11" q; 1" +! b +!) = ~ [1/2( 1" - q)] V + 11,60) , 

11" q; 1" +! b -!) =~ [1/2( 1" + q)] W + 11,60) , 

11" q; 1" + 1 b) 

(A3c) 

= ~[1/41"(21" + 1)(1" + q)(1" - q)] 

xhv+w+ - (1"+q)}ltPo)' (A3d) 

It is possible to use the raising operator K + to ladder within a 
representation, with the result 

l1"q; k k + m q') 

= ~[rc2k)/r(m + 1)r(2k + m) ]K': 11" q; k k q') , 
(A4) 

where the square root factor ensures that the state remains 
normalized. Finally, by using the commutation and anti
commutations relations, one can find the action of the opera
tors on the various multiplets. In Eq. (AS), we suppress the 
Osp(2/2,R) representation labels and obtain the following 
results: 

K ± 11" 1" + m q) 

=~ (1" + m ± 1")( 1" + m += 1" ± 1) 11" 1" + m ± 1 q) , 
(ASa) 

V 11" 1" + m q) = a~1" + m ± 1"11" +! 1" + m ±! q +!) , 
± (ASb) 

W 11"1"+ m q) =P~1"+ m ± 1"11"+! 1"+ m ±!q -!), 
± (ASc) 

V ± 11" +! 1" +! + m q +!) = 0, (ASd) 

w ± 11" + ! 1" + ! + m q + !) 

= Y~1" +! + m + 1" ± !11" 1" +! + m ±! q) 

+ 8~1" +! + m ± 1" ± !11" + 11" +! + m ± !q) , 
(ASe) 

V ± 11" + ! 1" + ! + m q - !) 

= P~1" +! + m += 1" ± !11" 1" +! + m ±! q) 

+ U~1" + ! + m ± 1" ± !11" + 11" + ! + m ± ! q) , 
(ASf) 

w ± 11" + ! 1" + ! + m q - !> = 0 , (ASg) 

V ± 11" + 11" + 1 + m q) 
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= K~1" + 1 + m + 1"11" +! 1" + 1 + m ±! q +!) , 
(ASh) 
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W ± 11" + 11" + 1 + m q) 

= m~1" + 1 + m += 1"11" +! 1" + 1 + m ±! q -!) . 
(ASi) 

The complex numbers a, p, ... may depend on 1" and b but not 
on m, a result of using the Wigner-Eckart theorem. There 
are three different representations that we must consider 
separately, and these are discussed next. 

(i) The 1" = q representation: The coefficients then satis-
fy 

a=y=8=u=K=m=O and PP= 1. (A6) 

(ii) The 1" = - q representation: For this case the coeffi
cients satisfy 

P = p = 8 = U = K = m = 0 and ay = 1 . (A 7) 

(iii) If 1"# ± q then all four multiplets occur, and we 
have a representation iff the following relations hold among 
the coefficients: 

and 

1 1" - q 
y=---, 

a 21" 

1 1" + q 
K----

- 8 21"' 

2 1"-q a =--, 
21" 

1 1"+ q a8 
P=7i~' U= -71' 

1 1" - q m=p---, 
8a 21" 

APPENDIX B: MATRIX ELEMENTS FOR THE 
GENERATORS OF Osp(2/2,R) 

(A8a) 

(A8b) 

In this Appendix we present the matrix elements for the 
generators of the supergroup Osp(2/2,R). These are pre
sented in a form where the simplification for the atypical 
representations are easily seen. For convenience, we define 
two supermatrices M) and M2 by 

M) =M(p,13;X,X), 

M2 = M(u,u;O,O) . 

(BIa) 

(BIb) 

We may then write the matrix elements of the various gener
ators of the superalgebra in the following compact form: 

(O'x'a'IK+ IOxa ) 

(0 'x'a' I OXa ) 
=,B( 1" + b)Sdet M) + u'( 1" - b)Sdet M2 , (B2a) 

(0 'x'a'IK_IOxa) 

(0 'x'a'IOxa) 
= P(1" + b)Sdet M) + u( 1" - b)Sdet M 2 , (B2b) 

(0 'x'a'IKolOxa) 

(0 'x'a' I OXa ) 

= 1" + b (1 + ,$')SdetM) + 1" - b (1 + oiT)SdetM2 , 
2 2 

(B2c) 
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(0 'x'a'lV + 10xa ) 

(0 'X' a' I OXa ) 
- O'(r- b)SdetM2 - x/3'(r+ b)SdetM1 , 

(B2d) 

(O'x'a'i W_IOxa ) 

(O'x'a'IOxa ) 

- O( r - b)Sdet M2 - i'( r + b)fJ Sdet M J , 

(0 'x'a'i V _IOxa) 

(0 'X' a' I 0Xa ) 
- O'(r- b)CTSdetM2 - x(r+ b)SdetMJ , 

(O'x'a'i W+ 10xa) 

(O'x'a'IOxa ) 
- 00-'( r - b)Sdet M2 - i'( r + b)Sdet M J , 

(O'x'a'IB 10xa ) 

(O'x'a'IOxa ) 

= b + xi' SdetM2 _ 00' SdetM
J

• 

2 2 

(B2e) 

(B2f) 

(B2g) 

(B2h) 

Of course the coherent states for Osp (2I2,R) are not orthog
onal, and the overlap is conveniently expressed in terms of 
the superdeterminants of the matrices in Eq. (Bl): 

(O'x'a'IOxa ) 

= (Sdet M(fJ,/3';x,i'»)" + q(Sdet M(CT,O';O.O'»,"- q 

= (Sdet M(fJ./3;X.i») - (T+ q)12 
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x (Sdet M(CT,U;O,O») - (T- q)/2 

= (Sdet M(fJ ',/3 ';x',i'») - (T+ q)12 

X (Sdet M(o',O';O ',0 '») - (T- q)12 . (B3) 
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Some general results on the subalgebras of the Lie algebra ASch (n) of the generalized 
SchrOdinger group Sch (n) and on the su~~ebras of the Lie algebra AScli (n) of the 
generalized extended SchrOdinger group Sc (n) have been obtained. The subalgebra structure 
of the algebras ASch (n) and ASCIi (n) are studied with respect to inner automorphisms of the 
groups Sch(n) and Sch(n), respectively. The maximal Abelian subalgebras and the one----dimensional subalgebras of the algebras ASch(n) and ASch(n) have been explicitly found . ..--.-
The full classification of the subalgebras of the a.!iebras ASch (3), ASch (3), which are 
nonconjugate to the subalgebras of ASch(2), AScn(2), respectively, has been carried out. 

I. INTRODUCTION 

To construct exact solutions of both linear and nonlin
ear Schrodinger and heat equations it is important to know 
the subgroup structure of the extended Schrodinger group 
Sch (3) (see Ref. 1). Other important applications of sub
group structure of this group were discussed in Refs. 2 and 3. 
It is natural to generalize the notions of the three-dimension
al SchrOdinger group for the case of arbitrary n-dimensional 
Euclidean space and to solve the problem of subgroup classi
fication for these generalized groups. If we restrict ourselves 
by continuous subgroups, then the problem will be reduced 
to classification of subalgebras of correspondent Lie alge
bras. This classification was realized for n = 1 in Ref. 4 and 
for n = 2 in Ref. 2. 

In the present paper we study subalgebra structure of 
both the Lie algebra ASch ( n) of the Schrodinger group ....-.. 
Sch (n) and the Lie algebra ASch (n) of the extended Schro----dinger group Sch (n) with respect to inner automorphisms of ---the gro,up Sch(n) and the group Sch(n), respectively. This 
paper is a continuation of investigations that were carried 
out in Refs. 5-9. The applied general method of Patera, Win
ternitz, and Zassenhaus 10 gets further development for 
classes of groups under consideration. 

In Sec. II we give definitions of the generalized Schro
dinger groups and algebras and introduce some other con
cepts and basis notation used in the whole paper. In Sec. III, 
completely reducible subalgebras of the algebra AO (n) 

EEl ASL (2,R) are derived, and all subalgebras of this algebra 
are described for n = 3. In Sec. IV a number of general re
sults about splitting subalgebras of the algebra ASch (n) are 
obtained. Abelian subalgebras of the extended Schrodinger 
algebra ASCh ( n) are described in Sec. V. Classification of 
subalgebras of the algebras ASch ( 3 ) and AScii ( 3) is carried 
out in Sec. VI. The conclusions are summarized in Sec. VII. 

II. DEFINITIONS OF SCHRODINGER GROUPS AND 
ALGEBRAS. MAIN NOTATION 

Let R be the real number field, R n an arithmetical n
dimensional Euclidean space, and AG the Lie algebra of the 
Lie group G. The Schrodinger group Sch(n) is the multipli
cative group of matrices 

(r ~ ~) 
where WEO(n), a, vER n, and a{j - {3y = I (a, {3, y, {jER). 
If a = {j = 1, y = 0, we obtain matrices that are elements of 
the Galilei group G (n). If at the same time {3 = 0, we have 
elements of the isochronous Galilei group GO(n). Besides, 
the Schrodinger group Sch(n) can be realized as the trans
formation group 

Wx + t v + a at + {3 x...... , t ...... ---, 
yt + {j yt + {j 

where t is time and x is a variable vector of the space R n. 

The Lie algebra ASch(n) ofthe group Sch(n) consists 
of real matrices 

(~ : ;), 
o y -a 

where XEAO(n), a, {3, yER, and a, vER n. Let lab be a 
matrix of degree n + 2 having unity at the intersection of the 
ath line and the b th column and zeros at the other places (a, 

b = 1, ... ,n + 2). Then the basis of the algebra ASch(n) is 
formed by the matrices 

Jab = lab -Iba' Ga =Ia.n+ J , Pa =Ia.n+2, 

D = - In+ J.n+ I + In+2.n+2, 

S = - In + 2.n + I' T = In + I.n + 2 

(a < b, a,b = l, ... ,n). They satisfy the following commuta
tion relations: 

[Jab,Jed ] = {jadJbe + {jbeJad - {jaeJbd - {jbdJae; 

[Pa,Jbc ] = {jabPe -{jaePb; [Pa,Pb] =0; 

[Ga,Jbe ] = {jabGe -{jaeGb; [Ga,Gb] =0; 

[Ga,Pb] =0; [D,Jab ] = [S,Jab ] = [T,Jab ] =0; 

[D,Pa ] = -Pa, [D,Ga ] =Ga; 

[S,Pa] = Ga, [S,Ga ] = 0; 

[T,Pa ] =0, [T,Ga] = -Pa; 

[D,S]=2S, [D,T]=-2T, [T,S]=D 

(a,b,c,d = 1,2, ... ,n). 
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~ 

The extended Schrodinger algebra ASch (n) is obtained 
from the algebra ASch (n) by adding the central element M, 
and, moreover, [Ga,Pb] = 8abM and other commutation 
relations do not change. The factor algebra A'Scli (n) / (M ) is 
identified with ASch(n). We shall denote the generators of 
algebras ASch (n) and AScii (n) by the same symbols. 

-0 The algebra AG (n) = AO(n)(J-(M,P" ... ,Pn,G" ... , 
G n) is called the extended isochronous Galilei algebra, and 
the algebra AGo(n) = AGo(n)/ (M) is called the isochron
ous Galilei algebra. 

Since the Lie algebra L = (M,P" ... ,Pn,G,' .... Gn) is nil
potent, L is a Lie algebra of some connected and simply 
connected nilpotent Lie group H. As H is an exponential 
group, any of its elements can be denoted as exp(OM) 
Xexp(vG + aP), where fJER, vG = v,G, + .. , + vnGn, 
and aP = alP' + ... + anPn (a;,vjER, i = 1, ... ,n). The 
multiplication law is derived by the Campbell-Hausdorffor
mula. Let 

be an element of 0 (n) X SL (2,R). It is not difficult to show 
that in Sch(n) we have 

~'exp(vG + aP) 

= exp(8Wv - yWa)G + ( - {3Wv + aWa)P)'~' 
(1) 

---An arbitrary element of the grO\lp Sch(n) has the form 

exp( OM) 'exp(vG + aP)·~. 

By definition, exp(OM)'~ = ~'exp(OM), and the equality 
(1) holds true for ~. exp (vG + aP). Using these equalities 
and multiplication laws in Hand 0 (n) X SL( 2,R) we shall ----establish multiplication in Sch( n) in the usual way. Evident-
ly, 'Scli(n) = H)' (O(n) XSL(2,R»). 

Subalgebras L, and L2 of the algebra AScll (n) are called 
'Sch(n) conjugated if gL,g-' = L2 for some element 
geSch ( n). Mapping <P g: X --+ gXg-', XEASch (n), is called an 
automorphism corresponding to the element g. If g 
= diag[ W,l,l), where WeO(n), then qJg is called an O(n) 

automorphism corresponding to the matrix W. We shall 
identify the automorphism <pg with the element g. 

Henceforth we shall use the following notations: (X" ... , 
Xs) is a vector space or Lie algebra over R with the genera
tors X" ... , Xs; V[k,l) = (Gk,.··,Gz) (k<:"l) is a Euclidean 
space having the orthonormal basis Gk,· .. ,Gz, 
V[k] = V[k,k]; W[k,l] = (Pk, ... ,Pz) (k<:"l), W[k] 
= W[k,k); WC[r,t) = (M,P"""PI'G" ... ,G,) (r<:"t), WC[r) 
= WC[r,r), ~[r,t) = WC[r,t]l~); 1T, W, 'T, E, and 5 are pro-

jections of the algebras ASch (n ) and ASch (n ) onto 
AO(n) ED ASL(2,R), AO(n), ASL(2,R), V[l,n), and 
W[l,n), respectively. 

Let Ube a subspace of~[ 1,n] and Fbe a subalgebra of 
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ASch(n) such that 1T(F> = F. The notation F + U means A _ 

t~t [F, U] C ~ and Fn WC [ l,n] C U. Consideri~g algebras 
(F + U, ), ... ,(F + Us) we shall use the notationF: U"""Us' 
In the case of the algebra AScIi' ( n) this notation has the same 
meaning. 

Let L be the direct sum of Lie algebras L" ... ,Ls' K a Lie 
subalgebra of L, and 1Tj the projection of L onto L j. If 
1Tj (K) = L j for all i = 1, ... ,s, then K is called the subdirect 
sum of algebras L" ... ,Ls ' In this case we shall use the nota
tion K = L, + ... + Ls' The subdirect sum of modules over a 
Lie algebra i~ defi~ed in a similar way. 

III. ON THE SUBALGEBRAS OF THE ALGEBRA 
AO(n). ASL(2,R) 

In this section a number of auxiliary results to be used in 
following sections are obtained. 

Lemma 3.1: Subalgebras of the algebra ASL(2,R) are 
exhausted with respect to SL(2,R conjugation by the follow
ing algebras: O,(D), (T), (S + T), (D,T), ASL(2,R). 
The written algebras are not conjugated mutually. 

Later on, when we speak about subalgebras of the alge
bra ASL(2,R) we shall mean the subalgebras given by 
Lemma 3.1. 

By direct calculations we are convinced that the norma
lizer of (D) in the group SL(2,R) consists of matrices 

where aER, a =1= O. The normalizer of (T) and the normalizer 
of (D,T) in the group SL(2R) consists of matrices 
± exp(O.D) 'exp(02n, where 0., 02ER. The normalizer of 
(S + T) coincides with the group 

SO(2) = {( co~ <P sin <p) I }. 
. - sm <P cos <P <pER 

Proposition 3.1: Let AH (n) be the Cartan subalgebra of 
the algebra AO(n). Up to conjugacy underO(n) XSL(2,R) 
the algebra AO( n) ED ASL( 2,R) has two maximal soluable 
subalgebras AH(n) ED (S + T), AH(n) ED (D,T). 

Proposition 3.1 follows immediately from Lemma 3.1 
and the fact that AO(n) has, with respect to O(n) conjuga
tion, the only maximal solvable subalgebra AH(n). 

Proposition 3.2: Up to conjugacy under 
0(n)XSL(2,R) the algebra AO(n) ED ASL(2,R) has the 
following subalgebras: (i) FEDK, where FCAO(n), 
KCASL(2,R); (ii) FED (X + Y), where FED (X) CAO(n), 
YeASL(2,R); and (iii) (X + D ) (J-(FED (T», where 
FED (X)CAO(n). 

Proposition 3.2 is proved by the Goursat twist meth
od." 

Corollary: Subalgebras of the algebra AO (3 ) 
ED ASL ( 2,R) are exhausted with respect to 0 ( 3 ) X SL ( 2,R ) 
conjugation by the following algebras: 
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0; (Jl2); (D); (T); (S + T); (Jl2 + aD) (a> 0); 

(Jl2+ T ); (Jl2+a(S+n) (a>0);(JI2 +aD,T) (a>O); 

(D,T); (Jl2,D); (Jl2,T); (Jl2'S + T); (Jl2,D,T); 

AO(3); ASL(2,R); (Jl2) ~ASL(2,R); AO(3) ~ (D); 

AO(3) ~ (T); AO(3) ~ (S + T); AO(3) ~ (D,T); AO(3) ~ASL(2,R). 

The written algebras are not conjugated mutually. 
The space m [ l,n] can be considered as an exact module 

over the Lie algebra AO(n) ~ ASL(2,R). Let L be a subal
gebra of this algebra. If m [l,n] is a completely reducible L 
module, then the algebra L will be called completely reduc
ible. 

Theorem 3.1: A sub algebra L of the algebra AO(n) 
~ ASL(2,R) is completely reducible ifand only if T(L) does 
not coincide with (T) and (D, T). 

Proof; If T(L) = 0, then L is a completely reducible al
gebra. If T(L) = (D,T), then L = Ll ~L2' where Ll 
CAO(n),L2 = (X + D,T),XEAO(n). SincethealgebraL2 
is solvable and non-Abelian, then L is not a completely re
ducible algebra. l2 Let T(L) = ASL(2,R). Since direct de
composition of FCAO(n) can be realized through every 
ideal, and since every subalgebra of the algebra AO(n) is 
compact and ASL(2,R) is not compact, then 
L = OJ (L) + T(L). That is whyl2 L is completely reducible. 

LetusassumethatT(L) = (D). Since [D,Pa ] = - Pa, 
[D,Ga ] = Ga, then m [1,n] can be decomposed into a direct 
sum of L-irreducible spaces. Consequently L is a completely 
reducible algebra. 

As[S+ T,Pa ] =Ga and [S+ T,Ga ] = -Pa, then 
the skew-symmetric matrix 

corresponds to the operator S + T in a basis Pl, ... ,Pn , 

Gl, ... ,Gn of the space m[l,n]. Hence it follows that if 
T(L) = (S + T), then in the basis mentioned above every 
element of an algebra L is represented by a skew-symmetric 
matrix of degree 2n, and that is why L is a completely reduc
ible algebra. 

Let T(L) = (T), and V[k,l] be an irreducible OJ(L) 
module. Evidently V[k,l] + W[k,l] is an L module. Since 
by Lemma 4.2 of Ref. 9 this module can not be decomposed 
into a direct sum of irreducible L modules, an algebra L is 
not completely reducible. The theorem is proved. 

IV. ON THE STRUCTURE OF SPLITTING 
SUBALGEBRAS OF THE SCHROOINGER ALGEBRA 

The aim of this section is to study up to conjugation the 
subspaces of the space m [ l,n] invariant under subalgebras 
of the algebra AO(n) ~ASL(2,R). The main results are 
Theorems 4.1 and 4.2. 

Let F be a subalgebra of AO (n) ~ ASL (2,R), and F be 
a subalgebra of the algebra ASch (n) such that 1T(n = F. If 
algebra F is Sch (n) conjugated to the algebra FEHR, where 9C 
is an F-invariant subspace of the space m[ l,n], then F is 
called a splitting in the algebra ASch ( n ). The notion of a 
splitting subalgebra of the algebra ASch(n) is defined in an 
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analogous way. If every subalgebra Fis a splitting, we shall 
say that F has only splitting extensions in the algebra . .-
ASch ( n) [resp. III the algebra ASch (n ) ] . 

We shall find all subalgebras F, which possess only split
ting extensions. 

Let 

J(a,b) = J2a-I.2a + ... + J2b - I,2b 

(a<,b), J(a) = J(a,a), 

J= (~l ~), 
X = S + T + a lJ I2 + ... + a tJ2t _ I,2" O<,a l '" <,at , 

Y2a-1 = G2a _ 1 + P2a , 

Y2a = G2a - P2a - l , Z2a_1 = G2a _ 1 - P2a , 

Z2a =G2a +P2a - l , 53a = (Y2a-I'Y2a), 

9Ca = (Z2a - I ,Z2a)' 

Obviously,53a + 9Ca = m[2a - 1,2a]. If 1 <,a<,t, then 

[X,Y2a _ d = - (aa_l) Y2a , 

[X,Y2a ] = (aa -1)Y2a - l , 

[X,Z2a_l] = - (aa + I)Z2a' 

[X,Z2a] = (aa + 1)Z2a_I' 

(2) 

Thus (aa - 1)J is the matrix of ad Xin the basis Y2a _ I' Y2a 
of the space 53 a' and (a a + 1) J is the matrix of ad X in the 
basis Z2a _ I' Z2a of the space 9Ca (1 <,a<,t). If aa = 0, we 
obtain a matrix corresponding to ad(S + n. 

Let aa #0, aa # 1. The (X) module 9Ca is called an ele
mentary module of the first kind, and the (X) module 9C a is 
called an elementary module of the second kind. A subdirect 
sum of elementary modules of the first kind is called a mod
ule of the first kind, and a subdirect sum of elementary mod
ules of the second kind is called a module of the second kind. 

Lemma 4.1: Let Cbe a matrix obtained from the identity 
matrix of degree n as a result offulfilling a permutation over 
its columns 

(
2k - 1 

21 

2k 

2/- 1 

2/- 1 

2k 
21 ) 

k 
(k < I), 

2 -1 

followed by the multiplication on ( - 1) columns which 
have number 2k and 2/. The O(n) automorphism <p of the 
algebra ASch(n) which corresponds to the matrix C has the 
following properties: 

(1) <P(J2d _ 1,2d) = J2d _ 1.2d' if d #k, d #1; 

<P(J2k-I.2k) = J2I - I ,21' <P(J21 - 1•21 ) = J2k-I.2k; 

(2)<P(G2k _ I )=G2I , <P(G2k ) = -G21 _ 1 , 

<p(G2I _ I )=G2k , <p(G2I ) = -G2k _ l ; 
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(3) cp(2d = 2 /, cp(2/ ) = 2k, 

cp(fnk ) = fnl' cp(fn / ) = fn k. 

Proof: For simplicity we can take n = 4 and 

Then 

C(aJJ2 + /3J34 ) C -I = flJlZ + aJ34, 

C.~y~1 = (~:4). 
Y3 - Yz 

YI 
Using the last equality we conclude that cp( G1 ) = G4 , 

cp(G2) = - G3 , cp(G3 ) = G2, and cp(G4 ) = - G1• The 
lemma is proved. 

Lemma 4.2: Letting n;>4, l.;;;;q';;;;[n12] - 1, and Ea be 
the identity matrix of degree a, 

C1(.,1.) =(+ 
~ 

1 

o 
-1 

A(1,k;A) = diag[ Ck (A),En _ 2.(k + I) ], 

if 2(k + 1) < n, 

A(1,k;A) =CdA), if 2(k+ 1) =n; 

A(q,k;A) =diag[E2q_2,CdA),En_2(k+q)]' 

if q> 1, 2(k+q) <n, 

A(q,k;A) = diag[ E 2q _ 2 ,Ck (A)], 

if q> 1, 2(k + q) = n; 

and cp(q,k;...t) is an O(n) automorphism of the algebra 
ASch(n) which corresponds to a matrix A(q,k;A). Then 

cp(q,k;A)(J(q,q + k») = J(q,q + k), 

cp(q,k;A) (G2q _ 1 + AG2(q+k) -I) = ~'G2q_ I' 

cp(q,k;...t)(G2q + AG2(q+ k» = ~G2q. 
Proof: We may restrict ourselves only to the case when 

n = 4, q = 1, k = 1. Since 

C1(A) .(~' ;,) = (~' ;}C1(A), 

for every matrix X' of degree 2, and 

C'(A)·aJ~~i) 
then 
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cp(1,I;...t)(J(1,2») = J(1,2), 

cp(1,I;A)(G1 +AG3 ) =~GI' 

cp( 1,1;...1.) (Gz + AG4 ) = ~Gz' 

The lemma is proved. 
Proposition 4.1: Let X = S + T + aJ( k,l) where a> 0, 

a =1= 1. If Uisan (X) submodule of the first (the second) kind 
of the module m [2k - 1,21], then U is conjugated to the 
module 

atk 2aCtkfna ) (t.;;;;i). 

Proof: Let us assume that U is a module of the first kind. 
By Lemma 4.1 we shall suppose that a projection of U onto 
2k differs from O. As 

exp(OJZa _ I,2a )(Ya Y2a - 1 + 8a Y2a )exp( - 8J2a - 1,2a) 

= (Ya cos 8 + 8a sin 8) Y2a - 1 

+ (8a cos 8 - Ya sin 8) Y2a , 

putting 8a cos 8 - Ya sin 8 = 0, we may assume that if a 
projection of an element YEU onto 2a is equal to 
Ya Y2a _ 1 + 8 a Y2a , then 8 a = O. Hence it follows that U has 
the element 

Y = Y2k - 1 + A k + 1 Y2k + 1 + .. , + AI Y2I - 1 

= (G2k - 1 +Ak+IG2k+1 + ... +AIG2I _t> 
+ (P2k +Ak+IP2k+2 + ... +AIP2I ). 

In view of Lemma 4.2, for some O(n) automorphism 
cp = cp(k, 1;J.LI) ·cp(k,2'Jl.2)· ... 'cp(k,l - k;J.LI_ k) of the al
gebra ASch (n) the following equalities hold true: 
cp(X) =X, cp(Y) =y(G2k _ 1 +P2k ) (yER, y=I=O). There
fore we may assume that Y2k - 1 EU. Then Y2k EU, and thus 
2k C U. Using induction we conclude that U = l:2a. 

The case when Uis a module of the second kind is treat
ed similarly. The proposition is proved. 

Theorem 4.1: Let F be a subalgebra of the algebra 
AO (n) ED ASL (2,R). Then F has only splitting extensions in 
ASch (n) if and only if one of the following conditions is 
satisfied: (1) DEr(F); (2) r(F) = (S + T) andFisnotcon
jugated to (JJ2 + S + T) t K, where K is a subalgebra of the 
algebra (Jab la,b = 3, ... ,n); (3) r(F) C (T) and w(F) is not 
conjugated to any subalgebra of the algebra AO(n - 1); or 
(4) r(F) = 0 and w(F) is a semisimple algebra. 

Proof: Let DEr(F). If r(F) = ASL(2,R), then by 
Theorem 3.1 F is a completely reducible algebra. Since in 
this case F annuls only zero subspace in m [ l,n], then by 
Proposition 2.1 of Ref. 9 the algebra F has only splitting 
extensions in ASch (n). If r(F) = (D, T), then TEF. Algebra 
F / ( T) acts completely reducible in m [ 1 ,n] and annuls only 
zero subspace in this space. From this, using Proposition 2.1 
and Lemma 3.1,9 we conclude that F has only splitting exten
sions in ASch(n). At the same time the case r(F) = (D) is 
considered. 

Let r(F) = (S + T). If S + TEF, then F annuls only 
zero subspace in m [ 1 ,n]. Because of Theorem 3.1 the alge
braFis comple,tely reducible; !,.hen by Proposition 2.1 of Ref. 
9 any algebra F such t~at 1T(F) = F is splitting. If F has a 
nonsplitting extension Fin the algebra ASch (n ), then F con-
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tains X = 8 + T + a lJ 12 + ... + a tJ2t _ I ,21' where O<a l 

..;; .. ·..;;at • We may assume that projections of other basis 
elements of the algebra F onto (8 + T) are equal to O. In 
view of Proposition 2.1 of Ref. 9 the algebra F annuls in 
§R [ l,n] a certain nonzero subspace U. It follows from this 
and formula (2) that UC (YI,Y2, ... ,Y2k ) and 
X=8+ T+J(I,t) (k..;;t) or 

X =8+ T+J(1,k) +/3k+J(k+ 1) 

+"'+/3tJ(t) (t>k), 

where /3 k + I > O, .. ·,/3t > 0, /3k + I =1= 1, .. ·,/3t =1= 1. Arguing as 
in the proof of Proposition 4.1 we obtain that YIEU up to 
conjugacy. Hence it follows that F= (8 + T + J 12 ) tK, 
where KC (Jab la,b = 3, ... ,n). By lemma 2.1 of Ref. 9 the 
algebra E, which is obtained from Fby replacing 8 + T + JI2 
by 8 + T + J 12 + Y I , is nonsplitting. 

Let reF) = (T), FI = w(F), and Ebe a subalgebra of 
A 

the algebra ASch(n) such that 1T(F) = F. If FI is not conju-
gated to a subalgebra of the algebra AO(n - 1), then" by 
Proposition 2.1 and Lemma 3.1 of Ref. 9 an algebra F is 
splitting. If FI is conjugated to a subalgebra of the algebra 
AO(n -1), thenF= (X) ffiF2, where X =1=0, and (X) and 
F2 are subalgebras of the algebra AO (n - 1) ffi (T). An al
gebra F26-(Pn X + Gn ) is nonsplitting. 

The case reF) = 0 is considered in Refs. 5 and 7. The 
theorem is proved. 

Proposition 4.2: A subalgebra F of the algebra 
AO (n) ffi ASL (2,R) possesses only splitable extensions in 
AScii (n) if and only if F is a semisimple algebra. 

The proof of Proposition 4.2 is similar to the proof of 
Theorem 4.1. 

Let r: X -Xbe the trivial representation of a subalgebra 
F of the algebra AO(n). Then r is O(n) equivalent to 
diag[rl,· .. ,r m], where ri is an irreducible subrepresenta
tion (i = 1, ... ,m). It is well known that if representations I::. 
and 1::.' of Lie algebra L by skew-symmetric matrices are 
equivalent over R, then CI::.(X)C- I = 1::.' (X) for some or
thogonal matrix C (XeL), hence we conclude that if r i and 
rj are equivalent representations, then we can assume that 
for every XeF the equality r i (X) = rj (X) takes place. 
Uniting equivalent nonzero irreducible subrepresentations 
we shall get nonzero disjunctive primary subrepresentations 
1::.1, ... ,l::.q ofthe representation r. An algebra 

Ki = {diag[O, .. ·,l::.i (X), ... ,O] IXeF} (1..;;i..;;q) 

is called a primary part of the algebra F. Evidently F is a 
subdirect sum of its primary parts. 

We shall say that the splitti~ubalgebra E of the alge
bra ASch ( n) or of the algebra ASCIi (n) has a splitting factor 
algebra in the case 1T(F> = FI ffiF2, where FI CAO(n), 
F2 C ASL (2,R 1- If this conditio~ does not hold, then the fac
tor algebra 1T(F) of an algebra Fis called nonsplitting. 

Theorem 4.2: Let K I,K2, ... ,Kq be primary parts of the 
nonzero subalgebra L ' ofthealgebraAO(n),L" beasubal
gebra of the algebra ASL( 2,R) differing from (8 + T), and 
L be a subdirect sum of L' and L ". If U is a subspace of 
§R [ l,n], being invariant under L, then U = VI ffi ..• ffi Uq 
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ffi U, where Ui = [Ki'U] = [~i>U;]; [L ",Uil C Uii 
[Kj,U;] = 0 in the case j=/=i; [K;.U] = 0, [L",u] C U 
(i,j = 1, ... ,q). 

Proof: If L " = ASL (2,R), then L " C L. Therefore from 
[L, U] C U it follows that [L ", U] C U. Since §R [a] is invar
iant under ASL(2,R) for any a, 1 ";;a";;n, then each subspace 
Ui = [Ki' U] is invariant under this algebra. Let U be a 
maximal subspace of the space U annulled by L', 
U' = [L ',U]. Since L' is a completely reducible algebra, 
U= U'ffi Uand[L',U'] = U'.ApplyingLemma3.10fRef. 
9 we conclude that U' = UI ffi'" ffi Uq, where Ui = [Ki'U] 
= [Ki'U;] (i = 1, ... ,q). 

LetL " = (T,D ). Since (T,D ) is a non-Abelian solvable 
algebra and every subalgebra of the algebra AO (n) is reduc
tive, then applying the Goursat twist method II we obtain 
that TeL. Therefore it is enough to consider the case 
L" = (D). By Lemma 4.2 of Ref. 9, [D,U] C U, it follows 
that [D,u;] CUi' [D,U]CU(i= 1, ... ,q). 

The case L " = (T) is considered in Refs. 5 and 7. The 
theorem is proved. 

Because of Theorem 4.2, the study of splitting subalge-
" " bras Fofthe algebra ASch(n), for which r(FJ... =1= (8 + T), is 

reduced to the study of splitting subalgebras K 0tthe algebra 
ASch(n) having the splitting factor algebra 1T(K) and zero 
or primary projection onto AO(n). Such subalgebras have 
been described in Ref. 13. 

Proposition 4.3: Nonzero subspaces of the space §R [ l,n ] 
invariant under (8 + T) are exhausted with respect to 0 (n) 
conjugation by the following spaces: §R[ I,d] (d = 1, ... ,n); 
Uq(q = 1, ... ,[n/2]), Urn + §R[2m + l,t] (m = I, ... , 
[(n - 1)/2]; t = 2m + l, ... ,n), where Uq is a subdirect sum 
of V[ 1,2q] and W[ 1,2q] having zero intersections with 
these spaces. If 

is a basis of Uq, then with respect to O(2q) conjugation 
a matrix (ak) (k,j = 1, ... ,2q) coincides with 
diag[r(AI), ... ,r(Aq )], where o <AI";; ... ,,;;Aq ..;;1 and 

The numbers A 1, ... ,Aq are defined by the space Uq uniquely. 
Proposition 4.3 is proved along with Proposition 2.4 and 

Theorem 3.4 in Ref. 13. 
Proposition 4.4: Let 

Ab(a) = (PI +AIPa+I"",Pb +AbPa+ b), 

whereO<A I ";;" ''';;A b , b..;;a, a + b..;;n. A subalgebraEofthe 
algebra ASch(n) such that w(n = 0, Der(n, is Sch(n) 
conjugated to L6-U, where LCASL(2,R) and Uis a sub
space of the space §R[ I,n]. Let U =1=0. If L = ASL(2,R), 
then Uis conjugated to §R[1,d] (1..;;d";;n). If L = (D,T), 
then U is conjugated to one of the following spaces: W[ I,d], 
§R[I,d], (1..;;d";;n); V[I,d] + W[I,t] (1..;;d..;;n -1, 
d + I ..;;t..;;n). If L = (D), then U is conjugated to one of the 
following spaces: 
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W[l,d], Wi[l,d] (1.;;;d.;;;n); V[1,d]+W[d+1,d+t] (1.;;;d<[n/2]; d<t<n-d); 

V[l,d] + W[ 1,e] + Wid + I,d + t] 
(l.;;;d.;;;n - 1; l.;;;e.;;;d; d - e.;;;t.;;;n - d, if e=/=d; l.;;;t.;;;n - d, if e = d); 

V[I,d] + Ad(d) (1.;;;d [n/2]); 

V[I,d] +At(d) + W[t+ I,d] (2.;;;d';;;n-l; l.;;;t.;;;min{d-1,n-d}); 

V [I,d] + At (d) + W [d + t + I,d + t + s] 

(1.;;;d.;;;[n/2]; l.;;;t.;;;min{d,n-d-l}; I.;;;s.;;;n-d-t; s+f;,d); 

V[I,d] +At(d) + W[t+ I,b] + W[d+t+ I,d+t+s] 

(2.;;;d.;;;n - 2; l.;;;t.;;;min{d - I,n - d -1}; t + l.;;;b.;;;d; I.;;;s.;;;n - d - t; b + s>d). 

The proof of Proposition 4.4 is similar to the proof of 
Theorem 3.3.13 

Using Theorem 4.2 to investigte splitting subalgebras 
with nonsplitting factor algebra, it is enough to consider the 

al~bra~ FCASch(n) lor which r(F> = (S + T) and 
r(F) ct:F. In this case1T(F) = F' EB (X), whereF' is asubal
gebra of AD(n) and X = S + T + a l J 12 + ... + 
a kJ2k _ I 2k' We may suppose that 0 < a l .;;;· •• ';;;ak' Hence
forth we ~hall discuss subspaces of the space Wi [l,n] that are 
invariant under X. 

Lemma 4.3: Let l.;;;a,b.;;;k. Then,\la ~,\lb if and only if 
aa = a b or aa + ab = 2; 9la ~9lb if and only if aa = a b; 
,\la ~9lb if and only if aa = 2 + ab (a=/=b). Modules,\la and 
9la are not isomorphic. 

Proof: The matrices AJ, pJ are similar if and only if 
A 2 = Jl2. It follows that ,\la ~,\lb if and only if 
(aa - 1)2 = (a b - 1 )2. In the case aa - ab =/=0, 

aa + a b = 2. 
If 9la ~~b' then (aa + 1)2 = (a b + 1)2, whence 

2(aa - a b) = - (aa - a b )(aa + ab)' In the case 
aa - a b =/=0, 2 = - (aa + a b). But this contradicts the 
fact that aa' a b > O. 

Let ,\la ~9lb' Then (aa - 1)2 = (ab + 1 )2, whence 
2(aa + a b) = (aa - ab)(aa + a b ). Thus if a=/=b, then 
aa - a b = 2. The lemma is proved. 

Let us remark that if aa =/= 1, then the (X) modules ,\la 
and 9la are irreducible, and any (X) submodule of the mod
ule Wi [ l,n] is completely reducible. 

Proposition 4.5: Let 
S 

X=S+ T+ L /3;J(ki _ 1 + 1,ki ), 
;=1 

where s>2, ko = 0, /3i > 0, /3; =/= 1, /3; =/=/3j if i=/=j. There exists 
an indecomposable (X) submodule with nonzero 
projections onto Wi [ 1 ,2k d, Wi [2k I + 1, 2k2] , ... , 
Wi [2ks _ I + 1, 2ks] of the (X) module Wi P,2ks] if and 
only if s = 2 and one of the following conditions is satisfied: 
(i) /31 = 2 + /32; (ii) /32 = 2 + /31; (iii) /31 + /32 = 2. If Uis 
a demanded indecomposable (X) module and U; is the pro
jection of U onto Wi[2k;_1 + 1, 2k;] (i = 1,2), then in case 
(i) UI is a module of the first kind and U2 is a module of the 
second kind; in the case (ii) UI is a module of the second 
kind and U2 is a module ofthe first kind; and in case (iii) UI 

and U2 are modules of the first kind. 
Proof: By Lemma 3.1 of Ref. 9, in the (X) module 

Wi [1,2k s ] there exists an indecomposable submodule de-
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manded if and only if the (X) modules Wi [ 1 ,2k d, 
Wi[2k l + 1, 2k2], ... ,Wi[2ks_ 1 + 1,2ks] have isomorphic 
composition factors. If ,\lk ~,\lk' and ,\lk ~,\lk' then by 

I J J" 

Lemma 4.3 /3; + /3j = 2 and /3j + p, = 2. From this it fol-
lows that /3; = /3" and that is why i = r. If,\lk ~~k and 

, 1 

9lkj ~9lk" then /3; = 2 + Pj and /3, = 2 + Pj , whence i = r. 
Thus s.;;;2 and one of the following conditions is satisfied: ( 1 ) 
PI = 2 + P2; (2) P2 = 2 + PI; ( 3) 0 < PI < 2, P2 = 2 - PI' 
Statements about the kinds of projections follow from 
Lemma 4.3. The proposition is proved. 

Proposition 4.6: Let X = S + T + {3J(1,k) (/3> 0). In 
the (X ) module Wi [ I,n] there exists an indecomposable (X) 
submodule with nonzero projections onto Wi [ I ,2k] and 
Wi [2k + I,n] if and only if /3 = 2. If U is such a submodule 
and UI is the projection U onto Wi [ I ,2k], then UI is a mod
ule of the first kind. 

v. ABELIAN SUBALGEBRAS OF THE EXTENDED 
SCHRODINGER ALGEBRA 

The main results of this section are Theorem 5.1 and its 
two corollaries. 

Let us use the following notation: 

X t = a lJ 12 + az/34 + ... + a,J2,_ 1,2" 

where a l = 1,0 <a2 .;;;" ·';;;a t .;;;1 if 1>2; 

AH(O) =0, 

AH(2d) = AH(2d + 1) = (J12,J34, ... ,J2d-I,2d); 

ao[r.t] = (G, + a,P, ..... Gt + a,P,), 

a[r.t] = ao[r.t] + (M), 

where r.;;;t, a,';;;' .. ';;;a" a, = 0, and at = 1 if a, =/=0; 

[l(a,b) = (Y2a-I' Y2a+ I , ... ,Y2b - l ) (a.;;;b). 

We recall that Y2c - 1 =G2c _ 1 +P2c and Y2c 

= G1c - P2c-I' 

The algebra AH (n) is a maximal Abelian subalgebra of 
the algebra AD (n). It is well known that any maximal Abe
lian subalgebra of the algebra AD(n) is conjugated AH(n) 
with respect to inner automorphisms ofthe algebra AD( n). 
Henceforth when speaking about Abelian subalgebras of the 
algebra AD(n) we shall mean subalgebras of the algebra 
AH(n). 

Lemma 5.1: Let L be an Abelian subalgebra of the alge
bra (J(a,b) + S + T)Et-9R[2a - 1,2b] such that its projec
tion onto (J(a,b) + S + T) is nonzero and its projection 
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onto (M) is equal to O. Then L is conjugated to one of the 
following algebras: 

(J(a,b) + S + T + aY2b _ l ) (a;;'O); 

ll(a,e) Ell (J(a,b) + S + T + aY2b _ l ) (a;;.O, e<;.b). 

The written algebras are pairwise nonconjugated. 
Proof: The maximal subspace of the space 

!Ul[2a-l,2b] anulled by (J(a,b) +S+ T) and having 
zero projection onto (M) coincides with 

b 

L ~c' 
C=Q 

Let U = L n!.In [2a - 1 ,2b ]. By the same arguments as in the 
proof of Proposition 4.1 we can establish that if U =1= 0, then U 
contains Y2a - l . As [Y2a - 1 ,Y2a ] = - 2M, so U 
= (Y2a _ I ) + U I, where U I is a subspace of the space 

b 

L ~c' 
c=a+1 

Continuing these arguments we obtain that U = ll(a,e) 
(e<;.b) and L contains J(a,b) + S + T + aY2b _ 1 (a;;'O). 
The lemma is proved. 

Tbeorem~.l: Let L be a nonzero Abelian subalgebra of 
the algebra ASCIi (n). If r( L) = (D), then L is conjugated to 
the subdirect sum LI +L2+L3 of algebras L I , L 2, L 3, where 
L I CAH(2d), L 2='(D): L 3C(M) (O<;.d<;.[n12]. If 
r(L) = (T), then L is conjugated to L I +L2+L3+L4, 
where L I CAH(2d), L 2=(T+aG2d + l ) (~E{O:I}), 
L3 = Oor L3 = W[r,t],L4C (M) (O<;.d<;. [nI2]; r = 2d + 1 
if a=O, 2d+ l<;.n; r=2d+2 if a= 1, 2d+2<;.n). If 
r(L) = (S + T), then L is conjugated toLl +L2+L3+L4, . . . 
whereL I C (M),L2CAH(2d) (O<;.d<;. [nI2] ),and thealge-
bras L3 and L4 satisfy one of the following conditions: 

(1) L3 = (S + T), L4 = 0; 

(2) L3 = (J(d + 1,t) + S + T + aY2t _ I ), 

L4 = 0 (a>O); 

(3) L3 = (J(d + 1,t) + S + T + aY2t _ I ), 

L4 = ll(d + 1,s) (s<;.t; a;;'O). 

If LCAGo(n), then L is conjugated to LI 
tL2-tL3tL4' where LI CAH(2d), L2 = 0 or 
L2 = Ao[2d + 1,s], L3 = 0 or L3 = W[k,l], L4 = 0 or 
L4 = (M) (O<;.d<;. [nI2]; k = s + 1 if L 2=1=O; k = 2d + 1 if 
L2 = 0; l<;.n). 

PrOOF If r(L) = (D), then by Theorem 4.1 the algebra 
L is conjugated to the algebra U + F, where Uc!.In [ 1,n] and 
FCAH(n) Ell (D,M). Since D annuls only (M) in !.In [ 1,n] 
and by Theorem 4.2 [D,U] C U, then UC (M). Thus Lis 
conjugated to some subalgebra of the algebra 
AH(2d) Ell (D,M) (O<;.d<;.[n12]). 

If r(L) = (T), then by Theorem 4.1 the algebra L is 
conjugated to the algebra U + Fsatisfying one of the follow
ing conditions: U C!.In [ 1,n] and F is a subalgebra of 
AH(n) + (M,T); or UC !.In [ 1,2d] and Fis a subalgebra of 
AH(2d) + !.In[2d + 1,n] + (T) (d;;.l). Let us consider the 
last case. Let us suppose that the projection K of the algebra 
F onto AO(n) is not conjugated to any subalgebra of the 
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algebra AH (2d - 2). Since K annuls only the zero subspace 
of VI 1,2d], then UC (M). Therefore we shall assume that 
U = O.As [T,Ga ] = - Pa ,sobyWitt'smappingtheoremI4 

e(F) = 0, or e(F) = (G2d + I)' Since 

exp(On(T+ aG2d + I +PP2d + dexp( - On 
= T + aG2d + I + (P - Oa)P2d+ I 

and 

exp(AD)(T+aGu+l)exp( -AD) 

= exp( - U)(T + a exp(3A) 'G2d + I)' 

then if e(F) =1=0, the projection ofFonto (T)Et!.In[2d + 1,n] 
contains T + Gu + I' In this case, by Witt's theorem S(F) 
coincides with 0 or W[2d + 2,t]. Ife(F) = 0, thenS(F) = 0 
or S(F) = W[2d + 1,t]. 

Let r(L) = (S + T). If S + TEL, then e(L) = 0 and 
S(L) = O. If S + TrU., then an algebra L contains 

[nI2] n 

Y = S + T + L aaJ2a - 1,2a + L (P; G; + r;P;) + {jM. 
a= I ;= I 

We shall suppose that projections of the at rest basis ele
ments of the algebra L onto (S + T) are equal to zero, and 
aa;;'O for all a. If ac =1= 1, then (S + T + aJ2c _ 1,2c) is a 
completely reducible algebra oflinear transformations of the 
vector space !in[2e - 1,2e] and annuls only the zero sub
space of this space, whence by Proposition 2.1 of Ref. 9 we 
conclude that the projection of L onto !in [2c - 1 ,2e] is equal 
to zero. Therefore we may assume that 

21 

Y=J(d + 1,t) + S+ T+ L (P;G; + riP;). 
;= 2d+ I 

From Proposition 2.1 of Ref. 9 it also follows that 

21 1 

L (P;G; + r;P;)E L ~j' 
;=2d+1 j=d+1 

Applying Theorem 4.1 and Lemma 5.1 we conclude that, 
with respect to the conjugation w(L) CAH(2d) 
+J(d+ 1,t», 

Y=J(d+ l,t) +S+ T+aY2t _ I , 

and Ln!in[ 1,n] = 0 or Ln!in[ l,n] = ll(d + 1,s) (a;;'O; 
s<;.t). 

Let us assume that L C AGO (n ). By Theorem 2 of Ref. 7 
the algebra L is conjugated to an algebra U + F, which satis
fies one of the following conditions: UC!.In[ 1,n] and Fis a 
subalgebra of AH(n) + (M); or UC !.In [ 1,2d] and F is a 
subalgebraof AH(2d) + !.In[2d + 1,n] (1<;.d<;.[n - 1/2]). 
Let us restrict ourselves to the last case. Let the projection K 
of the algebra F onto AO( n) be not conjugated to any subal
gebra of the algebra AH(2d - 2). Since K annuls only the 
zero subspace of the space !in [ 1,2d], UC (M). Therefore we 
suppose that U = O. 

Let N be the projection of F onto !.In[2d + 1,n] and 
e(N) = V[2d + 1, 2d + q]. By Witt's mapping theorem l4 

the algebra N is a subdirect sum of the algebras N I , N2, N3, 
where N I c!in[2d+ 1, 2d+q] (as a space), N2 =0 or 
N2 = W[2d + q + 1,t], and N3C (M). Let 
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Zj =Gj + {32d+ l.jP2d + I + ... +{32d+q.jP2d + q (i= (2d+ 1), ... ,(2d+q»), 

NI = (Z2d+ I ,,,,,Z2d+ q). Evidently [Zj,Zj] = ({3ij - {3ji )M. Since NI is an Abelian algebra, {3ij = {3jj. Hence it follows that 
the matrix B = ({3 ij) is symmetric. Therefore there exists a matrix QEO(q) such that QBQ -1= diag[AI, ... ,Aq]. From this it 
follows that with respect to automorphisms from the group O(2d) XO(q) xO(n - 2d - q) we may assume that 
Z2d+j = G2d + j + AjP2d + j (j = 1, ... ,q), where A. I < ... <Aq. Applying the automorphism exp(Aln we obtain the generators 
G2d + j + f-tj P2d +j (j = 1, ... ,q), wheref-tl = 0, 0<f-t2<'" <f-tq. If f-tq > 0, thenf-tq = exp( - 20). Obviously 

exp(OD) (G2d + j + f-tj P2d +)exp( - OD) = exp O(G2d +j + f-tj exp( - 20)P2d +j ). 

Therefore if f-tq > 0, we may suppose that f-tq = 1. This proves that the algebra NI is conjugated to Llo [2d + 1,2d + q]. The 
theorem is proved. --- ---Corollary 1: The maximal Abelian subalgebras of the algebra ASch (n) are exhausted with respect to the Sch (n) conjuga-
tion by the following algebras: 

AH(n) ffi (T,M) (n=O(mod 2»); AH(n) ffi (S + T,M); 

AH(n) ffi (D,M); AH(n - 1) ffi (Gn + T,M) (n= 1 (mod 2»); 

AH(2d) ffi Ll[2d + l,n] (d = 0,1, ... , [(n - 1 )/2]); 

AH(2d) ffi Ll[2d + l,t] ffi Wet + l,n] (d = 0,1, ... ,[ (n - 2)12]; t = 2d + 1, ... ,n - 1); 

AH(2d) ffi (T,M) ffi W[2d + l,n] (d = 0,1, ... ,[ (n - 1)/2]); 

AH(2d) ffi (G2d + I + T) ffi W[2d + 2,n] ffi (M) (d = 0,1, ... ,[ (n - 2)/2]); 

AH(2d) ffi (J(d + l,r) + S + T) ffi (M) ffi TI(d + l,r) (d = 0,1, ... ,[ (n - 2)/2]; r = d + 1, ... ,[nI2]). 

Corollary 2: Let a, {3eR, a > 0, {3 > 0; t = 1, ... , [nI2]; s = 1, ... , [ (n - 1) /2 ]; n;;;. 3. One-dimensional subalgebras of the 
algebra ASch(n) are exhausted with respect to the Scli(n) conjugation by the following algebras: 

(D); (T); (S+ T); (M); (D+aM); (T±M); 

(S+ T±aM); (PI); (GI +P2); (G I + T); (X,); (X, +aD); 

(X, +aD+{3M); (X, + T); (X, + T±aM); (X, +a(S+ n); (X, +aM); 

(X,+a(S+n±{3M); .(Xs +P2s + I ); (Xr + G2r + 1 +aP2r + 2) (r=I, ... ,[(n-2)/2J); 

(Xs + T+aG2s+ 1); (X, +S+ T+a(GI +P2». 
Remark: One-dimensional subalgebras of the algebra ASch (n) are exhausted with respect to the Sch (n) conjugation by 

one-dimensional subalgebras of the algebra .ASCii (n) whose generators do not contain AM as an addend (A. i= 0). 
Theorem 5.2: Let L be a nonzero Abelian subalgebra of the algebra ASch(n). If 1'(L) = (D), then L is conjugated to a 

subdirect sum of (D) and the subalgebra of the algebra AH(2d) (O<d< [n12]). If 1'(L) = (T), then L is conjugated to 
LI +L2-tL3' where LI CAH(2d), L2 = (T + aG2d + I), and L3 is one of the following algebras: 

0; W[2d + 2,t J; (P2d+ I + APzd + 2) + yW [2d + 2J + 8W[2d + 3,t J (O<d< [nI2]; t<n;a,y,8E{0,1}; A<O). 

If1'(L) = (S + T), then L is conjugated toLI-tL2-tL3' whereL I CAH(2d) (O<d< [n12]) and the algebrasL2, L3 satisfy 
one of the following conditions: (1) L2 = (S + T) andL3 = 0; or (2) L2 = (J(d + 1,t) + S + T + aY2t_ I) (a;;;'O) andL3 is 
a subalgebra of the algebra 

I 

L 2a· 
a=d+1 

If LCAGo(n), then L is conjugated to LI-tL2' where LI CAH(2d) and L 2 C§Jl[2d + l,n] (O<d< [n/2]). 
The theorem is proved along the same lines as Theorem 5.1. 
Corollary: The maximal Abelian subalgebras of the algebra ASch (n) are exhausted with respect to the Sch (n) conjugat-

tion by the following algebras: 

AH(n) ffi (D); AH(n) al (S + T); AH(n) al (T) [n=O(mod 2)]; 

AH(2d) ffi (T) ffi W[2d + l,n] (d = 0,1, ... ,[ (n - 1)/2]); 

AH(2d) ffi §Jl[2d + l,n] (d = 0,1, ... , [(n - 1 )/2]); 

AH(2d)al(G2d + 1 + T) + W[2d+ l,n] (d=0,1, ... [(n-l}/2]); 
r 

AH(2d)ffi(J(d+l,r)+S+T)ffi L 2a (d=0,1, ... [(n-2)/2]; r=d+l, ... ,[nI2]). 
a=d+1 

..-
VI. CLASSIFICATION OF SUBALGEBRAS OF THE ALGEBRAS ASch(3) AND ASch(3) 

In ~s section we make use of the previous results to provide a classification of all subalgebras of the algebras ASch (3 ) 
and ASch(3). 
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Let AG(3) = (AO{3) e (T»)&!ln[1,3] and AG(3) = AG(3)/(M). Subalgebras of the algebras AG(3) and AG(3) 
were classified up to conjugacy under G(3) and G(3), respectively, in Ref. 5. Further simplification of these subalgebras is 
being realized by SL{2,R) automorphisms. 

Theorem 6.1: Let a,/3,y,).,p,eR, and a> 0, P> 0, Y7~0. The splitting subalgebras of the algebra AG(3) are exhausted 
with respect to Sch(3) conjugation by the splitting subalgebras of the algebra AG(2) (see Ref. 2) and by the following 
algebras [the subalgebras preceded by the sign - are subalgebras of ASch ( 3 ) ] : 

- (G, + P2,P3 ); (G, + P2,P, + aP3 ); - (G, + yP, + P3,G2 + aP3 ); 

(G, +A.P, +P3 ,G2 +yP, +aP3 ); (G, +A.P, +P3,G2 +aP,); 

(G, + P2 + aP3,G2 - P, + PP2 + A.P3 ); 

(G, + P2 + aP3,G2 - PI); (G, + P2,G2 - P, + aP2 + PP3 ); 

- (P"P2,P3 ); - (G"P2,P3 ); (G, + P2,P"P3 ); 

(G"P, + aP2,P3 ); (G, + P3,G2 + aP3,P,); (G, + P3,G2,P,); (G"G2 + P3,P,); 

(G, + A.P"G2 + P"P3 ); - (G, + yP"G2,P3 ); (G, + A.P"G2 + P"P, + aP3 ); 

(G, +A.P"G2,P, + aP3 ); (G, + P2 + aP3,G2 +A.P3 ,P,); (G, + P2,G2 + aP3 ,P,); 

(G, + P2,G2 - P"P3 ); (G, + P2,G2 - P, + aP2,P3 ); (G, + P2 + A.P3 ,G2 + Jt P3 ,P, + aP3 ); 

(G, - P2 + aP3,G2 + P, + PP2 + A.P3,G3 + aP, + A.P2 + Jt P3 ) (Jt - a 2p #0); 

(G, - P2,G2 + P, + PP2 + aP3,G3 + aP2 + yP3 ); 

(G, - P2 + aP3 ,G2 + P"G3 + aP, + yP3 ); (GV PV P2,P3 ); (G"G2,P"P3 ); 

(G, + P2,G2,P"P3 ); (GV G2, + P3,P, + aP3 ,P2); (G"G2, + P3,P"P2); 

(G"G2,P, + aP3,P2); (G, + P2,G2 - P, + aP2,G3 +PP, +A.P2,P3 ); 

(G, + P2,G2 - P, + aP2,G3 + PP2,P3 ); (G, + P2,G2 - P, + aP2,G3,P3 ); 

(G"G2 + P2,G3 + aPt + PP2,P3 ); (G, + P2,G2 - P"G3 + aP"P3 ); 

(G, + P2,G2 - P"G3,P3); (G"G2,P"P2,P3); 

(GI,G2 + P"G3,P2,P3); (G"G2,G3,P"P2,P3); 

(T): - W[I,3], (G, + P2,P"P3), (G"P"P2,P3), (G, + P3,G2,P"P2), 

IDi[I,2] + W{3], Wl[I,3]; 

(J'2): - W[3], IDi[3], - W[I,3], - W[I,2] + V[3], 2, + W[3], 

V[3] + W[I,3], 21 +IDi[3], IDi[I,2] + W[3], IDi[I,3]; 

(J'2 + T): - W[3], IDi[3], - W[ 1,3], V[3] + W[ 1,3], IDi[ 1,2] + W[3], !In[ 1,3]; 

(J'2,T): -W[3], IDi[3], -W[I,3], V[3] + W[1,3], IDi[I,2] + W[3], IDi[I,3]; 

AO(3): -0, - W[I,3], IDi[I,3]; AO(3) e (T): -0, - W[I,3], IDi[I,3]. 

Theorem 6.2: The nonsplitting subalgebras of the algebra AG{ 3 ) are exhausted with respect to Sch (3) conjugation by the 
nonsplitting subalgebras of the algebra AG(2)2 and by the following algebras: 
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(T+G,): -W[2,3], (P,+aP2,P3 ), (G2+aP3,P2), (G2+aP,+pp3,P2); 

W[1,3]; (G2,P2,P3), (G2 + aP"P2,P3), IDi[2] + (P, + aP3 ), 

(G2 + aP3,P, + PP3,P2 ), (G2 + aP3,P"P2), V[2] + W[ 1,3], IDi[2,3], 

(G2+aPI,G3,P2,P3)' IDi[2,3] + W[I] (a>O, P>O); 

(J'2 + G3): -0, W[3], - W[I,2], - V[I,2], W[I,3], V[I,2] + W[3], IDi[I,2], IDi[I,2] + W[3]; 

(J12+T+aG3): -0, W[3], -W[I,2], W[I,3], IDi[I,2], IDi[I,2]+W[3]; 

(J12+aG3): 2" 2,+W[3] (a>O); 

(JI2,T+ G3): -0, W[3], - W[I,2], W[I,3], IDi[I,2], IDi[I,2] + W[3]; 

(J12 + aG3,T+ G3): W[3], W[I,3], IDi[I,2] + W[3] (a>O); 

(J12 + G3,T): W[3], W[I,3], m[I,2] + W[3]; 

(J'2 + P3,T): -0, - W[ 1,2], IDi[ 1,2]; 

(J12+aP3,T+G3 ): 0, W[I,2], IDi[I,2]. 

The written algebras are not mutually conjugated. 
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- ---Theorem 6.3: The subalgebras ofthe algebra AG (3) are exhausted with respect to Sch (3) conjugation by the subalgebras 
of the algebra AG (2) (see Ref. 2), by the algebras preceded by the sign - in Theorems 6.1 and 6.2, by algebras obtained from 
algebras written in Theorems 6.1 and 6.2 by adding the generator M, and by the fonowing algebras: 

(T ±M,PI ,P2,P3 ); 

(J12+aM): W[3], W[I,3], W[I,2] + V[3] (a>O); 

(JIZ + T± aM): W[3], W[I,3] (a>O); 

(I)Z + aM,T): W[3], W[ 1,3] (a>O); 

(J12 +aM,T±M): W[3], W[t,3]; 

(J12+aM,T+G3): 0, W[I,2] (a>O); 

(J12+aP3 +PM,T±M): 0, W[1,2] (a>O, P>O); 

(1Iz+aP3,T±M): 0, W[I,2) (a>O); 

(J1z +P3 +aM,T): 0, Wfl.21 (a>O); 

AO(3)$(T±M): 0, W[I,3]. 

The written algebras are not mutually conjugated. 
Theorem 6.4: Let aeR, a> O. The subalgebras of the algebra ASch (3) which are nonconjugated to subalgebras of the 

algebras AG (3) and ASch (2) are exhausted with respect to Sch (3) conjugation by the following algebras: 

(D): -W[I,3]. -(GI,P2,P]). (GI,PI +aP2'PJ)' (GI,G2,PI +aP3 ,PZ)' 

(GI ,G2,PI ,P3 ), V[l] + W[I,3], Wi[I,2] + W[3], Wi[I,3]; 

(S + T,GI - A - IP2,G2 + API ,G3,P3 ) (0<..1<;;1); (S + T)El-Wi[ 1,3]; 

(IJZ + aD): - W[3], Wi[3], - W[ 1,3], W[ 1,2] + V[3], 

W[1,21 + ftii[31, W'l[I,21 + W[3], ftii[1,31; 

(S+T+al12 ): Wi[3], 21+Wi[3], 9l 1 +Wi[3], Wi[I,3]; 

(S + T + 21lz,GI + P2 + aP3,G2 - PI - aG3 ); 

(S + T + J12): (GJ + P2) + Wi[3], (G I + P2) + 91 1 + Wi[3]; 

(D,T): -Wrl,3), V[I,j]+W[1,3J (j=1.2,3); 

'(J12 + aD,T): - W[3], Wi[3], - W[ 1,3], W[ 1,2] + Wi[3], m[ 1,2] + W[3], Wi[ 1,3]; 

(J I2 ,D): -W[3], Wi[3], -W[1,3], -W[I,2] + V[3], W[I,2] +Wi[3], 

Wi[I,2] + W[3], m[I,3]; (JIZ,S+ T): m[3], 21 +m[3], m[I,3]; 

(Jlz.D,T): - W[3], m[3], - W[ 1,3], W[ 1.2J + m[3], 

9R[ i,2J + W(3], m[l,3]; ASL(2,R)El-9R[ 1,31; 

(ld $ASL(2,R): m[3], m[I,3]; AO(3) $ (D): -0, - W[I,3], m[I,3]; 

AO(3)$(S+T): -0, m[I,3); AO(3)$(D,T): -0, -W[I,3], m[I,3); 

AO(3) $ASL(2,R): -0, m[I,3]; 

(S + T +Ju + a(G, + P2 ): §ill3}, (G2 - PI) + W?[31, 91 1 + §JlP1, 
(G2 - PI) + 91 1 + Wi[3]. 

The written algebras are not mutually conjugated. ..-
Theorem 6.5: Let u,p,yeR, and a> 0, P #0. The subalgebras of the algebra ASch(3) are exhausted with respect to 

&b(3) conjugation by subalgebras ofthe algebra AG(3), by subalgebras of the algebra AScli(2) (see Ref. 2), by algebras 
preceded by the sign - in Theorem 6.4, by algebras obtained from algebras written in Theorem 6.4 by adding the generator M, 
and by the following algebras: 

(D+PM): W[I,3], V[I] + W[2,3); 

(J12+uD+PM): W[3], W[I,3], 

W[l,2] + V[31; 

(S + T + 2112 + pM,Gl + P2 + Y'lP3,G2 - PI - v'2G3 ); 

(D + PM,T)El-W[ 1,3]; 

(J12+aM,D): W[3], W[I,3], WIl,2] + V[3]; 
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I 
(J12 + aM,D +PM): W[3], W[I,3], 

W[ 1,2) + V[ 3 ]; 

(JI21D+PM); W(3}, W[!,3J, W[I.2] + V[3j; 

(J12+aD+pM,T): W[3], W[I,3]; 

(JI2 +aM,D+yM,T): W[3], W[I,3]; 

(112,D+PM,T): W(3), W[I,3]; 

L F. Barannik and W.l. Fushchich 289 



                                                                                                                                    

AO(3) fl) (D+13M): 0, W[1,3]; 

AO(3) fl) (S + T + 13M); AO(3) fl) (D + /3M,T): 

0, W[1,3]. 

The written algebras are not mutually conjugated. 

VII. CONCLUSIONS 

The results of the present paper may be summarized in 
the following way. 

( 1 ) The completely reducible subalgebras of the algebra 
AO(n) fl) ASL(2,R) have been identified (Theorem 3.1). 

(2) The subalgebras of AO (n) fl) ASL (2,R) which pos
sess only splitting extensions in the algebra ASch(n) have 
been described (Theorem 4.1 ). 

(3) We have established thatthe description of the split
ting suba1gebras ofthe algebra ASch(n) whose projections 
onto ASL(2,R) are not equal to (S + T) is reduced to the 
description of the splitting subalgebras of ASch(n) whose 
projections onto AO (n) are equal to zero or to primary alge
bras (Theorem 4.2). 

( 4) The maximal Abelian subalgebras and the one-di
mensional subalgebras of the algebras ASch (n) and 
ASch(n) have been explicitly found (the corollaries to 
Theorems 5.1 and 5.2). 

(5) The classification of the subalgebras of ASch (3 ) ..-
and ASch (3) with respect to Sch (3) conjugation and ---Sch( 3) conjugation, respectively, has been carried out 
(Theorems 6.1-6.5). This classification gives the possibility 
to construct the wide classes of exact solutions of the nonlin
ear, Schr6dinger-type equations in Refs. 15-18, 

i a'I' _ a'l' + A I'l'l 4/3'1' = 0 
at ' 
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i a'I' _ a'l' +..1. a('I'*'I') a('I'*'I') ('1'*'1')-2.'1' = 0, 
at aXa aXa 

which are invariant under Sch (3). 
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Baker-Campbell-Hausdorff relations are presented for the connected supergroup associated 
with the orthosymplectic algebra osp ( 1/2). 

I. INTRODUCTION 

In physical applications, the coordinate scheme in 
which Lie-group elements are most conveniently defined is 
often one in which practical calculations are awkward. Ba
ker-Campbell-Hausdorff (BCH) formulas I are analytical 
expressions relating different coordinate schemes. These re
lations play an important role in physics, for example, in the 
theories of coherent or squeezed states: They have been ex
tensively investigated and several techniques for their deri
vation are known.2

•
3 

Supergroups are generalizations of Lie groups genera
ted by elements of a superalgebra.4 Scant attention has been 
given to the theory of BCH relations for supergroups, al
though their existence has been noted since the early days of 
supersymmetry.5 In fact, the matrix methods frequently 
used2 in the derivation of BCH relations for Lie groups are 
not as straightforwardly applied to the supergroup case. De
spite the analogies between supergroups and Lie groups, 
novel features arise for supergroup BCH relations because 
the coordinates are Grassmann valued. For example, there 
are three natural choices of canonical coordinates for super
groups, of which only two have Lie-group counterparts. 6 

Given the increasingly important role played by supersym
metry in physics, the development of explicit BCH formulas 
for supergroups is well worthwhile. 

In the formulation discussed by Rogers,? supergroups 
are both abstract groups and superanalytic manifolds with 
composition mappings. Based on Ref. 7 and a theory of one
parameter subgroups of supergroups, 6 a framework has been 
established8 for the analysis of BCH relations for super
groups. The key formulas result from the solution of systems 
of simultaneous Grassman-valued ordinary differential 
equations derived by methods analogous to those of Ref. 3. 
Using these techniques, BCH relations among both canoni
cal and noncanonical coordinate schemes have been found 
for the connected supergroups associated with the three
generator quantum-mechanical superalgebra sqm (2), R the 
five-generator Inonii-Wigner contraction iosp ( 1/2) of the 
simple superalgebra osp( 112),8 and the 14-generator super
Poincare algebra iosp( 1/4 ).9 

For the three supergroups mentioned above, the solu
tion of the system of differential equations was relatively 
tractable. In part, this is because the simplified commutation 
relations of the contracted algebras result in a partial decou
pIing of the system of equations. In general, such simplifica-

tions do not occur. For example, for the connected super
group COSP( 1/2) associated with the simple superalgebra 
osp ( 1/2), the differential equations are more highly coupled 
and solving them is therefore considerably more subtle. 

In this paper, we obtain BCH relations for COSP ( 1/2). 
The simplest relations result from solving a set of five cou
pled nonlinear Grassmann-valued differential equations, 
which is possible by fully exploiting the properties of Grass
mann algebras. By a suiQible transformation, these equa
tions can be partially decoupled. Two of the reSUlting equa
tions have a form corresponding to the key equations of Ref. 
10; indeed, our solutions could be used to develop an explicit 
example for their approach. 

As yet, no other BCH relations are known for simple 
superalgebras. The case of osp( 112) is important because 
this superalgebra plays a role in many physical situations. 
For example, knowledge of its BCH relations would be use
ful in elucidating the nature of supercoherent states for the 
harmonic oscillator with spin-orbit coupling. II The tech
niques presented here should also be useful for other super
groups. 

II. THE BASIC BCH RELATION 

The superalgebra osp ( 1/2) has three even generators 
Xo, X +, and X_spanning su ( 1,1) and two odd generators 
Q+ and Q_. The graded commutation relations are 

[X+,x_] = -2Xo, [Xo,x±] = ±X±, 

{Q± ,Q±} =X ±' {Q+,Q_} =Xo, 

[X± ,Q± ] =0, [X ± ,Q:d = +Q±, 

[ Xo,Q ± ] = ±!Q ± . 

(2.la) 

(2.lb) 

(2.1c) 

In this section, we present the BCH relation between 
canonical coordinates of the first and third kinds in normal 
sequence. These coordinate schemes have the form6 

g. = exp(aXo + bX+ + cX_ +dQ+ +eQ_), (2.2) 

gill = exp(aXo)exp(pX+)exp(rX _) 

Xexp(I5Q+ )exp(EQ_). (2.3) 

In expressions (2.2) and (2.3), {a,b,c,a,{3,r}eOBL and 
{d,e,I5,E}e IBV where the even and odd parts of the Grass
mann algebra B L with L generators are denoted ° BLand 
IBV respectively. 

Following the method described in Ref. 8, we introduce 
a real parameter t and write 
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(2.4 ) 

wheregm is given by Eq. (2.3), but a, p, r, 8, and E are now 
functions of t. Next, we differentiate Eq. (2.4) with respect 
to t and collect coefficients multiplying each generator. In
dependence of the generators then yields a system of five 
nonlinear, first-order, BL -valued ordinary differential equa
tions. Taking into account the properties of Grassmann vari
ables, these may be rearranged to give 

eX = a + 2pc exp(a) + 8e expqa), (2.5a) 

p=bexp( -a) -p 2cexp(a) +!Mexp( -~a) 

- !P8e expqa), 

y = c exp(a) - ! r( r8 + E)d exp( - ~a) 

+ [r8(l-~Pr) + !(1-Pr)E]eexp(!a), 

8 = d exp( - !a) + pe expqa), 

E = (1 - Pr) (l - ! 8E)e expC!a) 

- r(l -! 8E)d exp( - !a). 

C2.5b) 

C2.5c) 

C2.5d) 

(2.5e) 

The solution of this system, subject to the boundary condi
tions 

a(O) = P(O) = reO) = 8(0) = E(O) = 0, (2.50 

yields the desired BCH relation when t = 1. 
We remark here that by making the substitutions 

a=a, p=pea, r=re-a, 

jj = 8e( I/Z)a, E = Ee - (I/Z)a, 
(2.6) 

we can transf~rm Eq,s. (2.5) to a system in which the pair of 
equations for P and 8 are decoupled from the others. These 
equations have a similar form to Eqs. ( 11 ) of Ref. 10. Explic
it examples for the approach of Ref. 10 may be found from 
the general solution that we present below. 

The key to solving Eqs. (2.5) is to expand the dependent 
variables as polynomials in the odd variables d and e. As 
d 2 = eZ = 0, the polynomials contain only two terms: 

A: = exp(a) = Ao(a,b,c;t) + AI (a,b,c;t)de 

= exp[ao(a,b,c;t)](l + a l (a,b,c;t)de), 
(2.7a) 

P = po(a,b,c;t) + PI (a,b,c;t)de, (2.7b) 

r = roCa,b,c;t) + rl (a,b,c;t)de, 

8 = 80 Ca,b,c;t)d + 8 1 (a,b,c;t)e, 

E = EoCa,b,c;t)d + EI (a,b,c;t)e. 

(2.7c) 

C2.7d) 

(2.7e) 

We remark that this useful method is likely to have applica
tions to other systems of Grassmann-valued equations. 

We can find Ao and Po in two steps. First, multiply Eq. 
(2.5a) by Apde and Eq. (2.5b) by Ade and add. Using Eqs. 
(2.7a) and (2.7b) and collecting coefficients of de yields 

~ (AoPo) = a(AoPo) + C(AoPO)2 + b, (2.8) 
dt 

which is a Riccati equation. 12 Its solution is3
•
9 

AoPo = (bIK)S-1 sinh(Kt), (2.9) 

where 
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K = o-t::., t::.2 = lla2 - bel, 

a = sign (!a 2 
- bc), 0- = JU, (2.10) 

and 

S = cosh(Kt) - (aI2K)sinh(Kt). (2.11 ) 

The second step is to multiply Eq. (2.5a) by Ade, yielding 

Ao- [a + 2c(AoPo)]Ao=0 (2.12) 

subject to the boundary condition Ao(O) = 1. Using Eq. 
(2.9), the solution is 

Ao(t) =S-2, a o = -2InS. (2.13) 

From Eq. (2.9) we find 

Po(t) = (b IK)S sinh(Kt). (2.14 ) 

The next variables we consider are 80 and 8 1, Writing 8 
as in Eq. (2.7d) and collecting coefficients results in the 
differential equations 

8 - A - 112 t, _ a A 1/2 o - 0 , U I - pon 0 , 

which have the solutions 

80 (t) = (lIKz)(8 + aI2), 

8 1(t) = (bIK2) [cosh(Kt) - 1] 

where 8 = dS Idt. 

(2.15 ) 

(2.16 ) 

Next, we solve for AI and PI' Substituting Eqs. (2.7a) 
and (2.7b) into Eqs. (2.5a) and (2.5b) and collecting coeffi
cients of de yields 

AI = (a + 4cAoPo)AI + (2eA ~ )PI + 80 A 612
, (2.17a) 

PI = - (2cAo Po)PI - (bA 0- 2 + ep~)A1 
- !(8aA ~/2po + 8 1A 0-1/2). (2.17b) 

It follows that the quantity X: = (Po A I + Ao PI) satis
fies an inhomogeneous linear first-order ordinary differen
tial equation: 

X = (a + 2cAoPo)X + !(8aA 612po - 8 1A ~/2), (2.18) 

with solution 

PoAI +AoPI = (bI2K 3 )S-2[sinh(Kt) -Kt]. (2.19) 

Solving for Ao PI and substituting into Eq. (2.17a) yields an 
inhomogeneous first-order equation for AI' with solution 

AI(t) = (lIK 2)S-2{S-I[1- (2bcla)tcosh(Kt)] 

- (2K 2Ia)t - 1}, (2.20) 

al(t) =S2A I(t)· 

The solution for PI follows from Eq. (2.19): 

PI (t) = - (b 12K2)t 

+ (b IK 3 )sinh(Kt)[S -! - t8]. (2.21 ) 

It remains to find rand E. Substitution ofEq. (2. 7c) into 
Eq. (2.5c) and collecting coefficients of unity in BL gives 
Yo = cAo, which has solution 

ro(t) = (cIK)S-1 sinh(Kt). (2.22) 

Equation (2. 5e) then yields two differential equations, 
Eo = - raA 0-

112 and EI = (1 - PoYo) A 0- 112, which may be 
solved to give 
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EO(t) = (c/K2)[cosh(Kt) - 1], 

EI (t) = (l/K){sinh(Kt) 

+ (a/2K) [cosh(Kt) -In. 

(2.23a) 

(2.23b) 

The one remaining unknown is YI (t). The differential equa
tion it satisfies is obtained as the de coefficient ofEq. (2.5c). 
After substitution for known dependent variables, a straight
forward but somewhat involved integration in t yields the 
desired result: 

YI(t) = mM
3 
(1- 2M2) __ I_ t [m2(1 +M4) _S-2] 

2bK 2bm 

- _1_S [2M cosh(Kt) + (1 + M 2)sinh(Kt)] 
2bK 

M2 
- - [sinh(Kt) + M cosh (Kt) ] 

bK 

- ~ [sinh(Kt) - M cosh(Kt)] 
2bK 

+_I_ S - I[M-2(1 +M2)sinh(Kt)]' (2.24) 
2bk 

whereM = a/2Kand m = (1 - M2)-1 = - K2/bc. 
To summarize, the BCH relation between canonical co

ordinates of the first and third kinds in normal sequence is 
given by Eq. (2.4), with t = 1. The quantities a,{3, y, 0, and 
E are expressed as functions of a, b, c, d, and e through Eqs. 
(2.7) and the solutions (2.13), (2.14), (2.16), and (2.20)
(2.24). 

III. OTHER RELATIONS 

From the basic BCH relation given in Sec. II, others 
may readily be found. Here, we sketch the derivation of sev
eral additional relations to illustrate the methods involved. 
Further examples of the methods may be found in Refs. 8 
and 9. 

First, consider a BCH formula involving canonical co
ordinates of the third kind in non-normal sequence: 

exp(aXo + bX+ + cX_ + dQ+ + eQ_) 

= exp({3'X+ )exp(o'Q+ )exp(yX_) 

Xexp(E'Q_ )exp(a'Xo)' (3.1) 

We believe expression (3.1) is important for the analysis of 
supercoherent states. In view of the results in Sec. II, it is 
sufficient to convert canonical coordinates of the third kind 
in normal sequence, Eq. (2.3), to the form of the right-hand 
side of Eq. (3.1). This is done by inserting the identity I 
= exp(oQ+ )exp( - oQ+) between the second and third 

exponentials ofEq. (2.3). Then, using the Campbell-Haus
dorfftheorems for superalgebras (Theorems 2 and 3 of Ref. 
8) has the effect of interchanging the X_and Q + exponen
tials of Eq. (2.3) and modifying the coefficients of the X_ 
and Q_ exponentials in a well-defined manner. Repeating 
this procedure four times with insertions of I 
= exp(aXo)exp( - aXo) in the appropriate places then ef

fectively moves the Xo exponential to right-hand side yield-
ing the desired non-normal sequence. The coefficients a', {3', 
y, 0', and E' in Eq. (3.1) are thereby found to be expressed in 
terms of a, {3, y, 0, and E as 

293 J. Math. Phys., Vol. 30, No.2, February 1989 

a' = a, {3' = {3 exp(a), 

y = y(1 - !8E)exp( - a), 

0' = 0 exp(!a), 

E' = (yo + E)exp( - !a). 

(3.2) 

Together with the results of Sec. II, Eqs. (3.2) form the 
desired BCH relation (3.1). 

Other non-normal sequences may be analyzed similarly. 
In particular, we have also found explicitly the BCH relation 

exp(aXo + bX+ + cX_ + dQ+ + eQ_) 

= exp(o'Q+ )exp(E'Q_ )exp(a'Xo) 

Xexp({3 'X+ )exp( y X_). (3.3) 

We find 

a' = a - {3y8E, {3' = {3(1 + !8E), 

y = y(1 - !8E), 

0' = [(1 - {3y)o - {3E]exp(!a), 

E' = (yo + E)exp( - !a), 

(3.4) 

Again, combined with the results of Sec. II, Eqs. (3.4) define 
the BCH relation (3.3). 

Consider next canonical coordinates of the second kind, 
given as6 

gIl = exp(a'Xo)exp(b 'X+)exp(c'X_) 

Xexp(b+X + )exp(d 'Q+ )exp(cX _ )exp(e'Q_), 
(3.5) 

where b + and c _ are defined in terms of the expansion coeffi
cients of d' and e', respectively; see Eq. (7.26) of Ref. 6. 
Expression (3.5) may be converted to canonical coordinates 
of the third kind by appropriate insertions of identity. First, 
insert 

1= exp(c_d'Q_ )exp(!c_d 'e'X_) 

Xexp( - !cd'e'X_ )exp( - cd'Q_) 

between the last two exponentials in Eq. (3.5). This effectu
ates the interchange of the d' Q + and c _X_exponentials 
while changing the coefficients of the X_and Q _ exponen
tials. Next, insert exp ( - c' X _ ) exp ( c' X _ ) after 
exp(b+X+). Using the BCH relations for su(1,I), which 
may be obtained from the basic relation in Sec. II by setting 
d = e = 0, the resulting expression can be converted into ca
nonical coordinates of the third kind in normal sequence: 

gIl = exp[ (a' + a 2)Xo]exp[(b 'exp( - a 2) + {32)X+] 

Xexp[ (Y2 + c' + c + !cd'e')X_]exp(d'Q+) 

Xexp[ (e' - cd ')Q_], (3.6) 

where a 2= -21n(1-c'b+), {32=b+(1-c'b+), and 
Y2 = (c')2b+/(1 - c'b+). 

Finally, as an example of noncanonical coordinates, 
consider 

gnc = exp(a"Xo+ b"X+ +c"X_)exp(d"Q+ +e"Q_). 
(3.7) 

Inserting the identity exp<!d tIe" Xo)exp( -!d "e"Xo) be
tween the two exponentials and using a BCH relation for 
su(1,1) gives 
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gnc = exp[ (ao + !d" e" )Xo] exp [.00(1 - !d" e")X +] 

xexp[Yo(1 + !d"e")X_] 

xexp(d "Q+ )exp(e"Q_), (3.8) 

where ao, Po, and Yo have the functional form given in Eqs. 
(2.13 ), (2.14), and (2.22). This is an expression in terms of 
canonical coordinates of the third kind in normal sequence. 
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The duplication formula for Weierstrass' elliptic function is the basis for a simple algorithm by 
which one can calculate values of that function. As in the case for sin (J, this method is more 
efficient when the argument is reduced to a value near the origin by addition or subtraction of 
a suitable number of full periods of the function. When the invariants g2 and g3 are real 
numbers, P (z;G2,g3) is periodic on both the real and imaginary axes of z, although these 
periods are not necessarily the basic ones. Convenient formulas for determining the relevant 
periods are given. They include an expression for q( k 2) in terms of Gauss' arithmetico
geometrical sequence. The method is applied to Jacobian functions by finding the invariants 
that represent a given k 2. When this parameter is real the periods are well known and the 
Jacobian functions are calculated directly without transforming to those for which the 
parameter lies between zero and unity. 

I. THE RECURSION FORMULA 

When numerical values for elliptic functions are needed, 
the functions usually belong to real, fixed values for the pa
rameters and the variable is either real or simply imaginary. 
These conditions will be assumed to be met in the following 
presentation of a method for calculating P (Z;G2,g3)' This 
method is analogous to finding sin (J from (J /2N, viz., by 
choosing the integer N large enough so that (J 2/4N is an ade
quate approximation to sin2 «(J /2N) and applying sin2 2x 
= 4 sin2 x( 1 - sin2 x) N times. Obviously it is desirable to 

reduce (J (assumed to be real) to a value between - 1T and 
+ 1T, for which the square of the sine is the same. Elliptic 
functions that have real parameters are periodic along both 
real and imaginary axes· so that the reduction can be made 
for both components of a complex argument. Usually, how
ever, the relevant periods are not known beforehand and 
must be calculated from g2 and g3' Those formulas are given 
in Sec. II. 

The Laurent series for P(Z;G2,g3) is 

pz = Z-2 + g~/20 + g~4/28 + ... , (1) 

where the function is abbreviated to pz and g2,g3 are the 
coefficients in the equation for d ( pz) / dz, 

(p'Z)2 = 4(pZ)3 - g2pz - g3' (2) 

The duplication formula is 

p(2z) = !(p"Z/p'Z)2 - 2pz, 

and a concise formulation of the algorithm is 

wo~pz, WN = p(Z/2N), 

(3w~ - !K2)2 
W n _. = 3 - 2wn , (3) 

4wn - g2wn - g3 

n = N,N - 1, ... ,2,1. 

Starting with WN = 4N /r, N = 7 is usually sufficient to 
obtain eight significant figures if Izl < 3. In a longhand calcu
lation one can use all three terms in (1) for W N and then 
N = 3 should produce a comparable result. Note that zeros 
of the denominator in (3) that are nearest the origin occur 
where p'z vanishes, i.e., at one-half period along either axis. 

Those values of z on the real and imaginary axes will be 
denoted by {J)x and {J)y, respectively. Thus, ifan argument is 
reduced by 2n{J)x or 2m{J)y (where nand m are integers) to 
one between ± {J)x, ± (J)y, there will be no serious loss of 
significant figures in the recursion process. 

II. DETERMINATION OF PERIODS 

The algorithm in (3) may be applied to empirical deter
minations of {J)x and {J)y. One first plots rough values of Wo 

near z = ° in order to locate the nearest maximum or mini
mum. On the real axis Wo will have a local minimum and in 
its vicinity Wo is calculated, to the precision required for pz 
in the final result, and plotted so as to determine the zero of 
w~ = (4w6 - g2wo - g3) 1/2. That value of z (on the positive 
axis) is {J)x. Similarly. the least root of w~ on the positive i 
axis (at a local maximum) yields {J)y. 

The numbers P{J)x and P{J)y are critical values of pz and 
if P{J)x =t P{J)y, in the calculation described above, lwx is the 
basic real period for P (z;g 2,g 3) and 2{J) y is its basic imaginary 
period. These will be denoted by 2{J). and 2{J)3' respectively. 
If, on the other hand, P{J)x turns out to be equal to P{J)y, only 
one of the major axes is the direction of a basic period. When 
g3>0, 2{J)x remains as the basic real period but lw3 is a com
plex number; when g3 < 0, lwy is a basic period and it will be 
designated to be lw l , whereas lwx is a composite period. 

There are three finite critical values of pz and they are 
the roots of (p'Z)2 in (2). In an arbitrary order they are 
denoted bye., e2, e3" Applying Cardan's rule they are 

er = Hg3 + [83 - (g2/3)3] 1/2}1/3 

(4) 

where r = 1,2,3 refers to the three cube roots whose phases, 
for a given r, are equal in magnitude but of opposite sign in 
the two terms on the right-hand side of (4). Then (2) may be 
written 

(p'Z)2 = 4(pz - el)(pz - e2 )(pz - e3 ). (5) 

Comparing this with (2) yields the identities 

e. + e2 + e3 = 0, g3 = 4e l e2e3 , 
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g2 = - 4(ele2 + ele3 + e2e3), (6) 

ll. = 16(e l - e2)2(el - e3)3(e2 - e3)2 = ~ - 27~, 

where ll. is the discriminant of (5). The square roots in (4) 
are then ( - ll./27) 1/2. 

The basic half-periods of pz are defined by convention 
as the principal values of integrals of (5) for z, viz., 

(7) 

When all three er are real their subscripts can be assigned so 
that 

(8) 

[no two er are equal, for if they were, the integral in (7) 
would be elementary rather than an elliptic integral]. The 
integral for WI in (7) is then real and, making the substitu
tion t = e3 + (el - e3 )csc2 1/J, it becomes 

WI = (e l -e3 )-1/2K(k), (9) 

where K(k) is the complete elliptic integral of the first kind 
and 

k 2 = (e2 - e3)/(el - e3). (10) 

From (8) one sees that 0 < k 2 < 1; and from (10), that the 
exclusion of equal e r excludes k 2 = 0,1, co . In ( 4 ) all three e r 

are real when (g2/3) 3 > ~, i.e., when ll. > O. 
Also, because of (8), the integral in (7) from e2 to e l is 

an imaginary number. Transforming from t to t' so that 
(t'-e2)(t-e2) = (e2-el )(e2-e3 ), that integral be
comes one of the same form but with limits e3 and co. There
fore W3 is simply imaginary; setting t = el - (el 

- e2) sin2 1/J, the integral from e2 to e l yields 

w3=i(el -e3)-1/2K'(k), (11) 

whereK'(k) =K(k')andk'= + (1-k2)1/2.Thuswhen 
the er are real, 2wx = 2wI and 2wy = 2w3. The integral in 
(7) from e2 to co is W2 and that is the sum of integrals from e2 

to e I to co. Therefore 

(12) 

When ll. <0, i.e., ~ > (g2/3)3, one root is real and the 
relations in (6) show that the other two are conjugate com
plex numbers. The real root will be denoted el so that we can 
write 

e2 = - !e l(1- i7]), e3 = - ~el(1 + i7]), (13) 

where 7] is real and positive. With these definitions g3 in (6) 
becomes ei (1 + 7]2) and el has the same sign asg3; also, one 
sees from (10) that k 2, and therefore k '2, are now complex 
numbers. The scale factor (e l - e3 ) -1/2 in (9) and (11) is 
complex as well and it turns out, when g3 > 0, that w, is real 
and thus equal to W x ' but W3 is complex. The imaginary 
half-period is then Wy = WI + 2W3 and thus pwy 
= p(w, + 2(3 ) = PWI = pWx as anticipated above in the 

empirical calculation. Also, for this case, 

(e l - e3)'/2 = leI - e311/2e(1/2)iP, 
(14) 

k,2= (e,-e2)/(e,-e3 ) =e- 2i{3, tanp= !7], 

and although tables are not available for complex moduli the 
elliptic integrals are easily computed when Ik '21 = 1. 
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When e, <0 the scale factor (e, - e3)-1/2 acquires a 
factor i and in that event Wy = WI and Wx = WI + 2w3. 

It is well known2 that K(k) is related to its asymptotic 
value !1T (as k 2 .... 0) by 

1 00 

K(k) =-1T IT (1 +k,,), 
2 n= I 

1- k' 
(15) 

k - ", ko = k'. 
n+1-l+k~ 

As k 2 .... 1 the asymptotic form is - In (lk '). Therefore as 
k 2 _O the corresponding form for K'(k) is -In(lk). The 
Nth convergent to K( k) will be denoted by K N and is readily 
calculated by means of Gauss' arithmetico-geometrical se
quences.2 Carlson3 has shown how to make the same calcu
lations applicable to K' (k). The pertinent definitions and 
identities are 

ao=l, a"+I=~(an+b,,), k"=c"la,,. 

bo=k', bn+ I =(anbn)I12, l+k"=a,,_lla,,, 

co=k, c,,+, =!(a" -bn)' a"c" =lc!-I' 

ko = k, ko = k', !k" = (1 + k n )2(!k,,_, )2. (16) 

The Nth convergents to K(k) and K'(k) are 

KN = 1T12aN, KN = - (2- N laN)ln(!kN), (17) 

and thatto the nome q(k2) = exp[ - 1TK'(k)IK(k)] is 

(18) 

Since c" approaches zero very rapidly as n increases, the 
forms containing kN are of limited usefulness as they stand. 
However, the formula in (16) that relates !kn to !k" _, can 
be iterated so as to produce4 

~kN = (~k)2N IT (1 + kn)2N+l~n. (19) 
4 4 n=' 

Using this in (18), 
k 2 N 22 ~ n 22 ~ N 

qN=16JI(1+k,,) =qN_daN_,laN) . 

(20) 

Substituting a, =!( 1 + k '), a2 = l( 1 + .Jk')2inq2oneob
tains the familiar approximationS 

q2 = ~(1 - .Jk')/( 1 + .Jk'). (21) 

When 0 < k 2 < 1 the calculations deal only with real 
numbers. The case for k' = e - i/:J is almost as convenient 
because all a" and b" in 0 6), for n > 0, are real numbers 
times e - (l/2)iP . Therefore KN in (17) is a real times e( 1/2)i{3 
and, when e l >0, (14) shows that (e, - e3 )-1/

2K N will be 
real. Therefore the Nth convergent to WI in (9) is real and 
equal to that for W x , 

w}(N) =1TI[2(e,-e3 )'/2aN ] =wx(N). (22) 

For the Nth convergent to W3 we write 

w3 (N) = -i[w,(N)I1T]lnqN' 

In (20) each q N is proportional to k 2 = 1 - e - 2iP 
= 2ie - iP sin {3 and (for n > 0) inversely proportional to a" 
to the second power (and therefore to e - iP ). Thus the q N 

are purely imaginary and 

In q N = !i1T + In I q N I, 
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(23) 

Then Wy (N) = 2w3 (N) - WI (N). When el <0 the roles of 
K Nand K N are interchanged as described above. 

III. APPLICATION TO JACOBIAN FUNCTIONS 

The definition ofsn(u,k) in Weierstrass' theory is6 

sn(u,k) = [(e l -e3)/(pz-e3)j1/2, (24) 

where u is related to z by the same factor that relates K (k) to 
WI' 

(25) 

Thus, for example, when z = WI' PWI = el and the right
hand side of (24) is unity, when the positive sign applies, and 
sn(K,k) = 1. 

Actually the basic identities among jacobian functions 
have their most symmetrical form for the three functions 
that have a pole at the origin. In modem notation these are 

cn(u,k) d dn(u,k) 1 
csu= ,su= , nsu= , 

sn(u,k) sn(u,k) sn(u,k) 
and for these the extension of (24) is 

(e l - e3)1/2 cs u = (pz - e
l

) 1/2, 

(el-e3)1/2dsu= (pz-e2)1/2, 

(e l - e3)1/2 ns u = (pz - e3)1/2. 

Therefore, if g2 and g3 are calculated from the er that 
satisfy 

e l + e2 + e3 = 0, e l - e3 = 1, e2 - e3 = k 2, (26) 

the Wo resulting from (3), with z = u, determines these func
tions, up to a sign, as 

csu= (wO -el )1/2, dsu= (wO -e2)1/2, 

ns u = (wo - e3 )1/2. 
(27) 

The signs on the square roots are determined by the location 
of u within a period for each ofthe functions. Solving (26) 
one finds 

e2=!(2k 2-1), el =e2+ l-k2, e3=e2- k2, 
(28) 

and from the relations in (6) the special values of g2 and g3 
are 

(29) 

Note that the relations in (27)-(29) place no restraint upon 
k 2. They merely guarantee that the invariants correspond to 
a given value and that (e l - e3 ) 1/2 = 1. Thus k 2 is not re
quired to be between zero and unity so then K (k) and K I (k) 
may be complex numbers. Their contributions to Wx and wy , 

however, are well known. 7 They differ in the three regimes of 
k 2 and for u and iu. Let k ~ be such that 0 < k ~ < 1 and let its 
elliptic integrals be Ko and K ;,. Then writing k 2 in terms of 
k ~ one has the following assignments: 
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argument u iu 
quarter-period Wx Wy Wx Wy 

k2=k~ Ko iKo K' 0 iKo 
k 2=k o-

2 koKo ikoKo koKo ikoKo 
k 2= -k~/k/~ koKo ikoKo koKo ikoKo· 

(30) 

The problem that remains is to determine the correct signs 
on the square roots in (27). All three functions are odd func
tions of u. It is sufficient to describe the signs that pertain to 
positive u, on either axis. 

On the real axis ns u and ds u resemble cosecants and 
thus are positive between u = 0 and u = 2wx with 
ps(2wx - u) = ps u, where p = nor d, whereas cs u is co
tangentlike and positive for 0 < u < W x ' negative for 
Wx < u < 2wx • On the imaginary axis the three functions are 
purely imaginary but ns u is the one that resembles a cotan
gent while cs u and ds u are cosecantlike. These rules suffice 
to determine the signs in (27) and so for all 12 pq u = ps u/ 
qs u, where p and q are distinct choices of c, d, n, and s. 

In addition to restricting attention to real g2 and g3' it 
has been assumed so far that z is either real or simply imagi
nary. But, as with circular functions, values for complex ar
guments are calculated merely by finding those for the real 
and imaginary components separately and combining the 
results by means of the appropriate addition theorem. Thus 
for z = x + iy one finds pz from 

I [WI (x) - w' (iy)]2 
wo(x + iy) = - 0 0 - wo(x) - wo(iy), 

4 wo(x) - wo(iy) 
(31 ) 

For the three ps u (p = c,d,n) the addition formula is 

( + b) 
_ ps a ps' b - ps' a ps b 

ps a - , 
pS2 a - pS2 b 

(32) 
pS' U = - qs u rs u, 

where p, q, r is any permutation of c, d, n. The denominator 
pS2 a - pS2 b is the same for all three choices of p. These 
formulas are useful also when a term in (27) is so close to 
vanishing that a more reliable value for ps u would be ob
tained by expanding in a series about Wx or wy • Incidentally 
the form in (32) for I(a + b), but not that for j'(u), of 
course, holds as well for the circular functions that have a 
pole at the origin, i.e., cot(a + b) and csc(a + b). 

IT. H. Southard, in Handbook of Mathematical Functions, edited by M. 
Abramowitz and I. A. Stegun (National Bureau of Standards, Washing
ton, DC, 1970), p. 629. 

2L. M. Milne-Thomson, in Ref. I, p. 598. 
3B. C. Carlson, J. Math. Phys. (Cambridge, Mass.) 44, 36 (1965). 
'See Ref. 3, p. 46. 
sE. Jahnke, F. Emde, and F. LOsch, Tables of Functions (McGraw-Hill, 
New York, 1960), p. 86. 

"See Ref. 5, p. 81. 
7A. C. Dixon, Elliptic Functions (Macmillan, New York, 1894), p. 16. 
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Sufficient conditions are given for the spectra and essential spectra of certain classes of 
operators in R 2 to be contained in an interval of the form [d, 00 ). 

I. INTRODUCTION 

We investigate operators of the form 

• 
H = L !k (x)( - a)k + q(x) 

k=l 
in R 2, where a is the Laplacian, e is a positive integer greater 
than 1, !k (x) are real-valued functions in R 2 and!k C Coo 
for k = 1,2, ... ,e, and q(x) is a real-valued function in R 2. 

This implies that H has a self-adjoint extension H that is 
bounded from below. For a self-adjoint operator the essen
tial spectrum consists of those points in the spectrum that are 
not isolated eigenvalues of finite multiplicity. I 

Weare interested in finding (i) a lower bound for the 
spectrum O'(H) of H, and (ii) a lower bound for the essential 
spectrum 0'. (H) of H. 

In the next section we present our main results. We shall 
prove these results, and the preliminary lemmas and theo
rems as well, in the last two sections. 

Previous results can be found in Birman/ Brenner,3.4 
Glazman,5 Muller-Pfeiffer,6.7 Naimark,8 Schechter,I,9 and 
Yafaev. JO 

II. STATEMENT OF RESULTS 

We define 

q+ (x) = max(q(x),O), 

q_ (x) = maxI - q(x),O), q(x) = q+ (x) - q_ (x), 

• 
Ho= L !dx)( - a)k+q+(x), 

k=1 

• 
H = L !dx)( - a)k + q(x), 

k=l 
rElJ(Ho) if and only if rElJ(H), and Qt,y = II XI2 is a 
square in R 2 centered at y with edge length t. 

We present our first theorem as follows. 
Theorem 1: Letting t> 0, ifthere exist constants ak such 

that!k (x) ;;;'ak ;;;.0, for k = 1,2, ... ,e, and ifthere exists 

• 
O<g<,t L ak fflk (2t) -2\ 

k=1 

such that for each Qt.yER 2,SI,q+(x)dxj ;;;'g, for i= 1,2, 
then Ho has a self-adjoint extension Ho such that 
O'(Ho) C [g/4t,00 ). 

Corollary 1: If in addition q_(x) <,g/4t - d, where 
g/4t;;;.d> 0, then H has a self-adjoint extension H such that 
O'(H)C [d,oo). 

Theorem 2: Under the hypothesis of Theorem 1, if 

for i = 1,2, A = min(A I.A2)' and C;;;'1 such that 

A • g<,-<,t L ak fflk(2t) - 2\ 
C k=l 

then Ho has a self-adjoint extension Ho such that 
0'. (H) C [A /4Ct, 00 ). 

Corollary 5: If in addition q_(x)<,A/4Ct-d, where 
A /4Ct;;;.d > 0, then H has a self-adjoint extension H such 
that 0'. (H) C [d,oo). 

For example, 

H = (5x8 + y4 + 3)( - a), 

+ (0.5x8 + 6y2 + 5) ( - a)V - a + x2 + r + 1, 

where r> v> 1 are positive integers. If we use t = 1, we get 
the following estimates: 

O'(H) C [H,oo), 
O'.(H)C [3ffl'(4) -,-I + 5fflV(4) -v-I + ffl(4)-2,00). 

III. PRELIMINARY LEMMAS AND THEOREMS 

Lemma 1: Let Ibe an interval in R oflength t and put 
Ilflll = S I lfl2 dx. If! = 0 somewhere in I, then there exists 
Co such that Collfll~<, Ilf'II~, where Co = ffl/4t 2. 

Lemma 2: For a,b non-negative, 

allul12 + b IIvI12;;;.! min(a,b)llu + v1l 2 
• 

Lemma 3: Let Q be a square in R 2, and suppose there 
exists R such that 

Ct/k (x)( - a)ku,u) Q + (q+u,u)Q;;;.R Ilulit. 

If q_ (x) <,R - E, where R;;;'E> 0, then 

Ct/k (x)( - a)ku,u) Q + (qu,u)Q;;;'ElluW. 

Lemma 4: Let P be a self-adjoint operator on RN with 
CO' CD(P). If there exists R > Osuch that (P,tp,tp»A IItp 11 2

, 

'tJ tpEC 0' that vanish in QR,O' then 0'. (P) C [A, 00 ). 
Lemmas 1,2, and 4 are proved in Ref. 3. The proof of 

Lemma 3 is similar to the proof of Lemma 3 in Ref. 3. 
Theorem 3: Let t> 0,(YI'Y2)ER 2. If there exist constants 

ak such that!k (x) ;;;'ak ;;;'0, for k = 1,2, ... ,e, and if there exists 

• 
O<g<,t L akfflk(2t) -2\ 

k=l 
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(i) ([ ± Ik (X)( - a)k + q+]U,U) >Lllullt. 
k= I Q,., 4t 

If in addition q _ (x) <g/4t - d, where g/4t>d > 0, then 

(ii) (Ltl1k (x) ( - a)k + q ]u,u t,.,>d lIullt· 
Proof: 
Let 

. aiu i _ aiu 
D;u=--., D 2u---., 

ax; ax~ 

for i = 1,2, ... ,e, Q = Qt,y, Q = II XI2, 

ui (x2) = min U2(X I,X2), 
x.el, 

and 

ui (XI) = min U2(X I,x2)' 
x 2EI2 

Then 

IIUill~i = I u: dXi = tu: => u: = IIUill~i, 
~ t 

for i = 1,2. Then 

(Lt/dX)( - a)k + q+(x) ]U'U)Q 

>(Ltl ak ( - a)k + q+(x) ]U'U)Q 

> L 1. ktl ak ID~uI2 + aklD~ul2 + q+lul2 
dX I dx2· 

First for D: and then D ~, 

> L 1. ktl ak ID~(u ± ulW + q+u~ dX 1 dX2 

+ L 1. ktl ak ID ~U12 dX 1 dx2, 

either U + u I or u - u I will vanish somewhere in II' 

299 

= L1. kt2 ak ID~(u ± u l )1 2 

+ alID: (u ± ulW dX I dX2 +" 

> L1. kt2 akC~-IID: (u ± u l )1 2 

+aIID:(u±uIW 

+ q+ui dX I dX2 +" [repeated use of Lemma 1] 

= r r ± akC~-IID:(u±UI)12 JI, JI, k= I 

+ q+ui dX I dX2 + " 

> L ktl akC~lIu ± udl~, 

+ ui r q+ dX 1 dX2 +" [Lemma 1] J, 

> L ktl akC~lIu ± uIII~, + Uig dx2 +" 

= r ± akC~lIu±udl~, +~IIU±UIII~, dx2+" 
J~k=1 t 
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> r 2
g lIull~, dX2 +" [Lemma 2] J, t 

= r r Llul2+ ± aklD~ul2dx2dxI 
J,J,2t k=1 

>r r Llul2+ ± akID~(u±U2)12dx2dxI' 
J.JI,2t k= I 

either u + U2 or u - U2 will vanish somewhere in 12, 

= r r Lui+ ± akID~(u±U2)12 J, J, 2t k=2 

+ adD~ (u ± u2)12 dX2 dX I 

>r r Lui+ ± akC~-IID~(u±U2)12 
J.JI,2t k=2 

+ alID~ (u ± U2W dX2 dX 1 

[repeated use of Lemma 1] 

e 

+ L akC~lIu ± u211~, dX 1 [Lemma 1] 
k=1 

= r Lllu211~, + ± akC~lIu ± u211~, dX 1 
J,2t k= I 

> r Lllullt dX I [Lemma 2] 
J,4t 

= Lllull~· 
4t 

Now for D ~ and then D : , 

1. L ktl ak ID~uI2 + ak ID~uI2 + q+lul2 
dX2 dX 1 

> 1. L ktl ak ID~(u ± U2W 

+ q+ui dX2 + 1. L ktl ak ID ~U12 dX2 dx l, 

either u + U2 or u - U2 will vanish somewhere in 12, 

= 1.Lkt2ak'D~(u±U2)12 
+ adD~ (u ± u2)12 + q+ui dX2 dX 1 + " 

> 1. L kt2 akC~-IID~ (u ± u2W 

+ alID~ (u ± u2 )1 2 + q+ui dX2 dX 1 +" 
[repeated use of Lemma 1] 

= r r ± akC~-IID~ (u ± U2W JI, J, k= I 

+ q+ui dX2 dXI +" 

> 1. ktl akC~lIu ± u211~, 
+ui r q+(X)dX2dxI +" [Lemma 1] JI, 
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;;;.1 ktl akC~lIu ± u211i, + u~gdxl +" 

= f i akC~lIu ± u211t + ¥IIU211~, dX 1 + " 
)1, k= I 1 

;;;. f 2
g Ilulit dX I +" [Lemma 2] J, t 

either u + U 1 or u - U I will vanish somewhere in II' 

= f f .!.u~ + i akID~(u±UIW J, J, 2t k=2 

+ a11D: (u ± u1) 12 dX I dX2 

;;;. f f .!. u~ + i akC~-IID: (u ± u1)12 
)I,J,21 k=2 

+ a11D: (u ± u1) 12 dX I dX2 

[repeated use of Lemma 1] 

= f f .!. u~ + i akC~-IID: (u ± ul ) 12 dX I dX2 
J,JI,2t k= 1 

;;;. f u~ f .!. dX 1 )1, J, 2t 
• + L akC~llu ± udl~, dX2 [Lemma 1] 

k=l 

= f .!.IIUIII~, + i akC~lIu ± ullI~, dX2 
J,21 k=1 

;;;. f .!.llulit dX2 [Lemma 2] 
)1,4t 

= .!.llull~· 
21 

Hence 

11 ktl ak ID ~U12 + ak ID ~U12 

+ q+ lul 2 dX2 dXl;;;'.!.llull~· 41 

Part 2 follows from Lemma 3. 
Theorem 4: Let t> O. If there exist constants ak such 

thatfk (x) ;;;'ak;;;'O for k = 1,2, ... ,e, and if there exists 

• 
O<g<t L akn2k(2t) -2\ 

k=l 
such that for each Q,.yER 2, fl,q+(x)dxj;;;'g, VyjeIj for 
i = 1,2, then 

(i) ([ i fdx)( - a)k + q+]u,u) ;;;'.!.lIull~t.y· 
k= 1 Qt.y 4t 

If in addition q _ (x) <g/4t - d, where g14/;;;.d > 0, then 

300 

(ii) (Lt/dX)( - Mk + q ]u,u )Qt.y;;;.d lIull~t.y· 
The proof follows from Theorem 3. 
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IV. PROOFS OF MAIN THEOREMS 

A. Theorem 1 

By Theorem 4, for each Q"y' 

([ i fdx)( - a)k + q+]u,u) ;;;..!.lIull~,.y' VyER 2. 
k= 1 Qt.y 4t 

If we cover E 2 with such squares and sum, then 

(g/4t) Ilu112< (Hou,u) :=} O'(Ho) C [g/4/,00). 

(See Ref. 9.) 

B. Corollary 1 

By Theorem 4, part 2, for each Q"y, 

(Lt/dX)( - a)k + q]u,utt.y;;;'d lIullt, VyER 2. 
If we cover E 2 with such squares and sum, then 

d IluI1 2«Hu,u) :=} O'(H) C [d,oo). 

(See Ref. 9.) 

C. Theorem 2 

Let E> 0 be given, and take R so large that 

1 A..-E 
q+(x)dxj;;;.-t--, 

I, C 

for i = 1,2, and 

A - E . (A I - E A2 - E) --= mm ------
C C ' C ' 

for y outside the square QR,O' Then by Theorem 3, 

(Lt/k(X)( - a)k + q+ ]u,u t,s 
A -E 2 ;;;.--Ilull [for suchy] 4Ct Q,.y 

[
A -E ) 

:=} 0'. (Ho) C --,00 
4Ct 

Since this is true for every E;;;'O, 

:=} 0'. (Ho) C [~, 00). 
4Ct 

D. Corollary 2 

[Lemma 4]. 

Let E>O be given, q_ (X)<A /4Ct - (d - E). Then by 
Theorem 3, part 2, 

(Lt/k(X)( - a)k + q]u,u t,.y;;;'(d - E)lIull~,.y 
[foryoutsideQR,o] :=} O'.(H)C[d-E,oo) [Lemma 4]. 

Since this is true for every E;;;'O, 

:=} 0'. (H) C [d, 00 ). 
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Solution to boundary value problems using the method of maximum entropy 
James Baker-Jarvis 
Physics Department, North Dakota State University, Fargo, North Dakota 58105 

(Received 26 May 1988; accepted for publication 21 September 1988) 

The method of maximum entropy is used to solve a class of linear boundary value problems. 
The method is based on using various moments of the differential equation as constraints when 
maximizing the entropy. Various examples are presented and compared to exact solutions for 
varying numbers of moments. It is found that the maximum entropy approximation is, in 
many cases, better than a Fourier series solution for a given number of expansion terms and 
moments. The method is very general and will find applications in many areas of physics. A 
comparison of the amount of work necessary for the maximum entropy solution versus finite 
difference techniques is presented and it is found that the maximum entropy technique shows 
promise as an alternative solution technique. 

I. INTRODUCTION 

The concept of information entropy was presented by 
Shannon 1 to describe the information content in a signal. 
Following this pioneering work, Jaynes2

•
3 developed the in

formation theoretic approach to statistical physics. Since 
then, there have been many novel applications of the princi
ple of maximum entropy in a number of areas. 1-9 For exam
ple, Burg4

•
9 performed spectral analysis using maximum en

tropy techniques, Mead5
,6 has solved integral equations with 

this technique. Inguva and Baker-Jarvis7 have studied the 
generalized inverse scattering method in the context of max
imum entropy methods (MEM). The literature is extensive 
and a good bibliography is given in a paper by Smith and 
Inguva.s 

Generally, when solving a linear boundary value prob
lem with classical techniques, a Fourier series is utilized. 
However, Fourier series approaches can be problematic 
when the equation contains products of functions since the 
Fourier transform of products is not, in general, useful. Thus 
in obtaining solutions to general linear differential equations 
with nonconstant coefficients one generally must resort to 
finite difference or finite element techniques. These tech
niques require large-order matrices to be inverted and the 
amount of computation in the solution increases as N d

, 

where N is the number of points and d is the dimensionality. 
In this paper the method of maximum entropy will be used 
for the solution of certain classes of linear boundary value 
problems. The goal of this paper is to describe a general 
method by which maximum entropy can be utilized to solve 
many linear differential boundary value problems. The 
method should have applications in many areas of physics, 
for example, in solving the Fokker-Planck equation and 
problems where the boundary conditions or source func
tions are uncertain or noisy. The method is very general and 
can be thought of as a generalization of Fourier series. The 
method is based on previous work of the author in integral 
equations that has been generalized to the problem of a finite 
interval.7 The advantage of this technique is its generality 
and efficiency. To the author's knowledge this technique has 
not been utilized previously for this problem. There have 
been a multitude of approaches used in applying the maxi
mum entropy technique to physical problems. These ap-

proaches can, however, be classified into two main catego
ries: (i) techniques that equate the probability function with 
the function to be determined and (ii) techniques where the 
expectation value of a function is determined using the prob
ability distribution found from maximum entropy. For ex
ample, in Mead's5 work the function itself is identified with 
the probability and thus only positive quantities can be uti
lized. He tries to overcome this characteristic by a change of 
variables to make all of the variables positive; however, it is a 
severe limitation. In the present theory the function can be 
either positive or negative, which is important since general
ly one does not know a priori whether the function takes on 
negative values. The method is presented in Secs. II-IV and 
various examples are presented in the next section. The max
imum entropy solution technique is compared to the Fourier 
series solutions in Sec. V. The final section is a discussion of 
the technique'S merits. 

II. DEVELOPMENT OF CONSTRAINT CONDITIONS 

We consider a general linear, boundary value problem 
given in operator form as 

L,(V(r» = C(r) , (1) 

together with either Neumann or Dirichelet boundary con
ditions. Here, (V) denotes the expectation value. In Eq. (I) 
L 1 is a differential operator, C is a source function, and V is 
the function to be determined. In the solution technique we 
require an associated set of eigenfunctions that satisfy a dif
ferential equation of the form 

(2) 

where L2 is a differential operator and the /3 n are eigenval
ues. We pick the set of eigenfunctions judiciously depending 
on the operator form of Eq. (1), the boundary conditions, 
and coordinate system utilized. The method of maximum 
entropy requires the specification of constraints. We form 
the constraints for the maximum entropy method by multi
plying Eq. (1) by an eigenfunction satisfying Eq. (2) and 
then integrating over space: 

f fnLl(V(r» - C(r)d 3r=O, (3) 
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for n = 1,2,3, .... Integration by parts and use of boundary 
conditions implies that 

(4) 

where An and an contain boundary information and infor
mation on C(r). The problem then reduces to maximizing 
the entropy subject to the constraints given in Eq. (4). The 
maximum of the entropy then gives the probability distribu
tion subject to the available information. The problem of 
showing that the MEM solution converges to the solution of 
the differential equation is related to the classical moment 
problem. Mead6 has studied the Hausdorff conditions neces
sary for convergence of the moment problem extensively in 
the context ofMEM. 

III. THE ENTROPY FORMALISM 

We consider the function VCr) as represented by 
a discrete set of N points V(rl) = VI' V(r2 ) 

= V2 , ••• , V(rN ) = VN , so that in vector notation we can de
fine 

V= (VI,V2,V3 , ••• ,VN )'. (5) 

Here (t) denotes transpose. We define the information en
tropyas 

s= - Lp(V)ln(p(V»)dV, (6) 

and f v dV denotes f dVI f dV2 f dV3 " ·dVN • Note that, in 
general, the entropy is a functional integral. We assume that 
the distribution is normalized so that 

J P(V)dV = 1 . (7) 

We define the expectation value of a function ~ as 

(~) = f P(V)~dV. (8) 

We can write Eq. (4) as 

B(V)=A, (9) 

where we discretized the integral 

B = [a k ;] , 

A= [AI,. .. ,AM]" 

In component form we can write Eq. (9) as 
N 

L ani(~) =An , 
;=1 

(10) 

(11) 

(12) 

where ani = an (ri )f1r, and f1r is the grid size for a direct 
Riemann sum. 

The entropy with M constraints can be written as 

S = J {- P(V)ln(P(V») 

- Ao[P(V) - 1] - [A'BVP(V) - AndV 

= J {-p(V)ln(p(V») -Ao[P(V) -1] 

n~1 An [j~1 [anj V;P(V)] - An ]}dV , (13) 
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where Ai are Lagrange multipliers, N is the number of points, 
and M is the number of moments, 

A = [AI, ... ,A.m ]' . (14) 

Performing a variation of P yields 

~s= J[ -1-ln(p(V»)-Ao-~rj~]~PdV, (15) 

where we have defined 
M 

rj = L anjAn· (16) 
n=1 

We then obtain 

P(V) = exp[ - (1 + Ao) ]exp[ - A'BV] (17) 

= exp [ - (1 + Ao) ] exp [ - ~ rj V; ] . ( 18 ) 

If we define the partition function by using Eq. (7) 

Z = exp((1 + Ao»), (19) 

we then obtain 

P(V) = exp( ~AtBV) = exp [ _ ~ rj ~ ]z -I. (20) 

Now by Eq. (8) we have 

(Vi) = i b 

dVI"'dVN Vi exp [ - L rj~ ]Z-I, (21) 

where b and a are the boundaries of the solution region. So, 
by integration we obtain the expectation value of Vi: 

( V) 
1 b exp( - rib) - a exp( - ria) 

i =-+ . (22) 
r i exp( - rib) - exp( - ria) 

In the limit as b-- 00, a-O, the second term in Eq' (22) 
drops out. Equation (22) can be expressed in terms of hyper
bolic functions for various limiting cases. We can, for exam
ple, let a = - b and obtain 

(Vi) = (Uri) -bcoth[br;]. (23) 

This form is particularly nice for numerical calculations 
when the function takes on both positive and negative val
ues. For the case of positive functions (zE[O,b]), Eq. (22) 
reduces to 

For cases when b-- 00 and a-- - ~ (~>O), we have 

( Vi) = (Uri) - ~ . 

(24) 

(25) 

It is possible to convert the solution to a function of r if we 
take the limit as f1r--O: 

(V(r» =_1_ 
r(r) 

b exp[ - r(r)b] - a exp[ - r(r)a] + , 
exp[ - r(r)b] - exp[ - r(r)a] 

(26) 

where the Lagrange multipliers can be found from Eq' (4). 
For the case of the integration interval [a,b] 

- [ - ~, 00 ] an exact solution for A is possible. Let the vector 
E have components 
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E; = lI{[(B'B)-IB' A); +~}, (27) 
where the - 1 superscript indicates inverse. Therefore the 
solution is given by 

(28) 

For the other cases the Lagrange multipliers are found from 
Eq. (26) substituted into Eq. (12). 

IV. RELATION TO FOURIER SERIES 

It is interesting to establish the relationship between the 
present method and the Fourier series. To this end assume 
that we can expand V(z) in the Fourier series as 

V(z) = L C",fm (z) . (29) 
m 

Now it is well known that a Fourier series expansion mini
mizes the L2 norm 

f 1 V(z) - m~ I C",fm (z) 12 dz. (30) 

This is commonly called a least squares fit of the function. 
For each M the Cm are the best coefficients for the least 
squares fit. The MEM method finds the best function of the 
form ofEq. (22) that maximizes the entropy of the moments 
of the equation and interpolates the data given by the Four
ier coefficients. It can be shown, when [a,b] -+ [ - 00,00], 
that the MEM solution with a constraint on the norm re
duces exactly to Fourier series. 

V. SOLUTION OF DIFFERENTIAL EQUATIONS 

Numerical solutions can be generated by solving Eq. 
(9) for Lagrange multipliers with (V) given by Eq. (22). 
The equations for Lagrange multipliers are a set of M (num
ber of moments) nonlinear equations. Once the Lagrange 
multipliers are found, Eq. (22) gives (V) [except for the 
case of Eq. (28) where A.; can be determined explicitly] . 

As a first example let us consider a very simple bound
ary value problem: 

d 2 V 
dZZ = - 3.2, YeO) = Yo, V(1) = VI' (31) 

The constraints of Eq. (3) are in this case formed from the 
set of eigenfunctions on the interval [0,1], 

In (z) = sin(mrz), n = 1,2,3, .... (32) 

For this case we obtain 

An = mr[ V( l)cos n1r - V(O)] + (lIn1r)[cos mr - 1] , 

an; = - (mr)2 sin mrz;lN. 

In Fig. 1 the exact solution to Eq. (31) is plotted against the 
maximum entropy solution. We see that even with only a few 
moments the MEM solution is very good. Furthermore, we 
see that the rate of convergence as the number of moments is 
increased is very good. 

In the next example, a slightly more complicated differ
ential equation is solved: 

d
2

;).z) = -{3V(z), YeO) = Yo, V(1) = VI' (33) 

In this solution the eigenfunctions are given by Eq. (32). In 
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0.9 

> 

z 

FIG. 1. Maximum entropy solution to Eq. (31) for two (- -) and ten (---) 
moments compared to the exact solution (-). 

Fig. 2 the exact solution and MEM solutions are plotted and 
compared with Fourier series solutions for two moments 
and for two Fourier expansion functions. We again see that 
the solution is quite good. We see that the solution with 
MEM is a better approximation for a given number of mo
ments than the Fourier series for the same number of expan
sion functions as shown in Figs. 2 and 3. 

The next example is another step in complexity, here the 
functions are not eigenfunctions of the differential operator: 

~; +2~ +2V=0, V(O)=Vo, V(1)=VI . 

(34) 

We use as moment functions those ofEq. (32). Again we see 
that the solution is reasonable in Fig. 4. 

The technique can also be used for initial value problems 
and is shown in Fig. 5. In this case the function is 

dV 
Tz= - V, V(O) = Yo' (35) 

1.1-r------------------, 
1 

0.9 
0.8 
0.7 

N O•6 

:; 0.5 
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//" // 

! // 
/ / 
I • 

1/ 
1/ 0.2 I 

0.1 / O~ ________________________________ __ 

0.0 0.5 1.0 
Z 

FIG. 2. Maximum entropy solution to Eq. (33) (- -) compared to the exact 
solution (-) and the Fourier series solution (----) for two moments and 
two expansion functions. 
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I: 
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:> (: 

0.4 " I: 
I: 

0.3 Ii 
I: 
I: 

0.2 F 

0.1 

0 
0.001 0.5 0.999 

Z 

FIG. 3. Maximum entropy solution to Eq. (33) (---) compared to the exact 
solution (-) and the Fourier series solution ( .... ) for ten moments and 
ten expansion functions. 

For general initial value problems in the interval [0,00 ], the 
Laguerre polynomials form a complete set with weight func
tion exp( - z). So in this case the moments of V(z) are 

LX> exp( - z)2" n (z) [L 1 V(z) - C(z) ]dz = O. (36) 

Here 2" n (z) are the Laguerre polynomials. For problems 
on the interval [ - 00,00], the Hermite polynomials form a 
complete set with weight function exp( - r). As the next 
example, Mathieu's differential equation, which can be hard 
to solve using finite difference techniques, is solved using the 
MEM: 

d 2 V 
dz2 + 'TJ cos (f/Jz) V = 0, (37) 

where f/J and 'TJ are constants. In Fig. 6 the MEM solution is 
plotted together with the solution obtained by a finite differ
ence solution. We see that the MEM solution does quite well. 
As a final example we consider the parabolic cylinder equa
tion 

0.06 

0.05 

0.04 

~ 

N 0.03 '> 
\ 

0.02 

0.01 

0.00 
0.00 0.40 0.80 

z 

FIG. 4. Maximum entropy solution (----) for ten moments for Eq. (34) 
compared to the exact solution (-). 
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FIG. 5. Maximum entropy solution (----) for seven moments for Eq. (35) 
compared to the exact solution (-). 

(38) 

The exact solution by finite difference techniques is plotted 
in Fig. 7 versus the MEM solution. 

The maximum entropy solution, of course, suffers the 
same pathologies as Fourier series solutions due to the na
ture of moment functions. For example, the moment func
tions sin (mrz) are zero at the end points, so that the solution 
is not good near the end points. However, the same tech
niques used to overcome these difficulties in Fourier series 
can be exploited in the MEM approach. A common tech
nique is to write the solution as 

V(z) = V'(z) + V" (z) , (39) 

where V'(z) satisfiesd 2 V'ldr = o and theboundarycondi
tions. Then V" (z) is solved for by the MEM method. 

The values used for b and a in the probability integral of 
Eq. (21) influence the actual solution. The closer [a,b] coin
cides with the actual limits of the function, the better MEM 
results (see Fig. 8). The MEM method truncates the proba
bility distribution outside the limits [a,b], thus by specifying 

0.16 

0.14 

0.12 
N 
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:> 
t/ .J 

0.10 , / 
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- "" ;-: / 

0.08 

0.06 -frrTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT ................ ......t. 
0.00 0.20 0.40 0.60 0.80 1.00 

Z 

FIG. 6. Maximum entropy solution (----) for 12 moments for Eq. (37) 
compared to the exact solution (-). 
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FIG. 7. Maximum entropy solution (----) for eight moments for Eq. (38) 
compared to the exact solution (-). 

[a,b] accurately one is in effect giving more information 
toward the solution. 

VI. CONCLUSIONS 

The MEM yields reasonable solutions to the equations 
tested. The solution generally appears to be better than 
Fourier series approximations for the cases tested and, fur
thermore, the method can be applied to problems where the 
Fourier series cannot be used easily. At this point it is of 
interest to compare strengths and weaknesses of the method. 
The technique is of interest in its own right from a formal 
aspect and the method should have many applications in 
various areas of theoretical physics. An advantage of the 
present technique over finite difference techniques is that the 
amount of work required in the solution is generally less. 
Whereas in the case of finite differences, doubling the num
ber of grid points increases the computation by nd (where d 
is the dimension), in the maximum entropy method the 
work only increases as m d

, where m is the number of mo
ments. So the work savings could be significant. The MEM 
method, like the Fourier series solution, does contain oscilla
tions in the solutions that damp as the number of moments is 
increased; however, the MEM solution appears to be a better 
approximation in many cases for equal moments and expan
sion functions. Another advantage of the MEM solution is 
that additional information can be put into the solution us
ing Lagrange multipliers. For example, if the function is ev
erywhere positive then the probability can be integrated over 
only positive values, thus incorporating this information 
into the solution. As far as weaknesses go, the MEM method 
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FIG. 8. Maximum entropy solution to Eq. (38) versus the finite difference 
solution for various values of b in Eq. (26), b = I (-), b = o. I (----). 

does require the solution of a system of M (number of mo
ments) nonlinear equations for some problems, which is 
more difficult than a system of linear equations. Also, how 
the method will extend to multiple dimensions is not, at pres
ent, known. It does appear that the method can be extended 
to certain classes on nonlinear differential equations. The 
goal of this paper was not to solve extremely complicated 
differential equations, but rather to develop the basis of the 
method. The application of the method to nonlinear prob
lems is an area ripe for further research. 
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Nonlinear eigenvalue problems are considered which are defined by linear homogeneous 
systems of ordinary differential equations, subject to linear homogeneous boundary conditions, 
both depending analytically on a complex eigenvalue parameter w, and on an additional small 
positive parameter E such that all solutions have variation O( E- I ). There is, in general, a 
family of eigenvalues that, in the limit € ..... 0, become densely spaced and form a definite curve 
in the complex W plane (exceptions arise only for some special boundary conditions). This 
eigenvalue curve is constructed for arbitrary nonsingular systems without turning points. It 
depends on no details of the boundary conditions other than their type (i.e., the numbers of 
boundary conditions involving only the left, only the right, or both end points of the interval). 
In the special cases of either only two-point boundary conditions (such as periodicity) or only 
one-point boundary conditions with equally many conditions at each end point, and of 
differential equations involving only even derivatives whose coefficients are constant to leading 
order, the curve is simply given by the roots of the local dispersion relation. The distance of the 
eigenvalues from the curve is O(E) in general, but O(EIII log E- I

), with some positive integer 
I, in special cases. 

I. INTRODUCTION 

In applications of eigenvalue problems one is frequently 
not interested in the precise locations of the eigenvalues, but 
rather only in certain global properties of the spectrum. In 
stability theory, for instance, where the eigenvalue param
eter is the frequency w, one merely wants to know if the 
spectrum extends into the unstable lower half of the complex 
plane; if there is an eigenvalue curve, the question is whether 
this curve crosses the real axis. 

To define eigenvalue curves, we recall that an "eigenval
ue locus" is a curve (or a system of curves) in the complex 
plane on which the eigenvalues are located. If the eigenvalue 
problem depends on a real parameter Esuch that an eigenval
ue locus (or some part of it) becomes densely covered by 
eigenvalues in the limit E-O, and at the same time ap
proaches a definite curve, then we call the latter an "eigen
value curve." Equivalently, an eigenvalue curve is indepen
dent of E, and many eigenvalues are close to any given point 
of it for sufficiently small E. Unlike an eigenvalue locus, an 
eigenvalue curve is unique. It should be stressed that, in the 
limit E-+O, eigenvalues approach one (or severa}), but by no 
means all points of the eigenvalue curve. Also, the curve 
need neither be uniformly approached by a locus, nor need 
the eigenvalue spacing become uniformly small. 

As an example, consider the problem 

d 2y W 
e2 dx2 - I +iE y=O, yeO) =y(1T) =0, (1) 

with eigenvalues 

Wn = (1 + iE)e2n2 (2) 

(n runs through all positive integers). Clearly, the straight 
line ~w = ElJtw is an eigenvalue locus. Although each indi
vidual eigenvalue (fixed n ) approaches the origin in the limit 
E - 0, the entire ray ~w = ElJtw > ° becomes densely covered 
with eigenvalues for small E, implying that the positive real 

axis is an eigenval ue curve. The distance of the eigenvalue W n 

from the curve is 0(~n2), thus being small or large depend
ing on whether n<'E-3/2 or n»E-3/2, and its distance to its 
nearest neighbor is O(e2n), thus being small or large de
pending on whether n<'E-2 or n»€-2. On the other hand, 
eigenvalues are at a distance O(wc€) from any given point 
We> ° of the eigen value curve, and their spacing is O( w !12€) ; 

both this distance and this spacing approach zero if € ap
proaches zero while We is held fixed, but the approach is 
nonuniform in We' 

Eigenvalue curves occur in many branches of math
ematical physics. For instance, any system of ordinary dif
ferential equations, with adequate boundary conditions (as 
the above example), may yield an eigenvalue curve if some of 
its solutions become strongly varying functions of the inde
pendent variable when E becomes small (viz., if derivatives 
carry small coefficients). In the trivial case of problems that 
are linear in the eigenvalue parameter, and self-adjoint, the 
real axis is an eigenvalue locus, implying that the eigenvalue 
curve is a subset of the latter. As to nonlinear and non-self
adjoint problems, eigenvalue curves were discovered both 
numerically I and by asymptotic analyses2

-
9 in the theory of 

small nonideal effects upon normal modes in ideal magneto
hydrodynamics. It appears that these curves are the same for 
different sets of boundary conditions. This property, al
though important because the boundary conditions are often 
not known explicitly/·s has apparently been demonstrated 
only in one special case.7 

In the present paper, we give a systematic discussion of 
eigenvalue curves and their dependence on boundary condi
tions for arbitrary non-self-adjoint systems of ordinary dif
ferential equations that, for simplicity, we assume to have no 
singular points (so that the spectrum is discrete), only 
strongly varying solutions (so that all solutions can be ob
tained using the eikonal expansion), and no turning points 
(so that the eikonal expansion is uniformly valid). We show 
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that the spectrum contains two subsets with different prop
erties: The first subset consists of "special" eigenvalues with 
spacing O( 1 ) that do depend on details of the boundary con
ditions. The second subset yields an eigenvalue curve that 
depends on the boundary condition type, but not on the coef
ficients in the boundary conditions. 

Our analysis is heuristic in that we compute only the 
leading terms of the distance of the eigenvalues from the 
curve, assuming that the given data are entire analytic func
tions of the eigenvalue parameter. Thus we neither carry the 
expansion to higher orders, nor do we discuss its conver
gence or the question to what extent our analyticity assump
tion can be relaxed. 

Our assumptions upon the differential equations are 
rather restrictive because they exclude many cases of inter
est. Nevertheless, we believe that our findings are generic. In 
other words, we conjecture that singularities, turning points, 
or some solutions with finite variation, do not invalidate our 
main conclusion that eigenvalue curves, if they exist at all, 
are independent of details of the boundary conditions. 

II. FORMULATION OF THE EIGENVALUE PROBLEM 

We consider linear, homogeneous, Nth-order (N;p2) 

systems of ordinary differential equations of the form 

dYk N 
E-= I Akl(x,UJ,E)YI (k= 1, ... ,N). (3) 

dx 1=1 

The real parameter E is small and positive, and the coeffi
cients Akl are series in non-negative powers of E. The coeffi
cients of these series are assumed to be complex-valued ana
lytic functions of the independent variable x in a finite real 
interval x I <x<x2 (this excludes singular points), and entire 
analytic functions of the complex eigenvalue parameter UJ. 

The eikonal expansion 10 yields the formal fundamental 
solution matrix 

(4) 

where the amplitudes 'TJkl (X,UJ,E) are series in non-negative 
powers of E, and the phase increments ifJl (x,UJ) are indepen
dent of E. The quantities i¢>1 are the eigenvalues of the leading 
order (A k~» of the matrix (A kl ), and the columns of the 
leading order ('TJi~» of the amplitUde matrix ('TJkl) are 
eigenvectors, 

N 

L (Ai~)-iifJm8kl)'TJl~)=0 (m=1, ... ,N). 
1=1 

(5) 

The norm of these eigenvectors is determined from higher 
orders of the coefficients Akl ; it depends on x, and it has 
singUlarities at "turning points" where not all phase incre
ments are distinct. 

We assume that all solutions of the system (3) are 
strongly varying functions of x, with variation O( E- 1 ), and 
that the matrix (4) is a uniform asymptotic representation of 
an actual fundamental solution matrix (there are no turning 
points), so that its columns represent N independent solu
tions. This amounts to requiring that none of the phase in
crements vanishes identically in both x and UJ [the determi
nant of the leading-order coefficient matrix (A k~» does not 
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vanish identically, and hence the order of the system (3) is 
not smaller than N], and that no two of them are equal at any 
isolated values of x, for any fixed UJ (the discriminant of the 
characteristic polynomial has no isolated zeros). Thus, if 
two phase increments coalesce, they must do so identically in 
x; however, we assume that this happens only for isolated 
values of UJ. Trivial examples of systems meeting our as
sumptions are those whose leading-order coefficient matri
ces are independent of x, and have determinants and discri
minants that do not vanish identically in UJ. 

We impose N boundary conditions of the form 
N 

I [akl(UJ,E)YI(X 1 ) +Pkl(UJ,E)YI(X2)] =0 
1= 1 

(k = 1, ... ,N), (6) 

where the coefficients of akl and Pkl are also series in non
negative powers of E whose coefficients are entire analytic 
functions of UJ. In order that the boundary conditions be 
mutually independent, we require that the rectangular 
(N X 2N) matrix formed by all coefficients akl and Pkl has 
rank N throughout, and in particular for E = O. 

The "boundary condition type" is characterized by the 
ranks Ra and RI3 of the matrices (akl ) and (Pkl)' We as
sume that these ranks are constant (i.e., independent of both 
UJ and E). In order that both end points occur in the bound
ary conditions, we require that neither Ra nor RI3 vanish 
identically. Their sum cannot be smaller than N, and none of 
them can exceed N. Within these restrictions, the ranks are 
arbitrary. The number of boundary conditions involving 
only theleft end point X = XI isNI = N - R13 , that involving 
only the right end point x = X2 is N2 = N - R a , and that 
involving both points is N - N\ - N2 = Ra + RI3 - N. 
Therefore, we may replace the original boundary conditions 
by a linear combination such that Pkl = 0 for 1 <k<N\, 

akl = 0 for N - N2 + 1<k<N, but lakl1 2 

+ ... + lakNl2#0 and IPk/1
2 + '" + IPkNI 2 #0 for NI 

+ 1 <k<N - N 2. The limitations upon the ranks Ra and RI3 
imply that the numbers N\ and N z are restricted by 
O<N\ < N, O<Nz < N, and N\ + Nz<N. 

With the boundary conditions (6), the system (3) con
stitutes a nonlinear eigenvalue problem that yields, in gen
eral (there are exceptions to be discussed), a purely discrete 
spectrum consisting of a countable set of eigenvalues UJ. 

III. ASYMPTOTIC DISPERSION RELATION 

We write the general solution of Eqs. (3) as a linear 
combination of the N fundamental solutions (4), 

YK = I~I C1'TJkl eXP(iE-1.r dXifJl) , (7) 

with coefficients C1 to be determined by the boundary condi
tions (6). The latter can now be written as 

N 

I YkI C/ = 0 (k = 1, ... ,N), 
1= I 

where 
N 

(8) 

Yk/ = I [akj'TJjl(x\) +Pkj'TJjl(x2 )exp(iE- 1<1>/)], (9) 
j= I 
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and 

ct>1 (cu) = iX, dx <PI (x,cu) (l = 1, ... ,N) 
x, 

( 10) 

are the phase integrals. Equation (8) is a system of homoge
neous linear equations for the coefficients CI whose determi
nant D = det( Ykl ) must vanish. Thus the eigenvalues cu are 
governed by the dispersion relation D = O. When written out 
more explicitly, this is 
N-N, 

L L DI""'/Mexp[i€-I(ct>I,+,,·+ct>IM)] =0, 
M=N, 1,<" <1M 

(11) 

where the coefficients DI, ..... I
M 

are homogeneous polynomials 
of the amplitudes 11kl at the two end points of the interval 
and of the coefficients akl and 13kl in the boundary condi
tions; the exponent is defined to be zero if M = 0, and the 
corresponding coefficient is denoted by Do. 

The phase increments are the roots of the characteristic 
polynomial, 

det (A k~) - i<P~kl) = O. (12) 

As functions of cu (i.e., for fixed x), they are therefore repre
sented by the N different sheets of the Riemann surface of 
one analytic function with no singularities other than alge
braic branch points. 10 This is a consequence of the assumed 
analyticity of the coefficients of the differential equations. 
The branch points are those values of cu for which some 
phase increments coalesce. Therefore, any closed path about 
such points yields some permutation of the phase incre
ments. The same is true for the phase integrals because two 
phase increments are assumed to coalesce identically in x if 
they coalesce at all. This implies that the left-hand side of the 
dispersion relation is a power series in € whose coefficients 
are single-valued analytic functions of cu even though the 
various terms of the sum are not. 

The eigenvalues cu are (at least asymptotically) given by 
the formal roots of Eq. (11), with the possible exception of 
branch points [such a point is a root if the dimension of the 
eigenspace of the matrix (A k~» is smaller than the multi
plicity of the phase increment, but is an eigenvalue only for 
special boundary conditions] . 

It should be remarked that the boundary conditions can 
be such that all coefficients D I, •... ,1M vanish identically in cu, 
implying that the spectrum consists of the entire complex 
plane, or that one coefficient is nonzero throughout while all 
others vanish identically, implying that the spectrum is emp
ty. To give an example of such highly degenerate situations, 
we consider the eigenmodes -exp(icut) of the wave equa
tiona 2y/at 2 = ~ a 2y/ax2 (€is the propagation speed) with 
arbitrary one-point boundary conditions. The eigenfrequen
cies cu are governed by the system 

dYI dY2 
€-=CUY2' €-= -CUYI' 

dx dx 
(13) 

subject to the boundary conditions 

YI(O) +a(cu)Y2(0) =0, YI(1) +13(cu)Y2(1) =0, (14) 

where a and 13 are arbitrary analytic functions of cu. The 
dispersion relation [now valid for all values of € because Eqs. 
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( 13) are independent of x] turns out to be 

(1- ia)(1 + i13)exp(i€-lcu ) 

- (1 + ia)(1- i13)exp( - iE-lCU) = o. (15) 

Hence the spectrum covers the entire complex plane if, and 
only if, either a = i and 13 = i, or a = - i and 13 = - i 
(waves propagating from left to right, or from right to left). 
On the other hand, the spectrum is empty if, and only if, 
either a = i and 13 = - i, or a = - i and 13 = i (ingoing 
waves or outgoing waves). Such situations thus do indeed 
occur in applications (for instance, in the theory of drift 
waves in a plasma 11-14). However, since an arbitrarily small 
change of the boundary conditions removes the degeneracy, 
we ignore it in the remainder ofthis paper. 

To relate to common terminology, we remark that the 
relation between the "local wave number" k = E- 1 <P and the 
frequency cu [i.e., the characteristic equation (12) 1 is some
times called "local dispersion relation", 15 as opposed to the 
"global" dispersion relation ( 11 ) . Its roots cu (k,x ) , for real k 
(the "local eigenfrequencies"), are certainly not roots of the 
global dispersion relation ("global eigenfrequencies"), at 
least unless they are independent of x. Accordingly, an un
stable local eigenfrequency (~cu < 0) which is unrelated to 
an unstable global eigenfrequency is said to give rise to a 
"convective" or "transient" instability, 16 as opposed to a so
called "absolute" instability that corresponds to an unstable 
global eigenvalue (the dependent variables grow exponen
tially with time at every point x). Since we consider global 
eigenfrequencies in the present paper, and not local ones, we 
are concerned with absolute instabilities, not with convec
tive ones. 

IV. LEADING TERMS OF EIGENVALUES 

To obtain the leading terms of the eigenvalues cu, we 
need the coefficients DI, ..... I

M 
in the dispersion relation (11) 

only for € = O. In this approximation, the dispersion relation 
depends on E only through the explicit factor €- 1 in the ex
ponents. Hence that term dominates for small € whose expo
nent has the largest real part (the phase integral sum in its 
exponent has the smallest imaginary part). To exploit this 
fact systematically, we divide the cu plane into regions such 
that each term dominates in exactly one region, thus having 
a one-to-one correspondence between the terms in Eq. (11) 
and the regions. This subdivision depends on the boundary 
condition type because the set of competing exponents de
pends on NI and N 2 • At the borderline between two regions 
two of the exponents have equal real parts. Since the differ
ence between two phase integral sums corresponding to ad
jacent regions equals either one of the phase integrals or the 
difference between two of them, an equation of the form 

~(ct>k - ct>/) = 0 or ~ct>k = 0 (16) 

holds at each borderline. In other words, each borderline is 
some part of one of the curves given by Eq. (16). These 
curves depend only on the leading orders of the coefficients 
of the differential equations (3), but what part of a curve is 
borderline depends on the boundary condition type. Differ
ent borderlines may be connected or disconnected, and one 
borderline may consist of several disconnected parts. There 
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may be no borderlines at all (this is the case, for instance, if 
the coefficients A i~) are independent of (J). 

Since no general statement can be made about large 
eigenvalues because these depend on the behavior of the co
efficients of the system (3) and (6) for large (J), we consider 
only eigenvalues O( 1 ) or smaller. For small E, the dispersion 
relation has such roots near the zeros of the coefficient 
D1, .... .!M of the dominating term, and near the borderlines, but 
nowhere else. Hence these roots form two subsets of the 
spectrum: The first subset consists of "special" eigenvalues 
whose leading terms are the zeros of the coefficients in their 
regions. These leading terms are independent of E, and there
fore have spacing O( 1), and they depend on details of the 
boundary conditions. This subset is in general finite (be
cause of our analyticity assumption it may contain infinitely 
many eigenvalues only in a region that extends to infinity). 

To obtain the leading terms of the eigenvalues in the 
second subset, we consider one borderline, thus keeping only 
the two dominating terms of the dispersion relation (11), 
and writing it as 

C1 exp(iE-I~I) + C2 exp(iE-I~2) = 0, (17) 

where ~I and ~2 are the two phase integral sums with the 
smallest imaginary parts. Equation (17) is equivalent to 

(18) 

with an arbitrary integer n. Since the product En is large for 
large n, no matter how small E is, the first term at the right
hand side is not small. However, the second term is small 
unless the boundary conditions are such that ClfC2 has ze
ros or poles at the borderline of interest. Postponing discus
sion of this degenerate situation to Sec. VI (where we show 
that this term can always be dropped), we consider the ap
proximation 

(19) 

which is obviously independent of the details of the bound
ary conditions. Solving this for (J) yields the leading terms of 
the eigenvalues (J)n in the second subset. For small E, these 
eigenvalues are closely spaced, and at a small distance from 
the borderline given by 

(20) 

As already mentioned, this is equivalent to Eq. (16). We 
conclude that the union of all borderlines is the eigenvalue 
curve. 

Equation (19) shows that, in the limit E -+ 0, each indi
vidual eigenvalue (fixed n) either approaches the point 
where ~I - ~2 = ° (if this point is on the given branch), or 
moves to some other branch to approach a similar point 
there, but that there are nevertheless eigenvalues near every 
point of the curve for arbitrarily small E. This is a conse
quence of the nonuniformity in n of the limit E -+ 0, or equiv
alently, of the noninterchangeability ofthe two limits E -+ ° 
and n -+ ± 00: Letting first E -+ 0, and then n -+ ± 00, yields 
the above points, while the opposite procedure yields a point 
where ~I - ~2 = 00; arbitrary intermediate points are ob
tained by letting both E -+ ° and n -+ ± 00, but keeping the 
product En fixed at arbitrary finite values. 
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V. EIGENVALUE CURVES IN SPECIAL SYSTEMS 

To construct the eigenvalue curve of a given system, one 
must solve two problems: First, one must determine, for the 
given boundary condition type, which of the equations (16) 
yield possible branches of the eigenvalue curve. Second, one 
must determine the phase increments as the roots of the 
characteristic polynomial (to compute from these the re
quired phase integrals as functions of (J) ) • 

Due to the complexity of the first problem, we have 
solved this only in some relatively simple cases. We label the 
phase integrals according to the magnitudes of their imagi
nary parts (~<I> 1< ... <~<I> N) in the following list. 

( 1 ) Systems of second order yield the following 
branches (for each possible boundary condition type, their 
equations are separated by commas): 

NI = 0, N2 = 0: ~<I>I = 0, ~<I>2 = 0, (21) 

N1=0, N2 =1: ~<I>2=0, ~<I>I=~<I>2>0, (22) 

NI = 1, N2 = 0: ~<I>I = 0, ~<I>I = ~<I>2 < 0, (23) 

NI = 1, N2 = 1: ~<I>I = ~<I>2' (24) 

(2) In systems of third order, the corresponding equa-
tions are 

NI = 0, N2 = 0: ~<I>l = 0, ~<I>2 = 0, ~<I>3 = 0, (25) 

NI =0, N2 = 1: 

~<I>2 = 0, ~<I>3 = 0, ~<I>l = ~<I>2 > 0, 

NI = 1, N2 =0: 

~<I>I = 0, ~<I>2 = 0, ~<I>2 = ~<I>3 < 0, 

NI = 2, N2 = 0: ~<I>I = 0, ~<I>I = ~<I>2 <0, 

N 1 =1, N2 =1: 

~<I>2 = 0, ~<I>2 = ~<I>3 < 0, ~<I>I = ~<I>2 > 0, 

Nl = 0, N2 = 2: ~<I>3 = 0, ~<I>2 = ~<I>3 > 0, 

NI = 2, N2 = 1: ~<I>I = ~<I>2' 
NI = 1, N2 = 2: ~<I>2 = ~<I>3' 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(3) In systems of arbitrary order, the boundary condi
tion type NI = N2 = ° (only two-point, such as periodicity) 
yields the N branches 

~<I>I =0 (l= 1, ... ,N) (33) 

(one of the N phase integrals is real). 
( 4) In systems of arbitrary order, the boundary condi

tion type NI + N2 = N (only one-point) yields the eigenval
ue curve 

~<I> N, = ~<I> N, + I . ( 34 ) 

If N is even, and if the characteristic polynomial contains 
only even powers of ¢> [this is so, for instance, in the fre
quently occurring case that our system of first-order equa
tions is equivalent to one single Nth-order equation that con
tains only even derivatives of some linear combination of the 
original dependent variables Yk whose coefficients have vari
ation O( 1) ], the phase integrals occur in pairs of oppositely 
equal quantities, and Eq. (34) requires that one of the phase 
integrals is real. Hence the eigenvalue curve is the same as in 
the case of two-pont boundary conditions. 

The second problem, viz., that of finding the roots of the 
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characteristic polynomial (which can be formidable for 
N> 2), can be sidestepped for the two most common bound
ary condition types 2NI = 2N2 = N (standard boundary 
value problems with equally many boundary conditions at 
the two end points), and NI = N2 = 0 (e.g., periodicity), if 
the coefficients A k~) are independent of x (e.g., equations 
with constant coefficients). In these cases the phase incre
ments are also independent of x, implying that the phase 
integrals are proportional to them, and hence that reality of 
<I> k is the same as reality of ¢ k • Instead of solving the charac
teristic equation for ¢, one may now solve it for w. The var
ious branches of the eigenvalue curve are then traced by the 
roots W(¢2) when ¢2 is varied through all positive real 
numbers. In other words, the local dispersion relation yields 
the eigenvalue curve in these cases. Examples arise in the 
theory of small nonideal effects upon magnetohydrody
namic modes with small wavelengths. 7,8 

VI. DISTANCE OF EIGENVALUES FROM EIGENVALUE 
CURVES 

To estimate the distance of the eigenvalues from the 
eigenvalue curve, we now study eigenvalue loci for small E. 

We consider the dispersion relation in the form ( 17 ). Taking 
the magnitudes of its two terms we obtain 

IC1lexp( - iE-I~~l) = IC2 lexp( - iE-I~~2)' (35) 

Since the roots of Eq. (17) satisfy Eq. (35), the latter de
scribes one branch of an eigenvalue locus. This branch con
sists ofsmall closed curves about zeros of the coefficients CI 
and C2 (they have no singularities because of the assumed 
analyticity of the coefficients of the differential equations 
and of the boundary conditions), and of a curve that is near 
the eigenvalue curve. There is at most one closed curve about 
each zero, each of these contains exactly one "special eigen
value." 

To study the approach of the locus to the eigenvalue 
curve, we rewrite Eq. (35) as 

exp(E-l~~) = ICI/C2 1, (36) 

where ~ = ~I - ~2 is either one of the phase integrals, or 
the difference between two of them. Looking at some vicinity 
of some point w = Wo of the curve ~~ = 0, we introduce, 
instead of w, the new complex variable A = ~ (w). This rela
tion can be inverted to yield w as a function of A in some 
vicinity of A = ~(wo) if the derivative d~/dw exists and is 
nonzero at w = WO' Setting aside, for a moment, any critical 
points at which this is not the case, we rewrite Eq. (36) as 

exp(E-I~A) = I"'(A) I, (37) 

where", is a given function that is determined by the bound
ary conditions. Regarding VU as given, we look for a solution 
~A that is O(E), thus expanding it in powers of E. Then, to 
leading order, 

exp(E-I~A) = I"'(~A) I, 
or, equivalently, 

~A = E 10gl"'(~A) I + O(~). 

(38) 

(39) 

Hence this part of the eigenvalue locus is indeed at a distance 
O( E) from the eigenvalue curve as long as the function "'(A) 
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has neither zeros nor poles at the real axis, or equivalently, as 
long as neither of the functions CI (w) or C2 (w) has zeros at 
the eigenvalue curve. 

Thus the expansion in powers of E fails near a special 
eigenvalue that happens to approach the eigenvalue curve in 
the limit E-+O, and must be replaced by a different approxi
mation. To treat such critical points (which occur only for 
special boundary conditions), it suffices, because of the sym
metry of Eq. (35), to consider zeros of CI. Thus assuming 
that C1 has a zero of order m for w = wo, and that 
Ao = ~(wo) is real, we set A = Ao + A with small A, and ap
proximate Eq. (37) by 

exp(E-I~A) = ciA 1m, (40) 

where c is a given positive number. The two equations (38) 
and (40) coalesce if I ru I ~ I ~A I ~ 1, indicating that their 
ranges of validity overlap: Indeed, for small values of I~A I 
Eq. (40) must be used, for some intermediate values both 
equations are valid, and for large values only Eq. (38) is 
valid. Solving Eq. (40) for (~A) 2, we see that this is a mono
tonically increasing function of ~A. It vanishes at some small 
negative value of ~A which we denote by - d, and it attains 
finite values (thus invalidating the equation) long before ~A 
reaches zero. Hence d is the relevant maximum of I ~A I, and 
solves the equation 

exp(-E-Id)=cd m . (41) 

Since the left-hand side of this equation is a decreasing func
tion of d while its right-hand side is increasing, there is exact
ly one solution. As one verifies by substitution, this solution 
is 

d = (m/2)E log E- I + O(E log log E- I). (42) 

Since d approaches zero slower than E, we conclude that the 
eigenvalue locus peaks away from the eigenvalue curve 
towards a special eigenvalue that approaches the curve in the 
limit E-+O. 

The foregoing analysis fails at an intersection of several 
branches of the eigenvalue curve because three or more 
terms in the dispersion relation (11) dominate, and the lat
ter does not reduce to Eq. (17). It also fails where one 
branch of the eigenvalue curve intersects itself (the deriva
tive d~/ dw is zero there), and at a branch point of the phase 
integrals where several phase integrals coalesce (d~/dw di
verges). At such points the function ~(w) cannot be invert
ed, and Eq. (37) is not valid. We state without proof that 
Eqs. (39) and (42) remain valid at intersections of several 
branches and at branch points of the phase integrals, but are 
replaced by 

~A = O(EIII), (43) 

and 
~A = O(ElIllog E- 1), (44) 

at a point of self-intersection of degree I. This shows that the 
approach to the eigenvalue curve can be arbitrarily slow in 
special cases. 
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The classical equations of motion for the Hamiltonian H = ~~ ~O (y!12 + u!/x!) (where 
~J.lx! = 1, YJ.l is the conjugate momentum to xJ.l' and uJ.l is constant) are solved by separation 
of variables, in spherical coordinates, in the Hamilton-Jacobi equation. This flow is related to 
the one obtained from the projection of geodesic (free) flow on the sphere $2n + 1. Wave 
functions for the quantum case together with the level degeneracy for the generic case uJ.l #0 
are also given. 

J. INTRODUCTION 

The purpose of this work is to analyze the classical and 
quantum equations of motion in spherical coordinates for 
the Hamiltonian 

n (1 u
2 

) H= I -Y! +-f 
J.l~O 2 xJ.l 

( 1.1) 

defined on the phase space T*sn, where sn is the n-dimen
sional sphere, YJ.l is the conjugate momentum to Xli' UJ.l is 
constant, and 

( 1.2) 

The above Hamiltonian is a particular case of the so-called 
Rosochatius Hamiltonian, having an additional "harmonic" 
term ~aJ.lx!, which has been known since the 19th century. 1 

It recently received more attention because of its complete 
integrability2 and, in opposition to a wide variety of integra
ble systems such as the Toda lattice, Korteweg-de Vries 
equation, or sine-Gordon system, its finite-dimensional un
derlying Lie algebraic structure.3 Those properties made the 
Hamiltonian (1.1) an interesting simple example to study 
the link between the theory of a completely integrable Ham
iltonian system and that of Lie groups and Lie algebras.4 In 
particular, it served, in a recent work,5 to illustrate how it is 
possible to unify the geometrical and algebraic structure 
shared by many Hamiltonian systems. 

In fact, the Hamiltonian ( 1.1 ) can be obtained from the 
free one 

(1.3 ) 

defined on the phase space T * S 2n + 1, where P/i = Y J.l + iZ/i 
are the conjugate momentum to the complex Cartesian co
ordinates {WJ.l = sJ.l + itJ.l} on cn + 1 and 

I W! = 1, I( WJ.lPJ.l + WJ.lPJ.l) = 0, (1.4) 
J.l J.l 

by applying the Weinstein-Marsden reduction method6
.7 of 

a) Present address: Laboratoire de Recherches en Optique et Laser, Depar
tement de Physique, Universite Laval, Cite Universitaire, Quebec GIK 
7P4, Canada. 

the phase space (see Ref. 8 for a reduction from CP'). It 
follows that the free flow of ( 1.3) on S 2n + 1 given by 

WJ.l = wJ.l cosls It + uJ.l sinls It, 

PJ.l = - Is IwJ.l sinls It + Is luJ.l cosls It 

can be projected on S n to give5 

x! = I WJ.l1
2 

= w! cos2 1s It + IUJ.l12 sin2 1s It 

(1.5 ) 

+ 2W/i Re uJ.l sinls It cos Is It, (1.6) 

where wJ.lER, UJ.lEC, and, in view of (1.4), 

( 1.7) 

The constants uJ.l in (1.1) appear to be the invariants asso
ciated with the geodesic flow on S 2n + 1 and are related to the 
parameters wJ.l' uJ.l' and Is I by5 

uJ.l=(lsl/~)wJ.lImuJ.l' (1.8) 

On the other hand, one can obtain the flow in a more classi
cal way by solving the Hamilton-Jacobi equation by separa
tion of variables in, for example, elliptic coordinates.5 This 
leads to hyperelliptic integrals and to a Jacobi inversion 
problem. The authors established the link between the geo
metric notion of reduction by symmetries and the algebraic 
linearization of the flow on a Jacobi variety.5 

Here we propose (Sec. II) to make a similar study for 
spherical coordinates. The problem thus appears simpler 
since we can solve the integrals of the action-angle variables 
directly without all the mathematical tools of the Jacobi in
version problem. The link between the two methods will be 
made by relating the two sets of parameters involved. Fur
thermore, we will take advantage of the simple form of the 
flow ( 1.6) to investigate the conditions of "plane" trajector
ies on S2. 

In Sec. III, we present the solution of the quantum prob
lem associated to ( 1.1 ) and give the degeneracies of the ener
gy levels. Finally, some conclusions and future outlook are 
given in the last section. 

II. THE CLASSICAL PROBLEM 

A. Solution of the Hamilton-Jacobi equation 

We introduce the spherical coordinates on the n-dimen
sional sphere sn as9 

313 J. Math. Phys. 30 (2), February 1989 0022-2488/89/020313-05$02.50 © 1989 American Institute of Physics 313 



                                                                                                                                    

Xo = sin <Pl" . sin <Pn-I sin <P", 
Xl = sin <Pl" 'sin <P" _ I cos <P", 
X2 = sin <PI .. 'cos <P" - I' 

X" _ I = sin <PI cos <P2, 
(2.1) 

Xn = cos <PI' O<"<Pn <21T, O<"<Pk <1T (k =l=n). 

This permits us to separate the Hamilton-Jacobi equation 

(2.2) 

where 
n 

S= L S;(<p;) (2.3 ) 
i= 1 

is the generating function. 
We obtain the n equations 

i= 1, ... ,n, (2.4) 

(2.5) 

where 1"0 i = 1, ... ,n, are real integration constants. 
Substituting (2.9) into (2.1) gives the solution of the 

classical equations of motion for the xI' 's in a less compact 
form than (1.6). We shall now relate those two equivalent 
expressions. 
B. Relation between the classical and projected flows 

The task is now to relate the set of 3n + 1 parameters 

{po uo,Uo1";, i = 1, ... ,n} (2.10) 

involved in the Hamilton-Jacobi equation, to the set 

(2.11 ) 

constrained by (1.7), of the projection method. 
A part of the work has already been done in view of 

relation (1.8); so only the P;'s and the 1";'S will now retain 
our attention. 

Substituting relations (1.6) and (2.9a) in Eq. (2.1) for 
x~, we obtain by simply identifying coefficients, a relation 
for PI' P2, and 1"1 (see Ref. 10): 

PI = ~lsI2, 

sin 1"1 =PI(W~ -lvn I2) 

(2.12) 

(2.13 ) 

X([ (PI + P2 - U~)2 - 4PIP2] 1/2)-1. (2.14) 

So we see that the parameter 1 S 12 is, in fact, the energy of the 
system. 
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is the potential associated to the coordinates <Pi and 

Pn+I=U~, 

The others Pi'S are separation constants. 

(2.6) 

Treating the P; 's as the new momenta, we obtain, for the 
conjugate variables Q;, 

Q.= as =_1 J [P - V(..I..)]- 1/2 d..l.. 
• aP

i
,j2 • • '1'. '1'. 

1 J 1 
,j2 sin2 <P; _ I 

X[P;_I - V;_d<p;_I)]-1/2d<p;_1 

=/);It, i= 1, ... ,n, (2.7) 

where /)i1 is the Kronecker symbol. 
The integrals in (2.7) are easily performed by the substi

tution X = sin2 <P; and by observing from (2.4) and (2.5) 
that 

(2.8) 

We obtain, for the coordinate <PI' 
sin2 <PI = (1I2PI )[PI + P2 - u~ + [(PI + P2 - U~)2 

- 4PIP2] 1/2 sin(2~2Plt - 1"1)] 

and for <Pj' I;p 2, 

(2.9a) 

(2.9b) 

The approach used to find (2.12)-(2.14) becomes, 
however, more and more cumbersome for Xn _ 1""'Xo' We 
found the following one more efficient. 

To obtain the separation constant ~ (j = 2, ... ,n 
- 1), we evaluate (2.4) at t = O. Remembering that 

as. . 
_1 = <Pj(t), (2.15) 
a<pj 

we get the ~j 's by differentiating the last (n - 1) relations in 
(2.1 ). Substituting into (2.4) and evaluating at t = 0 with 

(2.16 ) 

W
2 

sin2<p.(0) = 1- n+l-j (2.17) 
1 (l-w~)n~:::~sin2<pi(0)' 

we obtain a recurrence relation giving Pj + I in terms of Pj : 

~+I =(1-W~_j+I)~ 

_ltt{[ 2 . (_j-2 2 .)3]-1 
2 wn - 1 + I 1 i~O W n - s 

X[(I-:t: W~_i)Wn_j+1 Reun_j+1 
+ w~_j+ I ReCt: Wn_ iUn_;) r 
+ (1 - ~t~ w~ _; )Im2 Un _j+ I}' j = 2, ... ,n - 1. 

(2.18 ) 
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The last parameters to be related to those in (3.2) are the 
'Tj'S, j = 2, .. . ,n. This can clearly ~e d~ne by an iterative p~o
cedure using the last n - 1 relations 10 (2.1) together with 
(2.9), all evaluated at t = O. The result involves the constant 
p. and u already related to the parameters (2.11). The , IL' 
relations are long and will not be given here. 

The fact that the two sets of parameters (2.10) and 
(2.11) can be related shows explicitly the equivalence 
between the flow (1.6), obtained by the projection method, 
and the classical equations of motion (2.1) and (2.9). 

C. Plane trajectories on 52 

We already see from (1.6) or (2.9) that all the trajector
ies are closed because of the trigonometric functions. Now 
an interesting physical question is to ask for which condi
tions a trajectory can live in a plane in Rn + I. For simplicity, 
let us restrict to n = 2. 

We calculate the tangent vector at each point of the pa
rametric curve (1.6) and ask for what conditions will the 
vector product of any two of these tangent vectors always 
point in the same direction, though not always necessarily 
with the same norm (this is equivalent to imposing a vanish
ing torsion of the curve by using Frenet's formula II). The 
condition is that the ratio between the vector product's com
ponents must be constant. Thus fixing one of the tangent 
vectors at t = 0, we must have 

x 2 (t)Re Vo - xo(t)Re v2 

= CI(x2 (t)Re VI - XI (t)Re v2 ), (2.19a) 

XI (t)Re Vo - xo(t)Re VI 

= C2(x2(t)Re VI - XI (t)Re v2 ), (2.19b) 

where CI and C2 are constants. Treating x2 as independent of 
Xo and X I (Le., trajectories are not restricted to a sphere), the 
less restrictive condition imposed by (2.19a) is 

XI Re Vo = Xo Re VI' (2.20) 

Thus the vector product has only two independent compo
nents and relation (2.19b) becomes irrelevant; in other 
words, it is satisfied for C2 = O. 

Obviously, the two relations 

x2 Re Vo = Xo Re V2 , (2.21) 

XI Re v2 = x 2 Re VI (2.22) 

also satisfy (2.19). Each of the last three relations is neces
sary to have a free plane trajectory in R3 but not sufficient if 
the particle moves along a closed path on a sphere. The com
plete conditions will be given by the explicit form of the flow 
( 1.6) that contains all the information about the restriction 
to the sphere and the effect of the potential. In fact, integrat
ing (2.20), we get 

X I Re Vo = Xo Re V I + K, (2.23 ) 

where we show by substituting (1.6) and identifying inde
pendent coefficients that K = 0 and 

(2.24a) 

(2.24b) 

Similar relations exist for (2.21) and (2.22) with an appro
priate change in indices. Remembering that w

lL 
fixes the ini

tial position, Re v
lL 

the initial speed, and 1m v
lL 

(once w
lL 

is 
fixed) the magnitude of the potential [see (1.8)], we see that 
relations (2.24) impose conditions on these quantities in or
der to have a plane trajectory. 

According to (2.23), the projection of the trajectories 
on the (xl,XO) plane is a straight line passing through the 
origin. Thus the plane (oscillating) trajectories follow a seg
ment of a great circle restricted to an octant if u

lL 
#0, 

J.l = 0,1,2, to a quadrant if one u/L vanishes, and to a hemi
sphere if two vanish (the potential repels away from the co
ordinate planes). Obviously, for V = 0, the plane trajector
ies are great circles. 

III. THE QUANTUM PROBLEM 

The separation of variables for the Schrodinger equation 

n [ I a 2 u
2 

] n L ---2 +-f- ,p=E,p=KI,p, ,p= II ,pi(¢i)' 
IL~O 2 aXIL Xp. 1= I 

(3.1) 

in spherical coordinates (2.1) yields the set of n ordinary 
differential equations (ODE's) 

___ " + K ___ 0__ I ,p =0, 1 d
2
,p [ u

2 
U

2
] 

2 d¢~ "sin2 ¢n cos2 ¢n n 
(3.2a) 

1 d 2,pn_k k d,pn_k - +----
2 d¢~_k 2tan¢n_k d¢n_k 

[K Kn - k + I ui + I ] .1. - 0 + n - k - • 2 - 2 'l'n - k - , 
sm ¢n-k cos ¢n-k 

k = I, ... ,n - 1, (3.2b) 

where Ki' i = 2, ... ,n, are positive separation constants since 
all separated potentials are positive wells. 

We set 

2u! = mJl (m,.. + 1), mIL >0, (3.3) 

in both equations. Note that mIL is not a quantum number 
since it is fixed from the "outside" by the values of the con
stants in the potential. 

Relation (3 .2a) is the Schrodinger equation for the well
known Posch I-Teller potential,12 which recently received 
particular attention in connection to the application of alge
braic methods to scattering. 13,14 The two independent solu
tions for u~ > 0 and u~ > 0 can be given in terms of the hyper
geometric function F (see Ref. 15): 

{
sin"'" + I ¢n cosm

, + I ¢n F(a,b,c,sin2 ¢n), 

,pn sin - "'" ¢n cosm, + I ¢n F( I + a - c,l + b - c,2 - c,sin2 ¢n)' 

where 

(3.4 ) 

(3.5) 
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a,b = ! (mo + m 1 + 2 + ~ 2Kn ), 

c= mo +~. 

(3.6) 

(3.7) 

Only (3.4) is bounded at ¢n = 0, ± 1T, ± 21T, ... . Further
more, by using appropriate identities, one can see that the 
behavior of (3.4) for ¢n --+ ± 1T/2, ± 31T/2, ... is 

r(c)r(a+b-c) . m +I¢ -m ¢ --':.......:.....-.:.----'- stn " cos'. 
r(a)r(b) n n 

(3.8) 

To avoid the divergence, we must truncate the hypergeome
tric series by imposing 

a= -m, m=0,1,2, .... (3.9) 

This leads to the relation 

2Kn = (2m + mo + m 1 + 2) 2 (3.10) 

and permits us to give 1/1n in terms of the Jacobi polynomials 
as 

(3.11 ) 

where A is a normalization constant. 
Finally, the periodicity 1/1n (¢n) = 1/1n (¢n + 21T) im

poses that 

mo + m 1 = 1,2,3,... . (3.12) 

The case Uo = 0, uf > ° may be transformed to the case 
mo = m I by the identity 

1 [ 1 
cos2 ¢n ="4 sin2 (¢n!2 -1T/4) 

+ 1 ] 
cos2(¢n/2 -1T/4) . 

(3.13) 

The solution is then given in terms of the Gegenbauer poly
nomials as 

1/1n (¢n) = A cosm, + 1 ¢n C::;' + 1 (sin ¢n), m l = 1,2,3, ... , 
(3.14 ) 

with 

2Kn = (m + m1 + 1)2, m = 0,1,2, .... (3.15 ) 

Similarly, for the case U6 > 0, u 1 = 0, we obtain 

1/1n(¢n) =Asinm,,+I¢n C::;,,+I(cos¢n), mo= 1,2,3, ... , 
(3.16) 

with 

2Kn = (m + mo + 1)2, m = 0,1,2, .... (3.17) 

Finally for Uo = u 1 = 0, we have the two obvious indepen
dent solutions 

cos m ¢n' 

sin m ¢n' 

with 

2Kn = m2, m = 0,1,2, ... , 

(3.18a) 

(3.18b) 

(3.19 ) 

since this is the only case giving two independent bounded 
solutions. 

To solve Eqs. (3.2b) we set, together with (3.3), the 
identities 

2Kn_ k =Pn-k(Pn-k + k), Pn_k>O, 

2Kn_ k+1 =Sn-k+l(Sn-k+l +k-l), 

(3.20) 

sn_k+I=0,1,2,.... (3.21) 

Note that Sn _ k + 1 is fixed by the value of Kn _ k + 2 found 
from the (k - l)th ODE in the series (3.2) and is always a 
non-negative integer. The two independent solutions can 
still be given in terms of the hypergeometric function as 

(3.22) 

{
tan·n

_
k

+
1 ¢n-k cosPn - k ¢n-k F(a,b,c, - tan2 ¢n-k)' 

1/1n-k(¢n-k) = k+'n_k+I-1 Pn-k 2 
cot ¢n_kCOS ¢n_kF(I+a-c,l+b,-c,2-c,-tan ¢n-k), (3.23) 

where 

a=!(Sn_k+l -Pn-k +mk+1 + 1), 

b=!(Sn_k+1 -Pn-k -mk+I)' 

C=Sn_k+1 +!(k+ 1). 

(3.24) 

(3.25 ) 

(3.26 ) 

For the case m k + 1 > ° and Sn _ k + I >0, only (3.22) is 
bounded at ¢n _ k = 0, ± 1T, ± 21T, ... [note that (3.22) coin
cides with (3.23) for sn-k+1 =0 and k= 1]. For 
¢n- k = ± 1T/2, ± 31T/2, ... , thehypergeometricfunctiondi
verges while the factor tanS ¢ cosP ¢ = sins ¢ cosP - S ¢ con
verges for p>s. We thus have to truncate the hypergeometric 
series by imposing 

Sn _ k + 1 - Pn - k + m k + I + 1 = - 2/n - k' 

In_ k =0,1,2, .... (3.27) 

This yields the relation 
2Kn_ k = (2In_ k +Sn_k+1 +mk+1 + 1)(2/n_ k 

(3.28 ) 
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I 
Finally, the bounded solutions can be written in terms of the 
Jacobi polynomials as 

1/1n-k(¢n-k) 

=A sins,,-,+ I A. cosm, + 1+1 A. 
'l'n-k 'l'n-k 

X P (s" -, + 1 + (\/2)(k - n,m, + 1 + 112)( 2A. ) 
I" _, cos 'l'n - k • 

(3.29) 

Equation (3.29) satisfies 1/1(¢) = 1/1(¢+ 21T) ifSn_ k +1 
+ m k + 1 + 1 is an integer; thus m k + 1 EZ+. 

The last case to be solved is when Uk + 1 = 0. Let 
mk+ 1 = - 1 in (3.22) with 

Sn_k+1 -Pn-k = -In_ k , In_ k =0,1,2, .... ( 3.30) 

In fact, one ofthe two numbers (s - p)/2 or (s - P + 1 )/2 
will be a nonpositive integer, so the hypergeometric series 
will be truncated. The eigenvalue Kn _ k is then given by 
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and the bounded wave function by 

XF n-, n-
(
-I k I-I k 

2 2 
,Sn - k + 1 

k+l 2,1.) +-2-' -tan 'f'n-k , (3.32) 

which can be reduced to the form 16 

T/ln-dtPn-k) 
=A sin(lIZ)(i-k) tPn-k 

P
Sn_k+I+(i/2)(k-1) (,I. ) (333) X in_k+Sn_k+I+(i12)(k-1) COS'f'n_k , . 

where Pis the associated Legendre function. For k = 1, we 
recognize the classical spherical harmonics. 

The energy level can be calculated in terms of Ik _" and 
m by simply substituting the different iterative values for the 
K;'s. For example, in the generic case mf' #0, 11 = O,I, ... ,n, 
we have 

2K n = (2m + mo + m 1 + 2) 2 = s~ , 
2Kn _ 1 = (21n _ 1 + sn + m 2 + 1) 

X(2In _ 1 +sn +mz+2) 

=Sn_I(Sn_1 + 1), 

2Kn _ 2 = (21n _ 2 + Sn _ 1 + m3 + 1) 

X(2In_ 2 +sn_1 +m3 +3) 

= Sn-2 (Sn_2 + 2), 

2K2=(2/2+s3+mn_1 +1)(2/2+s3+mn_ 1 +n-l) 

= S2(SZ + n - 2), 

2E= 2K 1 = (211 + S2 + m n + 1) (211 + S2 + m n + n), 
(3.34) 

which yields 

2E= (2:t: Ik + 2m + f'to mf' + n + 1) 
X (2:t: Ik +2m+ f'to mf' +2n). (3.35) 

with Ik , m = 0,1,2, .... 
Relation (3.35) shows that the degeneracy corresponds 

to that of the n-dimensional isotropic harmonic oscillator; 
i.e., the levels are degenerated according to the dimensions of 
the symmetric irreducible representations of SU (n). 

IV. CONCLUSION 

The Hamiltonian ( 1.1) has been solved by separation of 
variables in spherical coordinates for the classical and quan-
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tum cases. We related the two sets of parameters involved in 
the projected flow and the classical equation of motion to 
state the equivalence between the projection method and the 
Hamilton-Jacobi equation. We also found the conditions for 
degenerate classical trajectories, i.e., plane trajectories on 
the sphere S2. We saw that the only possible cases are seg
ments of great circles. Finally we gave the general wave func
tion on S n for the quantum Hamiltonian in spherical coordi
nates. This last result may be the starting point of a future 
work that could consist of comparing the solution of the 
Schrodinger equation to the one obtained by the geometrical 
quantification method. 17 Finally we plan to make an analysis 
similar to that above for a different class of integrable sys
tems already obtained from the Hermitian hyperbolic space 
HH (n) (see Ref. 18) (rather than S 2n + 1 or CP") by quo
tienting the phase space by the maximal Abelian subgroups 
of SU (n, 1). All the systems can be integrable by the group 
projection method as well as other classical ones. 
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An elementary particle is defined as a mechanical system whose kinematical space is a 
homogeneous space of the Poincare group. Lagrangians for describing these systems depend on 
higher-order derivatives and some of them are analyzed. For bradyons the Lagrangian depends 
on the acceleration and angular velocity of the particle and is characterized by two parameters 
m and s, the rest mass and absolute value of spin, respectively. In general the spin is of 
kinematical nature, related to the rotation and internal orbital motion of the system. Two 
different kinds of bradyons appear according to the spin structure. One has a spin related to 
the generalized angular velocity while the other is a function of the generalized acceleration. 
Photons are massless particles with spin lying along the direction of motion and energy hv, 
where v is the frequency of its rotational motion. Particles moving in circles with velocity c in 
their center of mass frame are also predicted, showing a Dirac-type Hamiltonian. There also 
appear particles with tachyonic orbital motion whose center of mass has bradyonic motion. 
Transformation properties under space and time reversal are also analyzed. 

I. INTRODUCTION 

Many attempts can be found in the literature to describe 
classical spinning particles, which in general endow the 
point particle with some additional degrees of freedom to 
give account of the spin structure. I 

Recently,2 the possible internal spaces that, in addition 
to the space-time position variables, describe spinning parti
cles, have been completely classified and analyzed. 

In the approach we present here we shall describe struc
tured particles by adding some extra degrees offreedom and 
by allowing the Lagrangian to depend on higher-order de
rivatives. Lagrangian theory was generalized by Ostro
gradsky3 and since then several contributors have claimed to 
consider generalized Lagrangians for studying generalized 
electrodynamics4 and the classical spinning particle. 5 

We are thus basically working in a generalized Lagran
gian formalism, in which dependence on higher-order de
rivatives is assumed, and which is sketched in Sec. II. How
ever, we assume that the dynamics is based upon the 
knowledge of the action function of the system, which is a 
real function defined on X XX, where X is the kinematical 
space of the system that will be conveniently defined and that 
is in general different from the configuration space and the 
phase space of the system. This means that a particular path 
followed by the system can be expressed in terms of end
point conditions in X space, as in Feynman's approach. 
Physical considerations lead us to define in Sec. II C an ele
mentary particle as a system for which X is a homogeneous 
space of the kinematic group G. This statement restricts the 
dependence on higher-order derivatives to the G structure. 
In this work G will be the Poincare group 9 • so that X is at 
most ten dimensional, implying that the Lagrangian depen
dence on the derivatives is at most on the acceleration and 
angular velocity of the particle. 

The remainder of this work shows that the proposed 
formalism is not empty, by explicitly constructing several 
Lagrangians. In order to work out a specific X space we 
present in Sec. III a useful Poincare group parametrization. 

where the parameters are the relative velocity and orienta
tion and the space and time translation among inertial ob
servers. 

In Sec. IV we study the simplest case. that of a point 
particle. obtaining the habitual results, but preparing the 
ground for further applications. In Secs. V and VI we ana
lyze two particular Poincare homogeneous spaces: the most 
general bradyon and the kinematical space of particles that 
travel at the speed oflight. In the first. two kinds of particles 
come out according to the kinematical structure of their 
spins. In the second group we have found the photon with its 
properties of having no transversal spin arriving at H = hv 
for the expression of its energy. where v is the frequency of its 
rotational motion along the spin direction. 

However. we have also found particles that, although 
they travel at the speed oflight, have a center of mass with a 
straight bradyonic motion with constant velocity below c. 
For these particles we have found a certain analogy between 
their Hamiltonian and Dirac's Hamiltonian. and a particu
lar Lagrangian has been analyzed. In Sec. VII particles with 
internal orbital tachyonic motion are considered, having a 
center of mass that travels at velocity u<c. Section VIII is 
devoted to the analysis of the previous Lagrangians under 
the discrete symmetry operations of time and space inver
sion. 

II. GENERAL FORMALISM 

A. Generalized Lagrangian systems 

Although the generalized Lagrangian formalism is well 
known. we shall sketch it briefly in order to enhance the role 
of the manifold X. the kinematical space of the system. and 
the action function on X XX. which are defined later. 

Let us consider those mechanical systems of n degrees of 
freedom that can be described by means of a generalized 
Lagrangian function L(t.qis) (t»). i = l •...• n. s = O,l, ... ,k. 
which depends on the time t and on the n generalized coordi
nates q; (t). and their derivatives up to order k. Here 
qisl(t) =d'q;(t)/dt s

• 
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The action functional is defined as 

A [q(t)] = r L (t,q}S) (t) )dt, 
J" 

(2.1 ) 

where the condition that A be extremal for the class of paths 
q;(t) with fixed end points [i.e., with fixed values q}S)(t,), 
qlS) (t2), i = 1, ... ,n, s = 0, 1, ... ,k - 1] implies that the func
tions q; (t) must necessarily satisfy the Euler-Lagrange dy
namical equations.6 

~ (- 1)S ~ ( JL ) = 0, i = 1, ... ,n. (2.2) 
s~o dt S JqlS) 

A generalization to systems for which the order k is 
different for each generalized coordinate q; can be obtained 
easily, but in this work we shall consider for simplicity the 
same order k in all variables. 

Existence and uniqueness theorems imply that a partic
ular solution of this 2k th-order system (2.2) is determined 
by giving the 2kn valuesq}S)(t) i = 1, ... ,n, s = 0,1, ... ,2k - 1, 
at the initial time t I' If we fix end-point conditions, i.e., the 
values qlS)(lI) and q}S) (t2), i= 1, ... ,n, s=O,I, ... ,k-l, 
there will not exist, in general, a solution of (2.2), although 
the variational problem (2.1) leads to the system (2.2) for 
the class of paths with fixed end-point conditions. However, 
if there exist solutions, perhaps non unique, with fixed end 
points, this means in some sense that the above initial condi
tions at time t I can be expressed, perhaps in a nonuniform 
way, in terms ofthe end-point conditions. Thus a particular 
solution is finally expressed as a function q;(t;qj') (11)' 

qj')(t2»), j= 1, ... ,n,s=O,I, ... ,k-l, of time and of2kn in
dependent parameters, related to end-point conditions, and 
we shall consider from now on those mechanical systems for 
which this holds. A generalized Lagrangian formalism and 
the existence of solutions with fixed end-point conditions are 
the basic assumptions of the formalism we propose. 

By considering this particular solution, the action func
tion is defined as the value of the functional (2.1) for this 
particular path. Thus the action function becomes a function 
of 2 (kn + 1) independent variables 

A (t1,q}S) (II );t2,qlS) (t2») 

=A(XI,X2), i= 1, ... ,n, s=O,I, ... ,k-l, 

with the property A(x,x) = 0. 
Definition: We shall call kinematical variables of the sys

tem to the time t and the n generalized coordinates and their 
derivatives up to order k - 1 qlS), S = 0, 1, ... ,k - 1, and they 
will be denoted by x j , j = O,I, ... ,kn. The (kn + 1 )-dimen
sional manifold spanned by the kinematical variables is 
called the kinematical space of the system X. 

If the trajectories are written in parametric form 
{t( 1'),q( 1')}, in terms of some evolution parameter 1', the 
Lagrangian can be expressed in terms of the kinematical 
variables and their first l' derivatives, and (2.1) appears: 

A [( 1'),q( 1')] = r·' L (X( 1'), ~(1') )i( 1')d1' 
J, t( 1') 

= .Ci:(X(1'),X(1'»)d1', (2.3) 

where i: = Lt( 1'). 
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Although (2.3) looks like a first-order system of kn + 1 
degrees of freedom, we see that there exist among the 
kinematical variables (k - l)n nonholonomic differential 
constraints qlS)(1') =qls-l)(1')ltl(1'), i= l, ... ,n,s 
= 1, ... ,k - 1, where the overdot means a 1'derivative. 

We can see7 that·the function i: is 1'independent and 
homogeneous of first degree in terms of the derivatives of the 
kinematical variables giving rise to a further constraint 

LA ai:.]. F ( .).]" (2.4) = -" x = "X,X x , ax] J 

which, together with the (k - l)n differential constraints, 
reduces to n the number of independent variables. The ac
tion functional in the form (2.3) is also independent with 
respect to parametric transformations, and the functions 
Fj (x,x) are homogeneous functions of zero degree in the 
derivatives of the kinematical variables. 

Conversely, if the system is described by the knowledge 
of the action function A(XI,X2), which is assumed to be a 
continuous and differentiable function of the kinematical 
variables of the initial and final points, then the Lagrangian 
can be obtained by the limiting process: 

LA l' JA(x,y).]" = 1m X. 
y_x Jyj 

(2.5) 

This can be seen from (2.3) by considering two close 
points and thus 

A (x( 1'),x( l' + d1'») = A (x( 1'),x( 1') + x( 1')d1') = i: d1'. 

By making a Taylor expansion of A, taking into account the 
condition A (x,x) = 0, we get (2.5). 

The function of the kinematical variables and their de
rivatives (2.5) together with the homogeneity condition 
(2.4) and the differential constraints among the kinematical 
variables reduces the problem to that of a system of n degrees 
offreedom, where its Lagrangian is a function of the deriva
tives of the generalized coordinates up to order k. From now 

A 

on we shall delete the caret over the function L, and we shall 
consider systems for which trajectories are written in para
metric form. 

What we want to emphasize is that the important dy
namical object of the theory is the action function. Its knowl
edge determines by (2.5) the Lagrangian L, and thus the 
dynamical equations (2.2). Here A (x I'X2 ) characterizes the 
dynamics globally. We have a similar situation in the quan
tum scattering theory, in which the dynamics is globally con
tained in the S matrix. The Feynman path integral approach 
links both formalisms by relating the action function for a 
particular path with the phase of the corresponding proba
bility amplitUde. In quantum mechanics all paths can be fol
lowed, so that we have to add the corresponding probability 
amplitudes; while in classical mechanics the variational for
malism singles out just one path, and thus the action func
tion for that path contains the required dynamical informa
tion. 

B. The relativity prinCiple 

Let G be the kinematical groupS that acts transitively on 
the space-time Y as a transformation group. The group G 
defines the class of equivalent observers, called inertial ob-
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servers, for which the laws of physics are the same, and we 
shall assume that a realization of G on the kinematical space 
of the system X is known. 

The invariance of the dynamical equations for two iner
tial observers 0 and 0' related by a transformation gEG, 
implies9 that the action function must transform according 
to 

A (gx"gx 2 ) = A(x"x2 ) + a(g;x2 ) - a(g;x,), (2.6) 

where a(g;x) is a function defined on G XX, which verifies, 
for all g,g'EG, and all xEX, 

a(g';gx) + a(g;x) - a(g'g;x) = s(g',g), (2.7) 

where s(g',g) is an exponent of G.IO 
This function a (g;x) is called a gauge function for the 

group G and the kinematical space X. Different mechanical 
systems with the same kinematical space X can be character
ized by different gauge functions. 

From (2.5), the Lagrangian transforms 

L (gx( 7), d (gx( 7) I) = L (x( 7),X( 7) 1+ da(g;x( 7) I , 
d7 d7 

(2.8) 

which, together with the homogeneity condition (2.4), will 
lead to certain transformation properties for the functions Fj 
under the group G, giving us information about the structure 
of these functions. Expression (2.8) is the restriction im
posed to the Lagrangian by the relativity principle. 

Among the gauge functions there exists an equivalence 
relation.9 Two gauge functions a, and a 2 are said to be equiv
alent if 

a,(g;x) - a 2 (g;x) = <!lex) - <!l(gx) + (7(g), (2.9) 

where <!l and (7 are some functions defined on X and G, re
spectively. Thus with GandX fixed, to every a(g;x) solution 
of (2.7) up to an equivalence, the relativity principle in its 
form (2.8) will give us information about the Lagrangian 
mechanical systems whose dynamical laws are g invariant. 

In particular if X is a homogeneous space of G then 
(2.7) has the solution9 

a(g;x) = s(g,hx ), (2.10) 

where hxEG is any element of the equivalence class xEX. 
In this paper G will be the Poincare group 9' , and all its 

exponents are equivalent to zero '0 so that, for those mechan
ical systems for which X is a homogeneous space of 9' , the 
action function and the Lagrangian can be taken strictly in
variant. 

C. Elementary systems 

An elementary mechanical system will be defined as 
that system for which the evolution from the initial to the 
final point, if no interaction is present, is necessarily free. 

Let us consider a system that is observed at instant 7 by a 
certain inertial observer O. At instant 7 + d7 some physical 
observables will change their values as measured by o. How
ever, if the system is elementary, then there will exist at in
stant 7 + d7 another inertial observer 0 ' for which the mea
surements of physical observables will give the same values 
as those obtained by 0 at the earlier time 7. 
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These two inertial observers will be related by some in
finitesimal transformation og( 7) of the kinematical group 
G. If the evolution of the elementary system is free, this 
means that the corresponding infinitesimal transformation 
og( 7) must be independent of 7. Otherwise we could distin
guish one instant from another by looking at the different 
change in the physical observables, and thus concluding that 
this difference in the physical behavior of the system is pro
duced by some interaction. 

Thus if the evolution is free, the measurement of any 
observable by observer 0 at instant 7 + d7 will be obtained 
from its measurement at instant 7 by acting with og in the 
corresponding realization of the algebra of observables. 
Since og is constant, it generates a one-parameter subgroup 
of G, such that the evolution of any observable is the action of 
this one-parameter subgroup on its initial value. In this way, 
the free or inertial motions are identified with the one-pa
rameter subgroups of G. 

We have seen in Sec. II A that for Lagrangian systems 
the dynamical information is contained in the action func
tion, which is a function of the kinematical variables at the 
initial and final points. If the evolution is free, the final point 
X 2 is obtained by acting on x, with the corresponding one
parameter subgroup generated by og, and thus there exists a 
finite group element g such that X 2 = gx ,. 

Conversely, if we fix x, and X 2 and the evolution has to 
be free, then necessarily the kinematical space has to be a 
homogeneous space of G. Otherwise, if X is not a homoge
neous space of G, then in general there will not exist any 
group element and anyone-parameter subgroup of G that 
brings x, to x 2 , and the evolution of the system will no longer 
be free. 

Definition: An elementary classical particle is that me
chanical system for which its kinematical space X is a homo
geneous space of the corresponding kinematical group G. 

III. THE POINCARE GROUP 

The kinematical group for relativistic systems is the 
Poincare group 9'. The usual covariant parametrization of 
9' is given by the four-vector a fL of the space-time transla
tions and the 16 elements A fL,. of the Lorentz transforma
tion, and we write it as (a,A). The composition law is given 
by 

(a',A')(a,A) = (A'a + a',A'A), 

i.e., 

However, the elements A fL l' are not independent and they 
verify the ten relations A fL" TJ"A A~ = TJ '''', where TJ fLV is the 
Minkowski metric tensor. This parametrization is used in 
Refs. 1 and 11. 

Instead of this covariant parametrization we give here 
an essential parametrization in terms often independent pa
rameters.'2 Since every Lorentz transformation can always 
be written as a product A = LR of a boost L by a rotation R, 
we shall use the relative velocity vector v that characterizes L 
and the three angular variables for the rotation R as the six 
essential parameters without any further constraint. Now 
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the formulation is not manifestly covariant but the physical 
interpretation of these parameters as velocity and orienta
tion will be shared later by the variables of the corresponding 
homogeneous X spaces. 

Then every element is parametrized in terms of the ten 
real parameters go: (b,a,v, 11), where hElR, aElR3 represent 
the time and space translation, vElR3

, with v < c, is the rela
tive velocity among observers, and 11 = e tan (a/2) is the 
relative orientation of their spatial Cartesian coordinate 
frames. It is parametrized by the clockwise rotation around 
the direction given by the unit vector e and of value aE[O,1T] 
to get the 0' frame from that of O. With this parametriza
tion, t.t takes values on a real three-dimensional compact 
manifold which we shall denote by lR~. 

The orthogonal rotation matrix R(t.t) is given by 

R(l1) ij = [1/(1 + ,U?) J[ (1 -IJ,z)Oij + 2/ld·lj - 2€ijk/lk ]. 
(3.1 ) 

The composition of two rotations R (11') R (11) 
= R(t.t") is 

11" = (11' + t.t + t.t'Xt.t)/( 1 - t.t'0t.t). (3.2) 

The action of a group element g on the Minkowski 
space-time vi( is 

t'=rt+y(voR(t.t)r)/c2+b, (3.3) 

r' = R(t.t)r + yvt + y(voR(t.t)r)v/( 1 + y)c2 + a, (3.4) 

where (t,r) and (t' ,r') are the coordinates of the same space
time event for observers 0 and 0', respectively, where 
r= (l_v2/c2 )-1/2. 

The composition law of the Poincare group in this 
parametrization g" = g'g can be expressed '2 as 

b" = r'b + y'(v'oR(t.t')a)/c2 + b I, 

a" = R(l1')a + y'v'b + [y'2/(l + y')c2] 

X (v'oR(t.t')a)v' + a', 

(3.5) 

(3.6) 

V" = R(t.t')v + r'v' + y'2C -2(V'oR(t.t' )v)v'/( 1 + r') 
r'( 1 + (v'oR(11')v)/c2) , 

(3.7) 

... ' = l1' + t.t + t.t'X...., + F(v',l1';V,l1) (3.8) 
r l' G" ' - l1ol1 + (v ,11 ;v,l1) 

where F(v',l1';v,....,) and G(v',l1';v,....,) are the functions 

F(v',....,';v,....,) = [y'rl( 1 + y') (1 + r)c2
] [vxv' + V(V'ol1') 

+ v'(V°....,) + vX (v'Xl1') 

+ (vX....,) Xv' + (V°....,)(v'X....,') 

+ (vXl1) (Vlo l1') + (vXl1) 

X (V'Xl1')] , (3.9) 

G(V I ,....,';V,l1) = [y'rl(1 + y')(l + r)c2] 

X (vov' + vo(v'Xl1' ) + v'o(VXl1) 

- (vol1) (v'o....,') + (vX....,)-(v'Xl1') J. 
(3.10) 

The proper Lorentz group .!f" is the set 
.{(O,O,v,l1) iVElR3

, v <c, ""'ElR~} so that every Lorentz trans
formation is parametrized in terms of the two three-vectors v 
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and...." A(v,l1) is a product ofa pure Lorentz transformation 
L(v) by the rotation R(l1), and A(v,l1) = L(v)R(l1)' The 
expression (3.7) is the relativistic addition of the two veloc
ities v' and R (....,')v, because 

L(v")R (11") = L(v')R (....,')L(v)R (11) 

= L(v')R(l1' )L(v)R( - l1' )R(l1')R(....,) 

= L(v')L (R(l1')v)R(l1')R(....,), 

since R(....,')L(v)R( - l1') = L (R(l1')V) and the composi
tion of the two boosts L(v')L(R(....,')v)=L(v")R(w), 
where R (w) is the corresponding Wigner rotation. The 
expression (3.8) comes from R(l1") = R(w)R(....,')R(l1). 

The general continuous subgroups of g; were classified 
by Patera et al. 13 and thus the homogeneous spaces of g; can 
be obtained as the corresponding quotient structures. How
ever, we are interested in those homogeneous spaces that 
describe particles with the maximum structure. 

We devote the remaining sections of this work to ana
lyze different homogeneous spaces; we begin with the Min
kowski space-time to describe the simplest case, that of a 
point particle. 

Later on we will be interested in those homogeneous 
spaces with higher dimenson, giving rise to systems with the 
highest number of degrees of freedom. We shall start with 
the Poincare group itself, for describing general bradyons; 
the nine-dimensional manifold Xc, which describes particles 
that travel at the speed of light, defined as Xc = g; Ir, 
where r is the one-parameter subgroup of pure Lorentz 
transformations in a given direction; and finally the seven
dimensional manifold X T = g; ISO (3) for particles with ta
chyonic internal orbital motion. 

IV. POINT PARTICLES 

Let us consider first those mechanical systems for which 
the kinematical space X = g; I.!f" is the Minkowski space
time vI(. The purpose is to illustrate the method for obtain
ing their Lagrangians for further generalizations. 

An element xEX is characterized by the four real 
numbers (t(r),r(r») that transform under g; according to 
the formulas (3.3) and (3.4), and which are physically in
terpreted as the time and position of the system, respectively. 
There are no constraints among these four kinematical vari
ables and only the homogeneity condition (2.4) will reduce 
the number of degrees of freedom to 3. The general Lagran
gian for these systems can be written as 

( 4.1) 

where Hand p are defined by H = - aL lat and 
Pi = aL la'f, are functions of t,r, and are homogeneous of 
zero degree in terms of the derivatives t( r) and r( r). 

If we assume that the parameter r is invariant under the 
group g; , the derivatives transform as 

t'(r) = ri(r) + y(v·R(11)r(r»)/c2, (4.2) 

r'(r) = R(....,)r(r) + yvt(r) 

+ [rIO + r)c2](v·R(11)r(r»)v, (4.3) 

and the invariance of Lunder g; leads for p and H to the 
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transformation equations 

H'(r) = yH(r) + y(voR(J.t)p(r»), 

p'( r) = R(J.t)p( r) + yvH( r)1c2 

+ [fl(l + y)e2 ](voR(J.t)p(r»)v, 

(4.4) 

(4.5) 

and thus since Hand p are invariant under translations they 
~re functions independent of t and r depending only on t and 
r. 

From (4.2) and (4.3) we see that e2i 2 (r) _r2(r) is 
group invariant and we shall consider those systems for 
which this invariant remains either greater than, equal to, or 
less than zero during the evolution. 

If e2i 2( r) - r2( r) > 0, for TE[ r l,r21. then t( r) #0 for 
every inertial observer and then t( r) can be inverted to ob
tain r(t) and thus we can make a time evolution description 
r(t). The velocity is defined as u( r) = r( r)li( r), andH and 
p are only functions of u, with u < e. This particle is called a 
spinless bradyon. 

If e2i2(r) - rZ(r) = 0, for TE[rl,r2], then t(r) and 
r( r) are different from zero for every observer. The velocity 
of this system u = rlt is such that u = e, and this particle is 
called a spinless photon. 

If e2i 2( r) - r( r) < 0, for TE[ r l,r2], then there exist ob
servers for whom t( r) = ° and it is not possible, in general, 
to make a time evolution description. However, Irl #0 for 
every observer, so that the magnitude I = rt Irl is homoge
neous of zero degree and well defined. Here Hand p are only 
functions ofl, and the velocity of this system u = fit is al
ways greater than e, and for some observers can become infi
nite. This system is a spin less tachyon. 

Since the action function is invariant under 9, 
Noether's theorem defines the following constants of the 
motion: 

under time translation, the energy 

aL 
H=--. ; at 

under space translation, the linear momentum 

under a Lorentz boost, the Poincare momentum 

'IT = - Hr/e2 + pt; 

under a rotation, the angular momentum 

J=rxp. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

From (4.4) and (4.5) (H le)2 - pZ is group invariant 
and from (4.6) and (4.7) it is also a constant of the motion, 
and thus has to be independent of rand t. Consequently it 
defines a constant parameter that will be used to character
ize the system. 

Taking the r derivative in (4.8), 11' = ° = - Hrl 
e2 + pt and then p = Hu1c2. In the bradyonic case, u < e and 
thus (H Ie) 2 - p2 = m 2e2 is positive and defines the constant 
parameter m, the rest mass of the system. Substituting the 
expression for p leads to H = me2 I (1 - u21c2) 112 and the 
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Lagrangian (4.1) becomes 

L = - me2(l- eZr21(2)1/2i 

= _ me(e2 _ u2) 1/2t 

with the action function 

(4.10) 

(4.11 ) 

In the photonic case the parameter m = ° and the La
grangian and the action function are also identically zero. 
This formalism does not predict spinless photons. 

For the pointlike tachyon we get (H 1c)2 = p 2e2/ 2, the 
invariant is negative and we write it as - a 2 = (H le)2 _ p2. 
This a is the absolute value of the linear momentum carried 
by the particle for the observer for which H = 0, which cor
responds to infinite speed. Thus the energy H is given by 

the Lagrangian for the spinless tachyon is 

L = a(l- e2t2/r2)1/2IrJ, 

and the action function is 

A(X I ,X2) = a(r2 - r l )2 - e2(tz - tl)2)1I2. 

v. GENERAL POINCARE BRADVONS 

(4.12 ) 

(4.13 ) 

(4.14 ) 

Let us consider the mechanical system for which 
X = 9. An element x of X wiII be given by the ten real 
numbers, x=(t(r),r(r),u(r),p(r») with domains tER, 
rER3

, uER3
, u <e, and pER~. Taking into account (3.5)

(3.8), they transform under 9 as follows: 

t'(r) = yt(r) + y(voR(J.t)r(r»)/c2 + b, (5.1 ) 

r'(r) =R(J.t)r(r) +yvt(r) + [fl(l +y)e2] 

x (voR(J.t)r(r»)v + a, (5.2) 

u'(r) = R(J.t)u(r) + yv + fe-Z(voR(J.t)u(r»)v/(l + y) , 
y(1 + (voR (J.t)u( r) )IcZ

) 

p'(r) = J.t + per) + J.tXp(r) + F(v,J.t;u(r),p(r») . 
1 - wp(r) + G(v,J.t;u(r),p(r») 

(5.3 ) 

(5.4 ) 

The way they transform allows us to interpret t( r) as the 
time, r( r) as the position, u( r) as the velocity, and p( r) as 
the orientation of the system. 

There are three additional constraints among the x vari
ables. The velocity u( r) = r( r)11 I( r), together with theho
mogeneity condition (2.4), reduces to six the number of de
grees of freedom of the system. The six independent 
variables are r(t) and p(t) and the Lagrangian will depend 
up to the second derivative of r and only on the first deriva
tive of p. Since u < e the system is called a bradyon. 

Again assuming that the r parameter is group invariant, 
taking the r derivative in both sides of (5.1) (5.4) we get that 
i( r) and r( r) transform like (4.2)-( 4.3) and tiC r) and p( r) 
in a very complicated way. However, instead of the deriva
tives tiC r) and p( r), we shall define two other three-vectors 
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a and ro (see the Appendix) 

a( r) = y(u) 
c 

( 
Y(U)2 u·1i J X u(r) + -2u(r)+u(r)Xroo(r). 

(\ + y(u») c 
(5.5) 

y(U)2 u.ro 
ro(r)=y(u)roo - ~u+ror (5.6) 

(1 + y(u») c 
that are the strict components of an antisymmetric tensor 
nilY

• a j = nlU, and Wi = !€ijkni\ and where the variables Wo 

and roT are given by 

roo = 2(p + pXp)/(l + p2), (5.7) 

roT = - [y(u)2/(l + y(u»)1 (uXu)lc2
• (5.8) 

If r is the time. roo is the instantaneous angular velocity 
and roT the Thomas angular velocity. The new varibles a 
and ro transform under 9: 

a'(r) = yR( .... )a(r) - [r/(l + y)c2 ](v·R(f.L)a(r»)v 

+ (ylc)(vXR( .... )w(r»). (5.9) 

ro'(r) = yR( .... )w(r) - [riO + y)c2 ](v·R(fL)ro(r»)v 

- (ylc)(vXR( .... )a(r». (5.10) 

The homogeneity condition in terms of the variables 
Uri,n.p) allows us to write L in the form 

L= -Tt+Q·r+U.u+V·P. (5.11) 

and in terms of the variables «(,r,a,ro), 

L = - Tt + Q." + D-a + S'ro, 

where the functions are defined by 

aL aL aL 
T = - -at" Qi = a:.i' J). =-

, I aai ' 

s = aL u = aL v = aL 
I aw' ' I ai/ ' , api ' 

(S.12) 

and they are functions of the kinematical variables (t,r,u,p) 
and homogeneous functions of zero degree in the variables 
«(,r,a,ro). The observable T has the dimensions of energy, Q 
of linear momentum and D and S of angular momentum, 
and, being the Lagrangian invariant under f!lJ, they trans
form 

r(r) = yT(r) + y(v·R(f.L)Q(r», 

Q'(r) = R( .... )Q(r) + yvT(T)/c2 

+ [r/(l + y)cZ](v·R( .... )Q(r»)v, 

D'(r) = yR( .... )D(r) 

- [r/(l + y)c2)(v·R( .... )D(r}}v 

- (yle)(vXR( .... )S(r»), 

8'(r) = yR( .... )8(r) - [riO + y)c2
] 

x (v·R ( .... )S( r»)v 

+ (ylc)(vXR( .... )D(r»). 

(5.13 ) 

(5.14 ) 

(5.15 ) 

(5.16) 

The observables D and 8 are the strict components of an 
antisymmetric tensor S f'V = - S Vf', Di = SOi, Si 
= ~€ijkS jk. We see that these functions are invariant under 
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translations and thus independent of t and r. and since, for 
the bradyonic case, i =1= 0 for every observer, they only have to 
be functions of (u,p,alt,roli). Since for the ~bserver for 
which the system has zero velocity, u = 0, calt reduces to 
duldtand <illt to roo/i, we say that cali and <illt are, respec
tively, the generalized acceleration and generaliz.ed angular 
velocity of the system. 

Noether's theorem defines the following constants of 
the motion: 

energy 

dU 
H=T--_ou' 

dt ' 

linear momentum, 

p=Q- dd~ ; 

Poincare momentum 

1T = - Hr/c2 + pt + D/c; 

angUlar momentum, 

J=rXp+8; 

( 5.17) 

(5.18 ) 

(5.19) 

(5.20) 

where the function U ( r) is given in terms of D and S by 

U( 1') = y(u) (0<1') + Y(U)2 u·D u( r) 
c (1 + r(u» t? 

+ y(u) u(r)xs(r»). 
(I + y(u))c 

Energy and linear momentum transform as in (4.4) and 
( 4. 5 ). The center of mass observer is defined as that observer 
for which p = 0 and 1T = O. These six conditions do not de
fine uniquely an observer, but rather the class of observers 
for which the center of mass is at rest and placed at the origin 
of the coordinate frame. They are thus defined up to an arbi
trary rotation and to an arbitrary time translation. We shall 
call to this class the center of mass observer as is usually 
done. 

The observable S is called the spin ofthe system and is a 
constant of the motion only for the center of mass observer. 
Since we consider systems for which H> 0 we can define the 
observable k = cDI H with dimensions of length such that 
taking the l' derivative in (5.19) we get 

fr = (r - k)H le2 + pi = O. 

Thusp = (H /c2 )d(r - k)/dtanddefinesforeveryobserver 
the position of a point q :== r - k that moves at constant ve
locity dqldt. We see that q is the position of the center of 
mass and thus k is the relative position of the system with 
respect to its center of mass. The absolute value of k gives 
information about a lower bound for the radius of the parti
cle. 

From these constants of the motion other constants can 
be defined: 

WO = p.J = p·S, 

W = II J/c - cpX1T = H(S + kXp)lc. 

(5.21) 

(5.22) 

These call be expressed in terms of the four-vector 
pll=: (H /c,p) and the antisymmetric teJlsor S IIVin the form 
weT = ~€eT",,"lS IIvp". Equations (5.21) and (5.22) are the 
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components of the Pauli-Lubanski four-vector. From 
(5.21), taking the time derivative we obtain podS / dt = 0, 
and the spin variation is orthogonal to the center of mass 
motion, the helicity, or spin projection on that direction, 
remaining constant. 

Thusp/tp/t = m2c2and - w/tw/t = m2c2~aretwofunc
tionally independent invariants, constants of the motion, 
that define two constant parameters m and s called, respec
tively, the rest mass and the absolute value of the spin for the 
center of mass observer and we expect that the Lagrangian 
will be an explicit function of them. 

Let Ho and Po be the energy and linear momentum for 
the observer for which the variables u = p = O. For this ob
server they are only functions of ali and roli. For the general 
observer for which u and p are different from zero, Hand p 
are obtained from Ho and Po by the transformation equations 
(4.4) and (4.5) and thus 

H(u,p,alt,rolt) = y(u)Ho + y(u)(uoR(p)po), (5.23) 

p(u,p,alt,rolt) = R(p)po + Y(U)uHo/c2 

+ [y(uf/(l + y(u»)c2](uoR(p)po)u. 

(5.24 ) 

Since the first half of the Lagrangian - Tt + Qoj. 
- Ht + por is Poincare invariant, substituting Hand p in 

terms of (5.23) and (5.24) reduces it to -Hoily(u). Be
cause ily(u) = (c2i2 - r2)I!2Ic is a Poincare-invariant 
function, Ho must also be an invariant function of their argu
ments. 

Similarly, the second half of the Lagrangian Doa + Soro 
=! S/tvU/tv is itself Poincare invaria~t a~d we have to 

choose for D and S functions of (u,p,alt,ro/t) in order that 
this holds. From U /tv we can form the two invariants € /tva}. 
U/tvUa}. and U/tvU/tv, which reduce, respectively, to aoro and 
a2 

- oi. Expressed in terms of the kinematical variables and 
their derivatives these invariants are 

2Y(U)2[U2 + uo(uxroo)] a 2 _ {J)2 = ----'--'---'--=---__ --'---::-----"-___=__ 

(1 + y(u»)c2 

+ (2 + 2y(u) + y(U)2)y(U)4 

(1 + y(uWc4 

X (uoU)2 - ro6, (5.25) 

aoro = y(u) [uoroo + y(U)2 
c (1 + y(u») 

(uou) (uoroo) ] 
2 • 

c 
(5.26) 

Thus two elementary choices for D and S: First, to choose D 
and S proportional to - y(u)alt and y(u)rolt, respective
ly, with the same proportionality coefficient, which has to be 
an invariant function. In this case the spin is proportional to 
the generalized angular velocity (suggesting an intrinsic an
gular momentum of a rotating nature) and the momentum 
D (and thus the relative position vector k) has opposite di
rection to the generalized acceleration, suggesting for the 
Zitterwebegung a certain kind of generalized central motion. 

On the other side we can choose D proportional to the 
function y(u)roli and S to y(u)alt and we see in this case 
that S is by no means related to the angular velocity and the 
internal motion is no longer a generalized central motion. 
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These two possible elementary Lagrangians expressed 
in terms of the two invariants A and B will reduce to 

LB = -AU _c-2r2Ii 2)1/2t 

_ B(a2 _ (J)2)(i 2 _ r21c2) -1/2, 

L
F

= _A(1_c-2r 2It 2)1/2t 

+ B(aoro)(i2 _ r2/c2)-1/2, 

(5.27) 

(5.28) 

where a 2 - (J)2 and aoro are given, respectively, in (5.25) and 
(5.26). 

Lagrangians of the first type (5.27) can be found in the 
literature. Constantelos 14 quotes a Lagrangian in which 
roo = 0 and thus the particle has internal orbital motion but 
no rotation. The Lagrangian depends on the velocity and 
acceleration of the particle but not on the angular variables. 
On the other hand, Hanson and Regge II when discussing the 
relativistic spherical top, assume ti = 0 and thus the invar
iant a 2 - {J)2 reduces to - (J)6. The particle has no internal 
orbital motion; its position coincides with its center of mass 
but it rotates with angular velocity 0 = roofi since this rota
tion is responsible for the existence of spin. However, to the 
best of our knowledge, no Lagrangians of the form (5.28) 
have been studied before. These two Lagrangians lead to 
nonlinear dynamical equations. 

The Lagrangian (5.27), for the center of mass observer, 
gives rise to the equations 

r = _ 2B2 Y(U)2[ du + uXO + Y(U)2 
mc2 dt (1 + y(u») 

X(~)~]' (5.29) 
c dt c 

S=2B 2y(u)[y(U)0- y(U)2 2 
(1 + y(u»)c 

X (uoO)U + uX ~; )] , (5.30) 

where the spin S is constant. Solutions, with constant abso
lute value of velocity and angular velocity and Oou = 0, exist 
and show the motion displayed in Fig. 1. 

Similarly, the Lagrangian (5.28) also describes motions 
with constant absolute value of velocity and angular veloc
ity, where 0 is orthogonal to u, and in the center of mass 

FIG. 1. Motion in the center of mass 
(C.M.) frame of particle (5.27). 
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FIG. 2. Motion in the C.M. frame of 
particle (5.28). 

frame they are given by 

B [ Y(U)2 r=-y(u) y(u)fl- 2 

me (1 + y(u»)e 

X (U.fl)U + uX ~~ )] , ( 5.31) 

S = ~ (U)2[ du + uXfl + y(U)2 
e y dt (1 + y(u») 

X (..!.. du )..!.] . 
e dt e 

(5.32) 

One possible motion that verifies these is depicted in 
Fig. 2. 

VI. LUXONS 

Now let us consider those mechanical systems whose 
kinematical space Xc is the nine-dimensional manifold 
spanned by the variables (t,(r),r(r),u(r),p(r») with do
mains teR, reR3, and peR; (as before) and ueR3

, but with 
u = e. These particles are usually called luxons. 

This manifold Xc is a homogeneous space isomorphic to 
91r, where r is the one-parameter subgroup of pure Lor
entz transformations on a given direction. In fact, let 
x= (O,O,u,O), where u = e is a point of this manifold Xc The 
stabilizer group of this point is the subgroup of pure Lorentz 
transformations in the direction given by u, r u' Thus 
Xc::::; 9Iru· 

Again there are three constraints between the kinemati
cal variables, u = rl(. The kinematical variables t,r,u trans
form like (5.1 )-(5.3), while the transformation of p is ob
tained from (5.4) taking the limit u = e on the right-hand 
side: 

'() ~ + p( r) + ~X p( r) + Fc(v,~;u( r),p( r») 
p r = , 

1- wp(r) + Gc(v,~;u(r),p(r») 
(6.1 ) 

where 

Fc(v,~;u,p) 

= [yl(1 + y)e2
] [uxv + u(v·~) + v(u·p) 

+ uX (vX~) + (uXp) Xv + (u·p)(vX~) 
+ (uXp) (v·~) + (UXp) X (vX~)], (6.2) 
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Gc(v,~;u,p) 

= [yl(1 + y)e2[u·v + u·(vX~) + v·(uXp) 

- (u·p)(v·~) + (uXpHvx~)]. (6.3 ) 

Since u' = u = e, Eq. (5.3), implies that u' is obtained 
from u by means of an orthogonal transformation: 

u = = R(cI»u, 

where cI> is given by 

~ + Fc(v,~;u( r),O) 
cI>= . 

1 + Gc(v,~;u( r),O) 

Equation (6.1) also corresponds to 

R(p') = R(cI»R(p), 

with the same cI> as in (6.5). 

(6.4 ) 

( 6.5) 

(6.6) 

Since u (r) = e, we have to distinguish two different 
kinds of systems. Taking the r derivative of this identity we 
get u( r)·u( r) = 0, and we shall next consider systems for 
which u( r) = 0 and those for which u( r) #0 and is orthogo
nal to u. 

A. Massless particles 

If u ( r) = 0 then u ( r) is constant, the system follows a 
straight trajectory with velocity e, and the kinematical space 
reduces to the seven-dimensional manifold (t( r),r( r),p( r»), 
with teR, reR3, peR~. 

The derivatives t and r transform as in (4.2) and (4.3) 
and, instead of the variable p, we define the linear function of 
it roo given by (5.7), which transforms under 9, as 

rob ( r) = R (cI» roo ( r), ( 6.7) 

where cI> is given again by (6.5). The invariant c2
( 2 - r2 = 0, 

and t #0 and r#O for every observer. 
For this system there are no differential constraints 

between the kinematical variables, the Lagrangian will only 
depend on the first derivatives of the variables rand p, and 
the homogeneity condition (2.4) reduces to 6 the number of 
degrees of freedom of the system. This condition leads to a 
Lagrangian of the form 

L = - Ht + p·r + S·roo, (6.8) 

where the functions 

JL JL S = JL 
H = - at' Pi = ai' , J(i)~ 

will be functions of (t,r,p), homogeneous of zero degree of 
(t,r,roo), and since ( #0 they can be expressed as functions of 
u = rlt and fl = roo/t, which are, respectively, the velocity 
and angular velocity of the system. 

The invariance of (6.8) under 9 implies that these 
functions transform as 

H'r= yH(r) + y(v·R(~)p(r»), 
p'(r) = R(~)p(r) + yvH(r)lc2 

+ [rl(1 + y)c2](v·R(~)p(r»)v, 
S'(r) = R(cI»S(r), 

( 6.9) 

( 6.10) 

(6.11 ) 

and being invariant under space and time translations they 
are only functions of (p,u,fl) with the condition u = c. 
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Noether's theorem gives rise in this case to the following 
constants of the motion: 

energy, H; 

linear momentum, p; 

Poincare momentum, 

'n' = - Hr/c2 + pt + Sxu/c2
; 

angular momentum, J = rXp + S. 

(6.12) 

(6.13 ) 

(6.14 ) 

(6.15 ) 

By analogy to the above case we say that S is the spin of 
the system. Taking in (6.15) the T derivative we obtain 
i"XP + S = o and thus d Sidt = pXu. Sincepanduarecon
stant vectors, the spin S has a constant time derivative. A 
continuously increasing spin system is far from being what 
we shall understand as an elementary particle, so that we 
shall only consider that system for which the constant d SI dt 
is zero. The spin is then a constant of the motion and due 
to( 6.11) its absolute value is also a Poincare-invariant pa
rameter. In this case p and u are parallel vectors. In fact, by 
taking in (6.14) the T derivative we get Tr = 0 = - Hi" I 
e2 + pi and thus p = Hule2

• 

Another group invariant and constant of the motion is 
(H /e)2 - p2, which vanishes identically; thus the mass of 
the particle is zero. Also the first two terms of the Lagran
gian cancel out - Hi + por = 0, and L reduces to the third 
term L = SOIDo, where S is only a function of p, u, and fi. We 
see that E = SoU is another group invariant and constant of 
the motion, and we expect that the Lagrangian will be depen
dent on these two parameters Sand E. If we take into account 
(6.4), (6.6), (6.7), and (6.11 ) the general solution for S is a 
vector function of R (p) z, u, and IDol wo' where z is a constant 
unit vector. 

A system with a non transversal spin will be such that 
S = ESu/e, where E = ± 1, and thus the Lagrangian be
comes 

(6.16) 

From this particular Lagrangian we get H = - aL I 
ai = son, where n is the angular velocity of the particle. The 
linear momentum Pi = aL lar = ESn;le and the angular 
velocity lies in the direction of u. Since H has to be definite 
positive, fi = dlu/e, leading to the expression H = So. for 
the energy. Experimentally S = Ii and H = lin = hv. We say 
that system (6.16) is a photon of spin Sand helicity E. Thus 
the frequency of a photon appears as the frequency of its 
rotational motion, causing the rotation axis to lie parallel to 
the velocity. We cannot define any size associated with the 
photon as we did before in connection with the general Poin
care bradyon. It must be remarked that, although the spin 
and the angular velocity are not related, they have the same 
direction. 

Bo Massive particles 

Now considering systems with 0#0 but orthogonal to 
u, we have that the kinematical variables and the derivatives 
t and i" transform as before, and for 0 and IDo we obtain 
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0' = R(cI»)o + R(cI»)u, 

ID~ = R(cI»)IDo + ID"" 
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( 6.17) 

(6.18 ) 

where cI» is again given by (6.5) and ro",: 

_ (RUXV ( 1) R(uXo) 2y ro", - y--- y- +_..!---
e2 c2 (l + y) 

( 6.19) 

Expression (6.17) can be rewritten in the form 

0' = R(cI»)o/y(1 + voR(~)ule2), (6.20) 

and the homogeneity condition leads to 

L = - Ti + Qor + Uoo + ZOIDo, (6.21 ) 

where 

T= _ aI:, Q = aL, u = aL, Z. = aL 
at I ar I ail I aw~ 

and Noether's theorem again defines the constants of the 
motion: 

dU energy H = T - -_OU' 
, dt ' 

1. Q dU mear momentum, p = - -- ; 
dt 

Poincare momentum, 

'n' = - Hr/c2 + pt + (SXu)/e2
; 

angular momentum, J = rXp + S; 

where the spin S is defined by 

S=uXU+Z. 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

The above definitions (6.22 )-( 6.25) lead for Hand p to 
the transformation equations of a four-momentum as in 
(4.4 )-( 4.5) and for the spin to 
S'(T) = yR(~)S(T) - [y/(l + y)c2](voR(~)S(T»)V 

(6.27) 

which corresponds to the transformation equations of an 
antisymmetric tensor S /LV with strict components 
SOi = (SXu)ic, Sij = ~jkSk' 

From (6.24), by taking the T derivative and doing the 
dot product with u, we obtain 

H = pou + S{ ~~ Xu )c-2
• (6.28) 

In a certain sense this Hamiltonian looks like Dirac's 
Hamiltonian for a fermion H = cpou + /3me2

, where nand /3 
are Dirac's matrices, and, since cn is identified with the local 
velocity u, we have finally H = pou + /3mc2

• In the identifi
cation the spin term gives rise to the mass term, suggesting a 
mass-spin relation. However, we shall not discuss any quan
tization procedure in this work and we delay these consider
ations to a subsequent paper. 

From (6.25) we have that d SI dt = p X u and we can 
again define the center of mass observer by p = 'n' = O. For 
this observer S is a constant of the motion and the energy 
does not necessarily vanish, defining the rest mass of the 
system. From (6.24), r = (SXu)IH, and thus the internal 
motion lies on a plane orthogonal to S. The velocity is then 
orthogonal to S, and since S, U = c, and H = me2 are con
stants in this frame, the internal motion is a circle of radius 
Ro=Slme. 
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Equation (6.27) can also be written 

S' = ('(1 + v·R(~)u/e2)R(cI»)S, 
with the same R (cI») as in (6.6) and thus 

S'·u' = ('(I + v·R(~)ule2)S·u 

(6.29) 

and S·U = S'·U'. Since, for the center of mass observer 
S·u = 0 and S·dul dt = 0, the spin remains orthogonal to u 
and duldt for every observer. 

The particle has mass and spin and moves in circles with 
velocity c in a plane orthogonal to S for the center of mass 
observer. All these features are general and independent of 
the particular Lagrangian (6.21). The only thing that re
mains to be described is the angular motion. All the above 
considerations do not give information about the angular 
velocity of the system. Therefore the different kinds of La
grangians of the form (6.21) will differ from each other by 
describing different angular motions, which will be related 
tO,other kinds of observables, such as, for instance, electro
magnetic multipole momenta. However, since we are de
scribing here free particles, we do not expect that such prop
erties will appear in this setup. 

Coming back to the general situation we see that the 
term - Tt + Q·r = - Ht + p·r is a Poincare-invariant 
term and then U·U + Z·roo also has to be invariant. Thus the 
general Lagrangian seems to be the sum of two invariant 
terms depending on the two constant parameters m and s 
that are functions of the variables (u,p) and homogeneous of 
first degree in the derivatives (t,r,u,p). 

We find that the first degree term u + uXroo = (dul 
dt + uXO)t = y transforms under g; in the form 
y' = R(cI»)y, where cI» is given in (6.5), so that 
j2 = (u + uXroO)2 is a second degree invariant term. Simi
larly (roo·u) t and u2t 2 are, respectively, third and fourth de
gree invariant terms. We can thus find several first degree 
invariant terms, and among others we quote 

me3 (roo·u) t 
y2 

u2t 2' (u2)1/2 
mc--., me t"""2 ' 

roo·u y 

m 2e5 u2t 2 Sroo·u s-E., 
~7' (U2)1/2' e 

where the parameters m and S have been introduced by di
mensionality considerations. 

For instance, the first degree invariant Lagrangian 

L 3 ___ ~(0 __ .u~) __ ~ =me 
(duldt + UXO)2 

S [( du )2] 1/2 --;; Tt+uXO t 

leads for the spin S = uXU + Z to 

S = me3 (duldt + UXO) , 
(du/dt + UXO)2 

(6.30) 

(6.31) 

and we see that S·u = O. For the center of mass observer, 
p = 0, where S is constant, and 'IT = 0 implies that (6.24) 
reads mer = SXu. We can eliminate u from thesetwoequa
tions obtaining u = - mc2S -2Sxr = 0 1 Xr, where the or
bital angular velocity 0 1 has direction opposite to the spin 
and constant value mc2/S. 
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FIG. 3. Relative orientation of ob
servables in the C.M. frame. 

Since S·dul dt = 0 we get from (6.31) that 

(~: r + (~: }(UXO) = o. 
If we consider a body fixed coordinate frame that rotates 
with angular velocity 0 1 with respect to the center of mass 
frame and we call Os, Ou' and Oil the components of 0 along 
the three orthogonal directions of S, u, and the dul dt, re
spectively, we obtain Oyc2 + 0/0sC2 = 0, i.e., Os = - 0 /, 
since 0 1 Xu = duldt. 

Taking the absolute value of (6.31) we get that 
I (duldt + uXO) 1= OIC. Then its projection on the direc
tion of S gives S = mc3

( - COil )/Oyc2 and thus 
Oil = -0/, 

Finally the condition p = Q - dU/dt = 0 leads in this 
frame to 

2 du d 2u u(O) -O(O·u) -2-XO--
dt dt 2 

dO dO 
-uX----c---=O, 

dt dt 

and, since d 2uI dt 2 = - Oyu and dOl dt 
= (d Oldt)b + 0 1 XO, where (d Oldt)b is the derivative 

of 0 in the body fixed frame, we have 

u(30y + O~) - (0 + O/)COu - 2 du XO 
dt 

- U x(!!!!) 
dt b 

_c(dO) -c(OtXO) =0. 
dt b 

If we take the projection of this expression along the S 
direction, taking into account that Os = - Ot is constant, 
we obtain Ou = 0, and thus the angular velocity 0 is of con
stant value v10t and in the center of mass frame it rotates 
around the spin direction with angular velocity Ot. We see 
that for this system Sand 0 are not directly related (Fig. 3 ) . 

VII. TACHYONS 

If we consider the manifold spanned by the variables 
(t,r,u,p) with domains tER, rER3, pER~ as before and uER3

, 

u > c, we see that the transformation equations for p [ (5.4 ) ] 
do not give any real limit when u > c because the y( u) terms 
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involved in the F and G functions are imaginary. Thus for 
tachyons we are left with the seven-dimensional manifold 
XT spanned by the variables (t(7),r(7),u(7»), with tER, 
rER3

, uER3
, and u > c, which is isomorphic to the homoge

neous space 9 ISO(3), and thus no angular variables can be 
defined. The kinematical variables transform as in (5.1)
(5.3). There exists the constraint U = rlt and the homogene
ity condition (2.4) allows us to write the Lagrangian 

L = - Tt + Qor + Uou, (7.1) 

where 

T = _ aI:, Q = aL, u. = aL . 
at I ar' I aii 

Invariance of L leads for T and Q to the transformation 
equations (5.13) and (5.14) and for U to 

U'=r(l+ voR(lt)u)[R(lt)U+ r 
c2 (1 + y)c2 

X(voR(lt)U)v + ;Z (uoU)v] (7.2) 

and thus they are functions of (u,t,r,u), being homogeneous 
of zero degree in terms of the derivatives. 

Noether's theorem defines the constants of the motion 
to be 

dU 
energy, H = T - --ou; 

dt 

1. Q dU mear momentum, p = - -- ; 
dt 

Poincare momentum, 

11' = - Hrlc2 + pt + U - [Uoulc2 ]u; 

(7.3 ) 

(7.4 ) 

(7.5) 

angular momentum, J = rXp + UXU. (7.6) 

The observable U - [(U·u)1c2 ]u is always different from 
zero since u > c, and if we define the relative position vector k 
as before by Hklc2 = U - [(Uou)lc2 ]u then H has also to 
be different from zero for every observer. This implies that 
the invariant and constant of the motion (H IC)2 - p2 can
not be negative and thus the system has a tachyonic internal 
orbital motion while its center of mass has a velocity <c. The 
spin of the particle S = uXU = HuXklc2 is a constant of 
the motion in the center of mass frame for nonzero mass 
particles, while for massless particles it precesses around the 
linear momentum, always being orthogonal to the velocity. 

The invariant Lagrangian for u > c particles, 

(7.7) 

leads in the center of mass frame to the dynamical equations 

(7.8) 

The internal motion is a central motion, and, being the spin 
constant, this gives rise to a first integral S = - r X mu, the 
motion lying in a plane orthogonal to the constant vector S. 
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In polar coordinates (r,O) in this plane Eqs. (7.8) become 

--r - +- - +r - -c r-O, d
2
r (dO)2 m [(dr)2 (dO)2 2]3/2_ 

dt 2 dt 2B dt dt 

(7.9) 

2 dr dO + r d
2
0 = 0, (7.10) 

dt dt dt 2 

the first integral dO Idt = S Imr, and thus the radial equa
tion (7.9) becomes 

----+- - +---c r=O. d
2
r S2 m [(dr)2 S2 2]3/2 

dt 2 m 2r 2B dt m 2r 
(7.11) 

We see that this equation has solutions with constant 
r#O and the system in the center of mass frame follows a 
circle with constant velocity u> c. A general solution of 
( 7.11 ) has not yet been obtained. 

VIII. INVERSIONS 

Since space and time reversal are automorphisms of 9 
given by 

P: (b,a,v,lt) -> (b, - a, - V,lt), 

T: (b,a,v,lt) - ( - b,a, - V,lt), 

we extend this action on the general kinematical space 
X=9by 

P: (t(7),r(7),u(7),p(7»)-(t(7), - r(7), - U(7),p(7»), 

T: (t(7),r(7),u(7),p(7»)-( - t(7),r(7), - U(7),p(7»). 

If we assume that 7 parameter remains invariant under 
inversions, then we can define the P and T action on the 
derivatives as 

P: (t(7),r(7),u(7),p(7»)--(t(7), - r(7), - U(7),p(7»), 

T: (t(7),r(7),u(7),p(7»)--( - t(7),r(7), - U(7),p(7»), 

and thus 

P: (a(7),ro(7»)--( - a(7),ro(7»), 

T: (a(7),ro(7»)--( - a(7),ro(7»). 

Lagrangian (4.10) remains invariant under P and 
changes its sign under T so that dynamical equations are 
invariant under inversions. The Lagrangian (4.13) is itself 
invariant. 

Similarly, Lagrangians (5.27) LB and (7.7) LT are in
variant under P and change sign under T, and the photonic 
Lagrangian (6.16) is affected by a minus sign under both 
inversions. 

However, the Lagrangian (5.28) LF under parity oper
ation has the first term invariant while the second one 
changes in sign. Under time reversal we have the opposite 
situation: the first term is affected by a minus sign but the 
second is left invariant, so that inversions alter this system. 

Finally, the Lagrangian (6.30) has the same behavior as 
LF under inversions. Its two terms are separately affected by 
a minus sign by a different inversion, and we can see from 
Fig. 3 that the internal motion is reversed but the spin re
mains unchanged. 
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APPENDIX: DEFINITION OF VARIOUS FUNCTIONS 

If A is a Lorentz transformation, then AGA T = G 
holds, where G is the Minkowski metric tensor written in 
matrix form, i.e., diag( - 1,1,1,1), and ATis the transpose of 
A. 

If we form the matrix A(u ( T) ,p ( T») it also fulfills this 
condition. Taking the T derivative, 

A(u( T),p( T) )GAT(U( T),p( T») 

+ A(U(T),p(T»)GAT(u(T),p(T») = 0, 

i.e., 0 + 0 T = 0, and the anti symmetric matrix 0 is a linear 
function of the derivatives Ii and p. 

Under a Poincare transformation, the variables u and p 
transform according to (5.3) and (5.4), which is equivalent 
to 

A(u',p') = A(v,~)A(u,p), 

and thus 

A(u',p') = A(v,~)A(u,p), 

so that 

0' = A(u',p')GA(u',p') 

= A(v,~)A(u,p)GA(u,p)AT(V,~) 

= A(v,~)OAT(V, .... ), 

which corresponds to the transformation properties of a ten
sor o {'V. 
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Similarly, if R is an orthogonal 3 X 3 matrix, RR T = l. 
In particular, if we define the orthogonal matrix R (p ( T) ), 

then taking the T derivative we get 
R(T)R T(T) + R(T)R T(T) = 0, i.e., 0 + OT = 0, and if we 
call roo the nondiagonal components of this 0 we get expres
sion (5.7). 
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A new approach to Hamiltonian structures of integrable systems is proposed by making use of 
a trace identity. For a variety ofisospectral problems that can be unified to one model 
1/lx = U1/l, it is shown that both the related hierarchy of evolution equations and the 
Hamiltonian structure can be obtained from the same solution of the equation Vx = [U, V] . 

I. INTRODUCTION 

The theory of integrable Hamiltonian systems of infinite 
dimensions has undergone a rapid development since the 
late 1960's (see, e.g., Refs. 1-32 and references therein). 

Nowadays it is well known that a great number of non
linear evolution equations, arising from various branches of 
physics, are (formally) integrable, i.e., they admit the zero
curvature representation 

U, - Vx + [U, V] = 0 . 

Given a properly chosen isospectral problem 

tPx = U(A)1/l, (1) 

with A being the spectral parameter for which A, = 0, one 
can relate it to a hierarchy of nonlinear evolution equations 

U, - v~n) + [U,v(n)] = o. (2) 

A central and very important subject in the theory of inte
grable systems is to search for a symplectic operator J and a 
sequence of scalar functions {H n } such that Eqs. (2) can be 
cast in the Hamiltonian form 

oHn 
U =J--, ou' 

where U = (u 1, ... ,UN ) is the "potential" contained in the 
matrix U = U(A) = U(U,A), and %u = (Diou j ) stands 
for the variational derivatives 

~ = '" ( _ a)n _a_(a = ~ u(n) = anu.) ,;, ~ a (n) d ' I I • 
uU j n;.O U j x 

The Hamiltonians {Hn} constitute, in fact, an infinite 
number of conserved densities of the hierarchy (2). Various 
techniques have been developed to calculate {Hn}. We men
tion in the following some of the typical techniques. 

A standard method makes use of the transmission coef
ficients of the scattering date (see, e.g., Refs. 3-5). To apply 
this method we need first to do inverse scattering analysis; it 
is sometimes very difficult for a number of isospectral prob
lems with higher singularities in A. 

Another method, proposed by Chen, Lee, and Liu,1O is 
based on perturbation expansions. This method is of particu
lar value when the corresponding Lax pairs are unknown. It 
is most suitable for a single concrete equation, not for a hier
archy of equations. 

In their important monograph5 Faddeev and his group 

0) Mailing address: Computing Center, Academia Sinica, Beijing, China. 

formulated an ingenious method using a classical r matrix, 
which originates from the famous Yang-Baxter equation. 
Presently, this method does not seem popular in the math
ematical community. The search for appropriate r matrices 
is by no means easy work. Some known r matrices were con
structed by an ansatz or guesswork. A systematic construc
tion of r matrices is given in Ref. 5, p. 528; however, it seems 
to the author that this construction works only when the 
corresponding symplectic operators are linearly dependent 
on the potentials. 

Alberty, Koikawa, and Sasaki 14 have proposed an effec
tive method for calculating the conserved densities of the 
hierarchy (2). First one solves the equation 

Vx = [U,V] (3) 

to generate the hierarchy (2) and then one solves the ordi
nary differential equation 

Yx = UY - Y(UY)D' 

where H == ( Uy) D represents the diagonal part of UY, which 
is just the desired generating function of the conserved densi
ties. 

One goal of this paper is to point out that the informa
tion obtained from solving Eq. (3) is completely sufficient to 
construct {H n }. Therefore searching for Y is, in fact, unnec
essary and thus the work can be considerably simplified. 

In a beautiful paper,7 Magri proposed the famous bi
Hamiltonian formalism. It always involves a recursion oper
ator L. There are two coupling conditions that the symplec
tic operator J and the recursion operator L have to satisfy. 
To ensure that the scheme is workable, Magri imposes two 
other conditions which are equivalent to the properties of 
strong and hereditary symmetries9

,12 and one further initial 
condition on gradient reserving. The five conditions above, 
together with the condition that implies J is a symplectic 
operator, require very heavy and tedious calculation even for 
the simple-looking operators J and L. 

The method presented in this paper requires only two 
conditions. The first one makes J a symplectic operator, 
which is clearly necessary; the second one is the first cou
pling condition JL = L * J, which is much simpler than the 
second coupling condition. 

It is worthwhile to mention that the recursion operators 
exist not only in the case of 1 + I dimensions, but also in the 
case of 1 + 2 dimensions as shown by the recent important 
work of Fokas and Santini.24 They successfully constructed 
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a recursion operator for the Kadomtsev-Petviashvili (KP) 
hierarchy and proved that this well-known KP hierarchy is 
bi -Hamiltonian. 

In a series of papers 15-2) we develop a simple approach 
to Hamiltonian structures ofintegrable systems. The essence 
of this approach is the use of the chain rule of variational 
derivatives. This method was developed further by Chowd
hury and Swapna.26 Based on this technique we proved an 
important fact-the matrix V = (8H /8u) T satisfies (3), 

where H is calculated by the Alberty-Koikawa-Sasaki algo
rithm as mentioned above. This result suggested that we find 
in the general cases the relation between solutions of (3) and 
the conserved densities of the hierarchy. This is indeed the 
motivation of the present work. We then realized in Ref. 22 
that the solution Vof (3) does carry much information on 
conserved densities. Bearing this clue in mind we finally es
tablished in 1985 a remarkable trace identity.25 In the pres
ent work we are able to show that both the hierarchy (2) and 
the Hamiltonians {Hn } can be derived from the single equa
tion (3), and the trace identity provides us with a powerful 
tool for this goal. Furthermore, we have shown in a subse
quent pape~2 that the Liouville integrability of zero-curva
ture equations and an explicit formula of Poisson brackets 
could be successfully established by making use of the trace 
identity. 

The next two sections are of a preliminary nature; the 
main body of the paper is contained in Sec. IV, and the paper 
ends in Sec. V with concluding remarks and an open prob
lem. 

II. BASIC NOTIONS 

To fix the notation we recall briefly some basic notions 
from the theory of generalized Hamiltonian equations. 

Let S be the Schwartz space over R, SM = S ® .•• ® S 
(M times). The operator a = d /dx introduces an equiv
alence relation among elements of SM , 

f-g~3h such that f-g=ah (J,g,hES M). 

The equivalence class that contains f is denoted by Sf dx, 8 

ffdX = {f+ah IhESM}. 

The scalar product between f and g is defined by 

(f,g) = ffg dX = J ~.t:g; dx. 

Let u=u(x,t) = (u) .. ··'UM) be a smooth function 
that belongs to SM for any fixed t. A linear and skew-sym
metric (with respect to the above scalar product) operator 
J = J(u): SM _SM is called symplectic8

•11,)2 if it holds that 

(J'(u) [Jf]g,h) + (J'(u) [Jg]h,J) + (l'(u) [Jh ]J,g) = 0, 

for any tripletJ,g,hESM 
, w hereJ' (u) [ f] represents the Fre

chet derivative of J, 

J'(u)[f] = ~J(U + cf) IE=O . 

An operator N( u): S M -S M is called hereditary9 if 

N'(u) [Nf]g - N'(u) [Ngif 

= N(N'(u) [f]g - N'(u) [g]f). 
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It is known that if J is symplectic then the bracket 

{J,g} = (;~,J;~) (4) 

is a well-defined Poisson bracket, and we call the equation 
u, = J 8H /8u the generalized Hamiltonian equation. 

It has been proved J2 that if the operators J), J2 , and 
J) + J2 are simultaneously symplectic, and J 1 is invertible, 
then N = J 1- IJ2 is hereditary. This fact is closely related to 
the intriguing bi-Hamiltonian structures of integrable sys
tems.7 

III. A MODEL ISOSPECTRAL PROBLEM 

Let G be a finite-dimensional Lie algebra over C, and G 
be the corresponding loop algebra33 

G=G®C[A,A -1], 

where C[A,A -I] is the set of Laurent polynomials inA. Sup
pose that {E), ... ,Ed } is a basis of G. Then 

{E1 (n), ... ,Ed (n) InEZ}, 

where E; (n) = E; ® A n = E;A n provides a basis for G. It can 
be transformed to other bases 

{E;(n), ... ,Ed(n)} , 

with the property that 

E;(n) =E;(O)An. 

We call an element REG pseudoregular if, for 

ker ad R = {XlxEG, [x,R] = O} , 

1m ad R = {xI3)IEG such that x = [y,R ]} , 

it holds that 

(i) G = ker ad R Ell 1m ad R; 

(ii) ker ad R is commutative. 

From the Cartan decomposition it is easy to deduce the fol
lowing proposition. 

Proposition 1: If A is a regulat element of a semisimple 
Lie algebra G, then R = A ® An is pseudoregular in G. 

There certainly exist other pseudoregular elements as 
shown in Sec. IV. 

Different gradations of G are available, one of them de
fined by 

deg(X®An) = n. (5) 

In the sequel of the section we shall fix one of the gradations. 
For gEG, let g = ~ngn' deg gn = n, be its gradation decom
position. We set 

and call g+ the positive part of g, where 1TEZ is a properly 
chosen integer. 

Since 

deg(xA) + deg(y) = deg(x) + deg(Ay) = deg(A [x,y]), 

we have 

deg(xA) - deg(x) = deg(YA) - deg(y), x,)lEG. (6) 

We shall discuss in Sec. IV a variety of isospectral prob
lems, "'x = Ut/r, they can be unified in the following model: 

Gui-zhang Tu 331 



                                                                                                                                    

u = R + u\e\ + ... + upep , 

where u\, ... ,upES (the Schwartz space) and R,e]>' .. ,epEG 
meet the conditions 

(i) R, e1, ... ,ep are linear independent, 

(ii) R is pseudoregu]ar, 

(iii)a>O, a>€j (i=l, ... ,p), 

where 

a=deg(R), €j =deg(ej ). (7) 

In the one exceptional case that we shall deal with in 
Sec. IV, condition (iii) is weakened to 

a>O, a>€j (i=l, ... ,p). (8) 

The aim of imposing the above conditions on U is to 
ensure the solvability of (3). This idea can be traced back to 
Wilson 13 and Drinfeld and Sokolov. 28 A further analysis of 
this model isospectral problem is given in Ref. 29. 

We need to introduce another concept, the rank for a, u, 
A, and XEG such that if ab makes sense for two entities a and 
b, then 

rank(ab) = rank(a) + rank(b) . 

We shall define the rank in such a way that the above element 
U is of homogeneous rank, i.e., rankeR) = rank(u1e\) 
= ... = rank ( up e p ). To this end we take 

rank(x) = deg(x), xEG, 

rank(A) = deg(xA) - deg(x) , 

rank(u j ) = a - lEi (i = 1, ... ,p) , 

rank(a) = a, 

rank(f1) = 0 ({3 = const, (3 #0) . 

Thus we have, for example, 

rank(Au j ) = rank(A) + rank(u j ), 

rank(a 2u3 ) = 2a + rank(u3 ) • 

Note that (9b) is well defined from (6). 

(9a) 

(9b) 

(9c) 

(9d) 

(ge) 

In order to fix the integral constant arising from calcula
tion we shall follow the homogeneous rank convention: both 
sides of an equation have the same rank. For example, the 
condition rank(a) = 1 and ax = 0 implies a = 0; here the 
integral constant is set to zero by convention. Originally in 
the literature (see, e.g., Refs. 6 and 13) the rank was defined 
only for U j and a to ensure a unique choice of integral con
stants. Here we have extended the rank somewhat for con
venience of a later formulation. 

In the next section the scheme to construct the hierar
chy (2) is as follows. First, we take a solution Vof (3); 
second, we search for a An EG such that for 

it holds that 

- v~n) + [U,v(n)]ECe l + .. , + Cep; 

this requirement yields a hierarchy of evolution equations 
(2). 
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IV. KILLING-CARTAN FORMS (V,aUla}") AS 
HAMILTONIAN 

A. The trace Identity 

Let G be a matrix semisimple Lie algebra. It is well 
known that the Killing-Cartan form (x,y) is proportional to 
the trace tr(xy), (x,y) = const tr(xy). For notational con
venience, we thus take, in this section, 

(x,y) = tr(xy) . 

Let U = U(A,u) be an element of G that depends on A 
and u = (u j ). Suppose we have introduced in some manner 
the rank for u, a, A, and XEG. Under the supposition that the 
solution Vof (3), which is of given homogeneous rank, is 
unique up to a constant multiplier, we proved in Refs. 25 and 
29 that for any solution Vofhomogeneous rank, there exists 
a constant y such that for V = A l' V, which is again a solution 
of (3), it holds that 

- v.- =- v.-o (- au) a (- au) 
OU i 'aA aA' au i • 

( 10) 

We have shown that a number of known formulas obtained 
in the literature by complicated calculations are special cases 
of the above remarkable trace identity. 

By substituting V = A l' V in (10) we obtain 

~I V, au) = (A -1'~A 1')1 v, au) . 
oU i \ aA aA \ aU j 

(11 ) 

We shall always search for solutions Vof (3) of the form 
00 

V= IVn(u)A-n, 
n=O 

with 

Vo(u) = const#O. 

The following simple proposition will be frequently used 
in later discussion. 

Proposition 2: LetA = ~AnA - n and the operator r n be 
defined as rnA = An' Then 

rn(AkA) =rn+kA, 

rn(A -1'~A l'A) = <y- n + l)rn \A. 
aA -

MagrC proposed a geometrical approach to Hamiltonian 
structures of integrable systems; however, the calculation 
involved in the verification of his two "coupling conditions" 
and others is tedious in most cases. For our present needs the 
following proposition is sufficient. 

Proposition 3: Let J,L be two linear operators mapping 
SM into itself. Suppose that (i) both J and JL are skew sym
metric, i.e., 

J*=-J, (JL)=L*J; (12) 

(ii) there exists a series of scalar functions {R n } for which it 
holds that 

n oRn 
L 'feu) =-, ou ( 13) 

for somej(u)ESM
. Then {Hn} is a common series of con

served densities for the whole hierarchy of equations 

(14) 
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and we have 

{Hn,Hm} =0. (15) 

Proof By (4) and (12) we have 

{Hn,Hm} = (bHn ,J
bHm 

) = (L n/(u),JL "l(u») 
~u ~u 

= (L n /(u),L *JL m-1j(u») 

= (L n+ 1j(u),JL m-I/(u») = {Hn+ I ,Hm_ I}. 

Repeating the above argument, we obtain {Hn,Hm} 
= {Hm,Hn}, while by (12) we should have {Hn,Hm} 
= - {Hm,Hn}. ThusEq. (15) holds. ThefactthatHm isa 

conserved density for Eq. (14) is a consequence of ( 15) and 
the fact that (Hm), -{Hm,Hn}. 

Now we tum to the search for the Hamiltonian struc
tures for various integrable systems. In all the following 
cases Eqs. (12) hold, and, moreover, J is symplectic and L * 
is hereditary. 

B. TC hierarchy30 

First we discuss some details about a new hierarchy. The 
Lie algebra G is taken to be A I. Its basis is 

~ J e = (~ ~), / = (~ ~). 
2 

Letx(n) = x ®An for x = h,e,! The basis for G = Al is tak
en to be 

{h(n),e+(n),e_(n)lnEZ} , 

where e ± (n) = (e(n - 1) ± /(n»)/2, for which it holds 
that 

[e_ (m),e+ (n)] = hem + n - 1), 

[h(m),e ± (n)] = e'f (m + n) . 

The isospectral problem is (1) with 

U = ( 0 1 + (q + r)/2..1) 
U + (q-r)/2 0 

= 2e+(1) + qe+(O) + rL(O) . 

By using the notation of Sec. III we set 

R = 2e+(1), el = e+(O), 

e2 = e_(O), U 1 = q(x,t), U 2 = r(x,t) . 

It is easy to see that R is pseudoregular. The gradation for A I 
is defined by 

deg e ± (n) = 2n - 1, deg h (n) = 2n . 

Therefore we have, according to (7), 

a = 1, 1:1 = 1:2 = - 1 , 

and, by (9a)-(ge), we have 

rank(A) = 2, rank(a) = 1, rank(q) = ranker) = 2. 

For the elements gEA I' 

g= I(glmh(m) +g2m e+(m) +g3m e_(m»), 
mEZ 

we define 

g+ = I(glmh(m) +g2m e+(m) +g3m e_(m»). (16) 
m;;.O 
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By using the notation of Sec. III we set 1T" = - 1. Let the 
solution of (3) be 

V= I(amh( -m) +bme+( -m) +cme_( -m»). 
m;;.O 

(17) 

By substituting (17) into (3) we obtain 

am + I = ( - qam - cmx )/2 , 

bm+ 1 = -a-lram+l , (18) 

Cm + I = (rbm - qCm - am + Ix )/2 (m;;'O) , 

and the initial values 

a o = 0, bo = p, Co = 0 . 

From now on, /3 will be used exclusively for nonzero con
stants. From the recurrence equation (18) and the conven
tion on homogeneous rank we calculate successively that 

a I = 0, b I = 0, C I = /3r /2 , 

a2 = - (/3/4)rx' b2 = (/3/S)r, 
c2 = (/3/S)(rxx - 2qr) , 

and so on. We note that 

rank(am ) = 2m - 1, rank(bm ) = rank(cm) = 2m 

and 

rank ( U) = 1, rank ( V> = - 1. 

Since (17) is a solution of (3), we have 

- (Anv>+x + [U,(.1 nV>+l 

= (A nv> -x - [U,(.1 nV>_l , 

where, by (16), 

(19) 

n 

(.1NV>+= I (amh(n-m) 
m=O 

+ bme+(n - m) + Cme_(n - m»). 

Note that the terms in the left-hand side of (19) are of degree 
;;. - 2, while the terms of the right-hand side are of degree 
..; - 1; therefore both sides of (19) are of degree - 1 and 
- 2. In other words, we have 

- (A n V> + x + [U, (A. n V> + 1 
E{Ce+ (0) + Ce_ (0) + Ch( - I)}. 

To cancel the term from Ch( - 1), we introduce 

an = (q/r)cn - bn)e + (0) . 

Then it is easy to see that for v(n) = (A. nv>+ + an' we have 

- v~n)+ [U,v(n)l = -(q/r)cn -bn)xe+(O) 

+ (cnx - (q/r)bnx)e_(O) , 

from which we obtain the hierarchy 

q, = (q/r)cn - bn)x' r, = (cnx - (q/r)bnx ). (20) 

Taking n = 2, /3 = S in (20), we obtain the representative 
pair of equations in this hierarchy, 

q, = (q/r)rxx - 2q2 - r)x, r, = rxxx - 2qxr - 4qrx , 

which reduces to the celebrated KdV equation when 
q= ±r. 
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Now we proceed to search for the Hamiltonian struc
ture of the hierarchy (20). To this end we write 

V = ali(O) + be+ (0) + ce_ (0) , (21) 

with 

b="\.'bA- m 
Lot m , 

m>O 

(22) 

It is easy to see that 

au =/(0) _ (q + r)e( - 2) . 

aA 2 

Since (1i,1i ) = ~, (e,J) = I, we have 

( V, ~~) = (ali + b ~ C e + (b ~ c) / ,/ - q21:) 

= (b + c)/(U) - (b - c)(q + r)/(4A 2) , 

and 

I v. au) = l!.... 
\ 'aq u' 

Iv. au) =~. 
\ ' ar U 

Therefore we obtain, by using the trace identity (II), that 

(
8!Oq)(b + c _ (b - c)(q + r») 
8! Or 2A 4A 2 

= (A - r~A r)( b I(U) ). 
aA - c/(U) 

By applying the operator r n + 2 given in Proposition 2 to 
both sides of the above equation we deduce that 

(
8!Oq)(bn+1 +Cn+1 _ (q+r)(bn -Cn») 
8!or 2 4 

( 
bnl2 ) 

= (r - n - 1) _ c
n
l2 . 

To fix the constant r, we simply set n = 0 in the above equa
tion; then 

(r - 1)P = (r - 1)bo = i. (pr _ (q + r)P) = - P 
2 2 oq4 4 4' 

from which we obtain r = !. Therefore we establish the fol
lowing equation: 

with 

Hn = (2/(2n + 1))(q + r)(cn - bn )/2 

+(bn+l+cn+I»)' (23) 

and consequently the hierarchy (20) takes its Hamiltonian 
form 

( q,) = J( - bn) = J(8!Oq)Hn , 
r, Cn olor 

(24) 

where 

J = (a a(qlr») . 
(qlr)a a 
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It can be verified that 

with 

L- 1 (2a- Iq a 2a-
I
ra) 

- -""4 2r-a(qlr)a 2q-a 2 • 

It is easy to see that Eqs. (12) hold for the present pair J and 
L; therefore by Proposition 3 we conclude that the Hamilto
nians (23) are conserved densities for the whole hierarchy of 
equations (24) and they are in involution in pairs. 

The above argument, which leads to (24) by using the 
trace identity, is much simpler than those in Ref. 30 where 
we directly used the constrained variational calculus (CVC) 
technique to draw the same conclusion. 

c. T A hlerarchy15 

Let G, {EJ, {E;(n)}, deg, and 1Tbe the same as in the 
TC hierarchy. We set 

u- ( 0 1) 
- q + rA - I + A 0 

= 2e+(1) + q(e+(O) - e_(O») 

+ r(e+( -1) -e_( -1»), 

or, by the notation of Sec. III, 

R = 2e+(1), e l = e+(O) - e_(O), 

e2 = e + ( - 1) - e _ ( - 1) , 

U I = q(x,t), U2 = r(x,1) . 

The ranks are as follows: 

rank(q) = 2, ranker) = 4, 

rank(A) = 2, rank(a) = 1 . 

Let the solution of (3) be represented by ( 17) and (21). 
We have 

amx = - qbm_ 1 - rbm_ 2 - 2cm - qCm_ 1 - rCm_ 2 , 

bmx = qam + ram _ I , 

Cmx = -qam -2am+ 1 -ram_I (m>2) , 

and 

aO=cO=O, bo =2P, al=bl=O, c1 = -pq. 

By setting hn = (bn + Cn )/2, we obtain from the above 
equations that 

hn+1 = (!a 2 _q+!a- l qx)hn 

+ (-r+!a-1rx)hn_ l , 

with ho = p, hi = - «(3/2)q. Note that we have 

rank(am ) = 2m - 1, 

rank(bm ) = rank(cm ) = rank(hm ) = 2m , 

and thus rank ( V) = - 1. 
The hierarchy (2) reads 

(q) ( - 2hnx ) 
r ,= 2rhn _ I.x + rxbn _ I ' 

which can be derived from (2) by taking 
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v(n) = (A "V)+ + fl." , 

with 

fl." = -2bne+(0) +rb,,_.(e+( -1) -e_( -1)). 

To write (25) in its Hamiltonian form we use the trace 
identity and obtain 

(
8!8q)(b + c)( - rA -3 +A -I) 
8/8r 2 

= (A - r~A y),!_±~jA -I). 
JA 2 \A-2 

By applying the operator r" to both sides of the above equa
tion we have 

(8 8) - - - -
8q' Dr (- rb n - 3 + b n - I ) = (r - n + 1)( b n - 2,b n - 3) • 

By setting n = 2 in the equation we find that r = ~, and con
sequently we establish the following equation: 

-,- Hn = (bn,bn_ 1 ) , (
D 8) - -

Dq Dr 
(26) 

with 

Hn = (2/(2n + 1»)(rbn _ 1 - bn+ I) . 

Equation (26) suggests that we find the operators J and L 
such that 

The above equations together with the conditions (12) lead 
us to the following expressions: 

(
-2J 0) 

J= 0 rx + 2rJ ' 

(
lJ 2 _ q + IJ - Iq 

L = 4 2 x 

1 
The hierarchy, therefore, takes the form 

n(~ (bn) 8Hn 
U, =JL =J - =J--, o bn _ 1 8u 

where u = (q,r) T and ({3,0) = (bo,O). A representative 
member of the hierarchy is 

q, = (qxx - 3q2 + 4r)x, r, = - 2(rxq + 2rqx) , 

which corresponds to the case where n = 2, P = 4. 
The T A hierarchy reduces to the KdV hierarchy when 

r = 0, and there are several generalizations; see, e.g., Ref. 18. 

D. Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy3.4 

This is a well-known hierarchy. The underlying Lie al
gebra is G = A I with the basis h = ih, e, and f The basis for 
Gis {h(n),e(n),f(n) InEZ}, wherex(n) = x ®A-". The gra
dation is deg x(n) = n. The isospectral problem is (1) with 

U = ( ~ A 1) = - h (l) + qe + rf. 

In other words we set 
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R= -h(l), el=e, e2=j, ul=q, u2=r. 

The ranks are 

rank(q) = ranker) = rankeA-) = rank(J) = 1 . 

The solution of (3) is 

V=IVmA-- m 

m>O 

= I (amh( - m) + bme( - m) + cmf( - m») 
m>O 

= ah + be + cf, (27) 

for which it holds that 

amx = qCm - rbm , 

bmx = -2bm+ 1 -2am q, 

Cmx = 2cm + I + 2amr, m;?O, 

with 

ao = - p, bo = Co = 0 . 
We note that 

rank(am ) = rank(bm ) = rank(cm ) = m . 

The hierarchy reads 

(q) (- 2bn + I) 
r ,= 2c,,+ I ' 

(28) 

which can be derived from (2) by taking fl. n = 0 and thus 
VeIl) = (A- "V)+, where the index for the positive part is 
1T= O. 

The trace identity yields, in this case, the following 
equation: 

(:q,:JH" = (cn+l,bn+ I ), 

Applying the operator r n + 2 to both sides we obtain 

(~, :JH" = (cn+l,b,,+I), 

with 

Hn = (2/(n + 1»)a,,+2 . 

Therefore, the hierarchy (28) takes the form 

u, = (q) =JL ,,(Pr) = J(C,,+ I) = J8H" , 
r , \pq b" + I 8u 

where (pr,pq) = (cl,b l ), and the pair of operators J and L 
are defined by 

J= (~ ~ 2). 

E. N-AKNS hierarchy (see, e.g., Ref. 20) 

This is a straightforward generalization of the AKNS 
hierarchy. We set G = AN_I and use the gradation (5) for 
G. For the isospectral problem (1) we set 

CA 
q12 q>N) 

u= ~~~ 
a:0 

~~~ =A-A + Q, 

qNI qN2 aNA 

where 
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A = 'LaiE;!> Q = 'LqijEij, Eij = (bk/)/j) . 
; i#) 

In this case we have a = deg R = deg(AA) = 1 and rank 
(qij) = rank(a) =rank(A) = 1. The solution Vof(3) is 

V-"'VA- m 
- ~ m , 

- "'V(ij) Vm - ~ m Eij. 
m;.O ij 

For matrices K = ~KijEijEAN_l we set 

KD = 'LK;iEi;E ker ad R, KF = 'LKijEijE 1m ad R . 
;"oj 

The hierarchy is 

Q, = [A, VII + IF] , 

which is derived from (2) in the same way as in the AKNS 
case by setting 6." = 0 and 1r = O. 

The trace identity yields 

b ('" ..) a T bQ +V"a; = aA V F, 

from which we obtain 

bH" T 
bQ = Vn+ IF, 

1 '" .. HN = ---"",V~+2a;. 
n + 1 i 

Therefore the hierarchy is 

n T T bHn 
Q, = JL (f3Q ) = JV n + I F = J-- , 

bQ 

where Q T = ViF and 

JQ= [A,Q T
] , 

LQ= - (adA)-I(Qx + [pT,Q]F 

- [pT,l[PT,Q]D]>' 

Note that the conditions (12) hold again in this case. The 
conjugation * is defined by taking the inner product 

(A,B) = ftr(A TB)dx = f tAijBij dx . 

F. Kaup-Newell (KN) hierarchy34 

Let G, {EJ, {E;(n)}, and deg be the same as in the 
AKNS hierarchy and set 1r = 1. The isospectral problem is 
(1) with 

u= (- iA Z Aq) 
Ar iA Z 

= - ih(2) + qe(1) + rf(1) = A zA + AQ, 

where A = - ih, Q = qe + rf Thus we have 

R= -ih(2), e 1 =e(1), ez =f(1), u.=q, uz=r, 

and the ranks are 

rank(A) = rank(q) = ranker) = 1, rank(a) = 2. 

Let the solution of (3) be defined by (27). The hierar
chy is 

Q, = VZm+. Fx 

which can be derived from (2) by taking n = 2m + 1, 
6.zm + Z = 0, and thus V(II) = (A 2m + 2V) +. 
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By the trace identity (11) we have 

( i.,i.)( - 4iaA + rb + qc) = ~(cA,M) . 
bq br aA 

Applying r 2m + I to both sides we obtain 

(~, :r)Hm = (CZm + 1 ,bZm + I ) 

with 

Hm = (4ia zm + z -rbZm + 1 -qczm + 1 )/2m. 

Therefore the hierarchy is 

Y m oHm 
Q, = JV Zm + 1 F = JL ({3QT) = J-- , 

OQ 
wheref3Q = V 1F' and (see, e.g., Ref. 35) 

JP=apT, 

LP= (- [A,Px] + (QT,a- 1{QT,px})/4 

({A,B} =AB + BA) . 

G. Wadati-Konno-Ichikawa (WKI) hierarchy3&.37 

Let G, {Ei }, {E; (n) }, deg, and 1r be the same as in the 
KN hierarchy. The element U is 

U= ~r ~qA) = h(1) + qe(1) + rf(1) =A(A + Q) . 

This choice amounts to taking 

R=h(1), e1 =e(1), ez =f(1), u1=q, uz=r. 

The ranks are 

rank(A) = rank(a) = rank(q) = ranker) = O. 

Note that this is the exceptional case we mentioned in Sec. 
III, where condition (iii) is weakened to (8). 

Let the solution Vof (3) be defined again by (27). The 
trace identity (11) leads to 

( i.,i.)(2a + qc + rb) = ~(Ac,Ab) , 
oq Dr aA 

or, equivalently, 

( i.,i.)Hn = (cn,b n ) , 
bq Dr 

with 

Hn = - (2an + qc" + rbn )/(n - 1) . 

Note that the above Hamiltonian is not defined when n = 1. 
To find H} we calculate as follows. We have 

1 
ao= , 

(2~1 + qr) 
b - q 
o=q= , 

(2.J 1 + qr) 
_ r 

co=r=----
(2~1 + qr) 

and 
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By the standard procedure (see, e.g., Ref. 38) for solving the 
inverse problem of variations, we find 

HI = (rqx - qrx )/(4qr»)(1 - l/(~1 + qr»). 

Substituting into (2) 

v(n) = (A.n+IV)+ + t::.n, t::.n =A.(Vn - Vn), 

where 

VnD = 0, VnF = (adA)-'Vn_ , Fx' 

we obtain the hierarchy 

U t = (q) =..!.. (~nxx ) = JL nf trr) 
r t 2 Cnxx \.pq 

=J(Cn) = JfJHn , 
bn fJu 

where (see Refs. 21 and 37) 

J =J...a2( 0 1) 
2 -1 0 ' 

L=(-~a+ra-lqa2 -ra-'ra 2 ) 
qa- 1qa 2 ~a-qa-lra2' 

H. Boite-Pempinelll-Tu (BPn hlerarchy21 

Let G be A I' The base is taken to be 

h, e+ = (e+f)12, e- = (e-f)/2. 

The base for G is 
{h(n),e+ (n),e- (n) InEZ} 

with x (n) = x ® A. n • The gradation is again defined by (5) 
and 1T = O. For the isospectral problem we set 

u=( A.+s/(U) (q+rA.-
1
)/2) 

(q-rA.- 1 )12 -A.-s/(U) 

=2h(1) +qe+(O) +re-( -1) +sh( -1). 

The ranks are 

rank(A.) = rank(a) = rank(q) = 1, 

rank(r) = rank(s) = 2 . 

The solution of (3) is represented as 

V=oh + be+ + ce- = I(omh( - m) 
m;;.O 

We have 

0nx = - qCn + rbn_ 1 , 

bnx =2cn + , +scn_ 1 -rOn_I' 

Cnx =2bn+, +sbn_ , -qon' n>l, 

and 

00 = 2{3, bo = Co = 0, 02k + 1 = blk = C2k + 1 = 0 . 

Then 

rank(om) = rank(bm) = rank(cm ) = m, rank( V) = O. 

The hierarchy is 

(q) ( 2c
2m 

) r = -sb2m _ 1 , 

S t - rb2m _ 1 

which corresponds to the choice 

n = 2m + 1, v(n) = (A. nV) +, t::.n = O. 

By the trace identity we find 

(.£.,.£.,.£.)«(1 - (s/2)A. -2)0 - (r/2)A. -2C) 
fJq fJr fJs 

= ~(~,- ~,;J (r=O), 

from which we obtain 

(
fJ fJ fJ) 

fJq' fJr' fJs Hm = (b2m + I' - c2m ,02m) , 

(29) 

(30) 

where Hm = (s02m - rC2m - 202m +2 )/(2m + 1). The 
hierarchy (29), therefore, takes the following Hamiltonian 
form: 

u, ~(:) ~JL{~)~{~:J~J6:,m , 
where 

as - q a -I (qs) 

-2s -2r . 
ar - qa -I(qr») 

- 2 a -I(qs) - 2 a -I(qr) 

I. TB hierarchy19 

Let G, {Ei }, {Ei (n)}, deg, and 1T be the same as in the BPT hierarchy. We take 

(
A. + Er/U (q+rA.-I)12) - -

u= (q-rA. -1)/2 -A.-Er/U =2h(1) +qe+(O) +r(e-( -1) +Eh( -1)), E= ± 1. 

The ranks for q, r, A., and a and the form of Vare the same as in the BPT hierarchy. Again we have (30) with respect to the deri
vation of the hierarchy. 

The trace identity now reads 
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(i.i.)((l _ ~rli. -2)a + rli. -IC) = ~(!!.. - -.!..eli. -I + ~aA -I) (r= 0) , 
/jq' /jr 2 2 ali. 2' 2 2 

or Hm = (Era2m - rC2m - 2a2m + 2 )/(2m + 1) and 

( i.,i.)Hm = (b2m + I ,Ea2m - c2m ) . 
/jq /jr 

The operator L mapping {jH m / /ju to /jH m + 1/ /ju is 

L = ~( - 2Er - q2 + q a -I (2r + qx) + a 2 
4 E a - I ( 4r + 2q x) - 2Eq - 2 a 

Ear - Eq a - I qr ) 
-2a- lqr-2Er 

and the operator J is 

J = (a Er). 
-Er 0 

The hierarchy is therefore the following: 

u =(q) =( 2c2m
+

2 )=JLm(pq)=J( b
2m

+
1 )=J/jHm . 

I r I - Erb2m + I 2E{3. Ea2m - c2m /ju 

Note that the TB hierarchy is a reduction of the BPT hierarchy; however, the Hamiltonian structure undergoes nontrivial 
change. 

v. CONCLUDING REMARKS 

We have shown that the trace identity does provide us 
with a powerful tool to transform the hierarchy of integrable 
systems to its Hamiltonian form. Furthermore, the operator 
L maps /jHn//ju to /jHn + I //ju, while /jHn//ju can be deter
mined by means of the trace identity; therefore the present 
approach suggests the possibility of analyzing the algebraic 
structure of hereditary and symplectic operators and to con
struct more new ones starting from the model isospectral 
problem presented in Sec. III. Progress has been made to
ward this goaF7; we leave the further study in this direction 
to later papers. 

However, one open problem remains. We need to fix the 
constant r each time. Can one obtain an explicit formula for 
it? It seems that the constant r is closely related to the 
asymptotic behavior of the eigenfunctions of the corre
sponding spectral problem. 
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Displacement theorems are presented for the solutions in spherical coordinates of the linear 
Navier-Stokes equations for time-independent flow in an incompressible viscous fluid. The 
theorems allow one to expand spherical solutions about a chosen center into spherical solutions 
centered elsewhere. 

I. INTRODUCTION 

The solutions in spherical coordinates of the linear Na
vier-Stokes equations for steady flow in an incompressible 
viscous fluid were found long ago by Lamb. I The solutions 
are described in detail by Happel and Brenner. 2 In problems 
of hydrodynamic interactions between spherical particles, it 
is necessary to expand spherical solutions centered about 
one particle into solutions centered about a different parti
cle. For a special choice of coordinates, the desired transfor
mation was found by Schmitz and Felderhof. 3 Here we pres
ent the general transformation for an arbitrary direction of 
the vector connecting the two centers. Regarded as a func
tion of this vector, most of the transformation coefficients 
satisfy Laplace's equation. Our derivation is based on addi
tion theorems for spherical wave solutions of the vector 
Helmholtz equation, as presented by Felderhof and Jones.4 

The derivation is straightforward but lengthy and we present 
only the final results. 

II. SOLUTIONS IN SPHERICAL COORDINATES 

In order to establish notation, we recall here the solu
tions in spherical coordinates of the linear Navier-Stokes 
equations. The equations read 

1/V2v - Vp = 0, V·v = 0, (2.1) 

where 1/ is the shear viscosity, v(r.) is the flow velocity, and 
p (r) is the pressure, which is determined by the condition of 
incompressibility. A complete set of solutions of (2.1) in 
spherical coordinates was first presented by Lamb. I Here 
we employ the notation of Cichocki et al. 5 The set of solu
tions appropriate to spherical symmetry is given by 

v,~ (r) = r-IA'm C;'), P,;;'o (r) = 0, 

V';;'I (r) = ir elm (1-), P';;'I (r) = 0, 

v';;'2(r) =r+I[[(I+ 1)(21+3)12/]A'm(r) +8'm(r)], 
P';;'2 (r) = 1/[ (/ + 1 )(21 + 1 )(21 + 3 )/1 ]r' Y'm (r). (2.2) 

Here Y'm (r) is an unnormalized spherical harmonic related 
to the usual Y'm (r), in the notation of Edmonds,6 by 

A 

Y'm (r) = n'm Y'm (r) = ( - l)mp;,,(cos e)e iln
"" (2.3) 

with the normalization coefficient 

n'm = [[ 41T/(21 + 1)] [(I + m)!/(I- m)!]]1/2. (2.4 ) 

The vector spherical harmonics appearing in (2.2) are de
fined by 

A A JY'm 1 JY'm 
A'm =IY'm e, +--eo +-.---e'l" 

Je sm e Jrp 

A A JY'm 1 JY'm 
B'm = - (/+ l)Y'm e, +--eo +-.---e'P' 

Je sm e Jrp 

A 1 JY'm JYlm C, =-----eo ---eo (2.5) 
m sin e Jrp Je' 

where e" eo, and e'P are unit vectors in spherical coordinates. 
The above vector spherical harmonics are related to the 
Y JLM defined by Edmonds6 by 

A'm = n'm~/(21 + l)YII _ I m' 

8'm =n'm~(/+ 1)(2/+ I)YII + lm , 

elm = -in'm~/(/+ l)Yl/m' 

(2.6) 

We shall denote the set of solutions (2.2) by {v,;;',,(r)}, 
where the angular quantum number I takes the values 
1= 1,2, ... , the azimuthal quantum number m takes the val-
ues - 1, ... ,1, and the subscript u takes the values 0,1,2. 

It is convenient to define an adjoint set of functions 
{w,;;,,, (r)}. We require this set off unctions to be orthonor
mal to the set {v,;;,,,} on a sphere of arbitrary radius b. It is 
easily seen that such a set of functions is given by 

w,;;'o (r) = [/(21 + 1 )n7m ] - I r -' 

X [A'm - ~(21 + 3)8'm], 

w,;;'I(r) =i[/(/+ l)n7m] -Ir-I-Ie,m, 

w';;'2(r) = [(/+ 1)(2/+ l)n7m] -lr -'-28Im . 

These functions satisfy the orthonormality relations 

(2.7) 

(W,;;'alib IV':;n'o') = li/l,limm,liao' , (2.8) 

where we have introduced the scalar product 

(fig) = J f*(r)·g(r)dr 

and the abbreviation 

lib = (lIb)li(r - b). 

(2.9) 

(2.10) 
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We also consider a set of solutions {v/~u(r)} that tend 
to zero at infinity and satisfy the flow equations (2.1) every
where, except at the origin. This set of solutions is given by 

_ 1 _/[ 1+1 AlB ] 
V/tnO(r) = (2/+ If r 1(2/-1) 1m -2 1m ' 

_ 1 _I_I'" 
PlmO (r) = 1/ --- r Ylm , 

21 + 1 

V/~I (r) = 1(1+ 1/(2/+ 1) r-
I
-

I 
elm' Pi;;'1 (r) =0, 

( I -1- 2 B'" 
V 1~2 r) = (I + 1)( 21 + 1) 2 (21 + 3) r 1m , 

P/~2(r)=0. (2.11) 

We define again a set of adjoint functions {W I;;'u (r)} that 
satisfy the orthonormality relations 

(W/;;'u8b IV/-:-m'o') = 8 11 ,8mm,8uo' , (2.12) 

for any radius b. It is easily seen that such a set off unctions is 
given by 

W- (r) = (2/- 1)(21 + 1) r'-IA , 
ImO (I + 1)ntm 1m 

_ .21 + 1 '" 
Wlml (r) = 1-2- r' elm' 

nlm 
(2.13) 

- ( ) _ (21 + 1)( 21 + 3) r' + I [ 21 - 1 A + B ] 
W 1m2 r - I 221m 1m' 

nlm 

The solutions presented in this section are useful in the prob
lem of flow about a single spherical particle. In treating the 
problem of hydrodynamic interactions between spherical 
particles, one wishes to expand the solutions defined relative 
to a chosen center in terms of solutions centered elsewhere. 
We address this problem in the next section. 

III. DISPLACEMENT THEOREMS 

In this section we present the desired displacement theo
rems. We consider three vectors r, r> , and r < related by 

(3.1 ) 

where Ir> 1 is larger than Ir < I. Our displacement theorems 
for the regular solutions take the form 

V/;:;u (r) = L S + + (r > ;1 'm' a',lma)vit:m,o' (r < ) (3.2a) 
I'm'o' 

s++(I'm'OlmO) =~s++(I'm'1Im1) 
, 1+1 " 

= L S++(r<;l'm'o',lma)virm'o'(r». (3.2b) 
I'm'o' 

The displacement theorems for the singular solutions read 

V/~u(r)= L S+-(r>;l'm'a',lma)virm'o'(r<) (3.3a) 
I'm'o' 

= L S--(r<;I'm'a',lma)v/-:-m'o'(r». (3.3b) 
I'm'o' 

Using the orthonormality relations (2.8) and (2.12), we 
may write the superposition coefficients as matrix elements 
of spherical functions centered about two different centers, 
RI and R2• We identify RI with the origin and take the solu
tions on the right-hand side of Eqs. (3.2) and (3.3) to be 
centered about R2• We then find from (3.2), in obvious nota
tion, 

S + + (R;I'm'a',lma) = (wit:m,o' (2)8b (2) Iv/;:;u (1), 
(3.4 ) 

where R = R2 - R I. Similarly, we find from (3.3a) 

S+-(R;I'm'a',lma) = (wirm'o'(2)8b(2)lv/~u(1», 
(3.5) 

with the condition b < R. From (3. 3b) we find 

S--(R;I'm'a',lma) = (wi:-m'o'(2)8b(2)lv/~u(1», 
(3.6) 

with the condition b > R. 
We present the values for the coefficients without deri

vation. We comment briefly on the derivation in the next 
section. The coefficients (3.4) may be written in the form 

S ++ (R;I'm'O,lmO) = s++ (I'm'O,lmO)R 1-I'YI_I',1l (R), 

S + + (R;I'm'O,lm1) = s+ + (I'm'O,lm1)R I-I' + I 

XYI_I'+I,Il(R), 

S + + (R;I'm'O,lm2) 

= R I-I' + 2 [so+ + (l'm'O,lm2) YI-I',1l (R) 

+ st + (I'm'O,lm2) Y I _ I, + 2,1l (R)]. 
(3.7) 

S + + (R;I 'm'l,lm1) = s+ + (I 'm'l,lm1)R 1-I'YI_I',1l (R), 

S ++ (R;l'm'l,lm2) = s+ + (I'm'l,lm2)R I-I' + I 

X YI_I' + I,ll (R), 

S ++(R;I'm'2,lm2) = s+ + (I'm'2,lm2)R 1-I'YI_I',1l (R), 

where /-l = m - m' and the scalar coefficients are given by 

s++(l'm'O,lm1) = (I' + l)(ml' - m'l- m') s++(I'm'l,lm1), 
1'(1 + 1)(1 -I' +/-l + 1) 

s+ + (I'm'O 1m2) = (21 + 1)(21 + 3)(1' + 1) s++(l'm'llm1) 
° , 21 (21 - 2/' + 3) " 

s + + (l' m'O,lm2) = (21 + 1) (I' + 1) (II' - 21 + 31' - 3) 
2 l/ ' (I + 1)( 2/' - 1)( 21 - 2/' + 3) (I - l' + /-l + 1) (I - l' + /-l + 2) ( 3.8 ) 

X [1'(1 + 1)(1 -I' + 2) - (I -I' + 2)(2/- 2l' + 3)m,2 + 2m'/-l(2l' - 1) (I -l' + 2) 

- 2/-l2l'2 + I'/-l (/-l - 2m') + /-lm']s+ + (I 'm'l,lm 1), 
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s++ (I'm'l/m2) = (21 + 1) (21 + 3)(m!' - m'l- m') s++ (I'm'I,lml), 
, 1/'(I+l)(l-I'+jl+1) 

+ + (I 'm'2Im2) = I' (21 + 1 )(21 + 3) s+ + (I'm'I,lml), 
s , 1(2/' + 1)(2/' + 3) 

with the single coefficient s+ + (/ 'm'I,lml) given by 

++ I' '11 1)" 1+1 (/+m)! s (m, m = u m " + m' -------'--------:-
.~ 1'+1 (/'+m')!(l-I'+jl)! 

(3.9) 

All coefficients not listed explicitly in (3.7) vanish. For giv
en I the number I' can take only the values 1, ... ,1. 

The coefficients (3.5) may be written in the form 

S + - (R;I 'm'O,lmO) 

-R -I-I'+I[S+ -(/'m'OlmO)Y (R) - 0 , 1+1',1' 
A A 

+ s/ - (/ 'm'O,lmO) YI+ I' _ 2.1' (R)], 

S + - (R;I'm'O,lml) 

= s+ - (I 'm'O,lml)R -I-I'YI+ I' _ 1.1' (R), 

s + - (R;I 'm'O,lm2) 

= s+- (l'm'O,lm2)R -I-I' -lyl+ 1',1' (R), 

S +- (R;I'm'l,1mO) 

= s+ - (l'm'I'/mO)R -I-I'YI+ I' _ I,!, (R), 

S + - (R;I'm'l,1ml) 
I (' 1......... A 

=s+-(l'm'I'/ml)R - - - YI+ I'.I'(R), 

s + - (R;I 'm'2,1mO) 

=s+-(l'm'2,/mO)R -I-I'-IYI+ I,.I'(R), 

(3.10) 

where jl = m - m' and the scalar coefficients are given by 

s+-(l'm'OlmO)=~ (/+1)(1'+1) s+-(l'm'I'/m1) 
o , 2 21 + 21' - 1 ' 

S2+ - (l'm'O,lmO) 

(I + 1) (I' + 1) (II' - 21 - 21' + 1) 

1/'(2/- 1)(21' - 1)(21 + 2/' - 1) 

X 1 
(I + I' - m + m') (I + I' - m + m' - 1) 

X [ -1/'(/ + I') + 2m'2f2 + 2m2/,2 

+ (4mm' + 1)1/' - m'(2m + m')1 

- m(2m' + m)/' + mm']s+-(/'m'I,lm1), 

s+ - (l'm'O,lm 1) (3.11) 

= (m'l + ml') (I' + 1) s+- (I'm'I,lml), 
I/'(I+I'-m+m') 

s+- (['m'O,lm2) 

= 1(/' + 1) s+-(l'm'l,1ml), 
(21 + 1)( 21 + 3) 

s+-(l'm'I'/mO) 

= (m'l+m/')(/+1) s+-(l'm'l,1ml), 
I/'(/+I'-m+m') 

341 J. Math. Phys., Vol. 30, No.2, February 1989 

s+ - (I'm'2,lmO) 

(/ + 1)1' s+-(/'m'l/m1) 
(2/' + 1)(2/' + 3) " 

with the single coefficient s+ - (/'m'l,1ml) given by 

s+-(l'm'I,lml) 

= ( _ 1) I' + m' + I 1 
(I + 1)( 21 + 1) (I' + 1) 

X (/+I'-m+m')!. 
(I - m)!(/' + m')! 

(3.12 ) 

All coefficients not listed explicitly in (3.10) vanish. The 
numbers I and [' independently take all positive integer val
ues. For the special case where R is in the z direction, the 
coefficients (3.10) reduce to those given by Schmitz and 
Felderhof,3 see also Cichocki et al. 5 

The coefficients (3,6) are related simply to the coeffi
cients (3.4). We find 

S - - (/ 'm'u',Imu) 

= (_1)/+I'+m+m'[(21' + 1)/(2/+ 1)] 

xS + + (I - mu,/' - m'u'). (3.13 ) 

For given I' the number I can take only the values 1, ... ,/'. 

IV. DERIVATION 

We comment briefly on the derivation of the above re
sults. We start from the addition theorems for spherical 
wave solutions of the vector Helmholtz equation, as present
ed in Ref. 4. These may be used to find addition theorems for 
the spherical wave solutions of the time-dependent linear 
Navier-Stokes equations, as given in Ref. 7. These solutions 
are stationary in time, so that one obtains relations for each 
frequency. The spherical solutions of Sec. II are a linear 
combination of the solutions of Ref. 7 taken at zero frequen
cy. The relation is found by a succession of two linear trans
formations that have been given explicitly in Sec. 8 of Ref. 7 
and in Appendix B of Ref. 5. The results presented in Sec. III 
are obtained by applying these transformations to the addi
tion theorems for the spherical wave solutions and by simpli
fying the result by use of standard properties of the Clebsch
Gordan coefficients. 

'H. Lamb, Hydrodynamics (Dover, New York, 1945), pp, 595 and 632. 
2J, Happel and H, Brenner, Low Reynolds Number Hydrodynamics 
(Noordhoff, Leyden, 1973), p. 62. 
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Analytic solutions of a fourth-order differential equation with a 
second-order turning pOint 

Hans o. Akerstedt 
DepartmentoJTechnology, Uppsa/a University, Box 534, S-75121 Uppsa/a, Sweden 

(Received 3 May 1988; accepted for publication 5 October 1988) 

Analytic solutions of a certain fourth-order differential equation with a second-order turning 
point are given. The solutions can be expressed in terms of products of the well-known 
parabolic-cylinder functions, and the equation might therefore be useful as a comparison 
equation in the theory of asymptotic expansions of ordinary differential equations. 

J. INTRODUCTION 

The theory of asymptotic solutions of linear differential 
equations is a powerful tool for investigating many physical 
phenomena in various branches of theoretical physics. The 
most well-known such method is perhaps the WKB method, 
which is frequently used, for instance, in quantum mechan
ics when solving the second-order Schrodinger equation. 
This method, however, breaks down near certain points 
called turning points. 

One method for obtaining asymptotic solutions valid 
even at the turning points has been given by Langer. 1 His 
idea is to transform the differential equation into one equa
tion that is close to a simpler equation, called a comparison 
equation, which has the same qualitative features as the 
original equation. This method works when the comparison 
equation can be solved in terms of already well-known tran
scendental functions. For second-order differential equa
tions this method is well established for equations containing 
turning points of any order.2 

For singularly perturbed differential equations offourth 
order with turning points, the general theory is, however, 
more difficult. Fourth-order differential equations are im
portant in connection with studying the stability of nontur
bulent viscous flows in hydrodynamics. The stability is then 
described by the so-called Orr-Sommerfeld equation.3 For 
this equation, uniformly valid asymptotic solutions have 
been obtained for the case of one single turning point.3 

In a recent study on the effects of gyroviscosity on the 
stability properties of the Z-pinch,4 a fourth-order differen
tial equation similar to the Orr-Sommerfeld equation ap
pears. For this case, however, the turning point is of second 
order. The comparison equation for this case turns out to be 
a fourth-order differential equation, which can be complete
ly solved in terms of products of the well-known parabolic
cylinder functions. Since we believe that this comparison 
equation could probably be applied to other problems as 
well, we will present the solutions of this equation here. 

II. ANALYTIC SOLUTION 

We will here consider the solutions X( 7]) of the equation 

X"" + a7]2x" + 3a7]X' + bX = 0 , ( 1 ) 

where primes denote differentiation with respect to 7], and a 

and b are constants. This equation can be solved by using the 
integral transform 

X(7]) = L exp(7]t)v(t)dt, (2) 

where r is a curve in the complex t plane, and must be cho
sen such that 

[v(1) Jar = 0 and [v'(I) Jar = o. (3) 

Transforming Eq. (1) gives an equation for v(t) oftheform 

t 2(12V)" - 3t(l2V)' + (b/a + 3 + t 4/a)t 2v = 0, 

with Bessel function solutions 

v(t) = J,.. qr) , 
where 

j.l=!~(a-b)/a and s=a- 1
/
4t. 

One of the solutions of Eq. (1) can then be written 

(4) 

X(7]) = L J,..( ~ r) exp(;s)ds, (5) 

where; = a 1
/
47]. The curve r can be chosen as in Fig. 1 (a). 

IfRe(j.l) > -!, the path r can be deformed into ABeD 
as in Fig. 1 (b), and then 

X(7]) = r J,..(..!..r) exp(;s)ds 
JABCD 2 

=2isin(j.l1T) fO exp( -;X)J,..(~ X2)dX. (6) 

This integral can be expressed in terms of the well-known 
parabolic-cylinder functions5 

X( 7]) = 2i sin (j.l1T) [r(j.l + !)/[1T] U(j.l,;ei
11"14) 

(7) 

The parabolic-cylinder functions U(j.l,x) are solutions of the 
second-order differential equation 

Y" - (!x2+j.l)Y=O. (8) 

The second solution to (8), linearly independent to U(j.l,x) , 
is denoted by V(j.l,x). 

Since U(j.l,x) is analytic for all j.l and x, the solution 
X(7]) given by (7) is analytic for all j.l and x by analytic 
continuation to Re(j.l)";; - !. We have thus found one solu
tion to (1), i.e., 
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(a) s plane 

r 

(b) s plane 

A B 

o c 

FIG. 1. (a) Integration contour r. (b) Deformed integration contour 
ABCD, where the small circle radius approaches zero. 

(9) 

The other three linearly independent solutions can easily be 
verified to be 

X2(17) = U(jl,{;ei1T14 ) V(jl,{;e- i1T14 ), 
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X3(17) = U(jl,{;e- i1T14 )V(jl,{;e'1T14), 

X4 (17) = V(jl,{;e - i1T14)'V(jl,{;e'1T14) . 

We have thus found four linearly independent solutions 
to (I), which can be expressed in terms of products of the 
parabolic-cylinder functions. Since the parabolic-cylinder 
functions have well-known asymptotic properties, they 
might be useful in the theory of asymptotic expansions of 
differential equations, for cases when Eq. (1) can be used as 
a comparison equation. 

Finally, we mention that the asymptotic properties of 
the solutions of a similar but slightly more general equation 
have been considered by Paris and Wood.6 This equation is 
of the form 

u iv + (ar + {3)u" + rzu' + DU = O. 

The solutions to this equation can also be written in terms of 
an integral transform of the type (2) above. However, this 
integral can be performed only for special choices of the con
stants a,{3, r,D. One such choice is /3 = 0, r = 3a, for which 
the solutions are identical to the ones given here in this pa
per. 

'R. E. Langer, Trans. Am. Math. Soc. 33, 23 (1931). 
2A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973). 
'P. G. Drazin and W. H. Reid, Hydrodynamic Stability (Cambridge V.P., 
New York, 1981). 

4H. O. Akerstedt, Phys. Scr. 37, 117 (1988). 
51. S. Gradsheteyn and I. M. Ryzhik, Tables of Integrals, Series and Prod
ucts (Academic, New York, 1965). 

6R. B. ParisandA. D. Wood, Philos. Trans. R. Soc. LondonSer. A 293, 511 
(1980). 
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In a previous paper by the authors [J. Math. Phys. 29, 1361 (1988)] it was shown that, 
following the standard definition, the angular momentum tensor corresponding to the 
Coulomb field does not exist (due to the long range of the field). In the present paper, for a 
general classical field theory, nonconventional definitions for the four-momentum and angular 
momentum tensor are given. These definitions are applied to the particular case of a charged 
classical point particle in an external electromagnetic field, showing that the total four
momentum pI-' and the total angular momentum tensor MAl-' of the system exist and are 
conserved quantities. In this framework, no asymptotic conditions on the four-acceleration of 
the particle are needed. The problem of extracting an equation of motion for the particle from 
these conservation laws is discussed. Also, the different parts (such as the radiated one and the 
bound one) of pI-' and MAl-', and their corresponding energy momentum tensors and angular 
momentum density tensors, are considered. 

I. INTRODUCTION 

In classical field theories, given an energy momentum 
tensor e ~v, an angular momentum density M );r, and any 
auxiliary timelike world line (TWL) with parametric equa
tion xl-' = zI-'( r), where r is the proper time given along it, it 
has been customary 1-3 to define the corresponding four-mo
mentum p ~ and angular momentum tensor m~1-' as 

(1.1 ) 

mr(r)=lMrVdUV' (1.2) 

where U is any spatial hypersurface that cuts the TWL at 
zI-'( r). Definitions (1.1) and (1.2) are usually given without 
the use of a TWL because this is not really necessary, but we 
do so in order to apply these definitions directly to the case of 
classical electrodynamics. 

For the case of a charged classical point particle in an 
external electromagnetic field the TWL corresponds to the 
particle world line (PWL), and U is restricted to a spatial 
hypersurface that cuts the PWL orthogonally at z( r). 4-9 In a 
previous paperlO we showed that in this case the integral 
(1.2) defining the total angular momentum tensor does not 
exist, and hence Lorentz invariance of the theory cannot be 
treated by definition ( 1.2). It is important to notice that the 
nonexistence of mAl-' we are talking about is not due to the 
divergence of the theory at the PWL (which can be dealt 
with by the standard renormalization procedure5

,8-12), but 
is due to the asymptotic behavior of the electromagnetic field 
at spatial infinity. 10 Precisely because of this, it is expected 
that the integral (1.2) does not exist for any extended body 
with nonzero net charge lO (for instance, for Schwinger's 
charged spherical shell,13 mAl-' does not exiseo). 

In order to avoid the above-mentioned problem, we set 
in Sec. II A, for a general classical field theory, nonconven
tional definitions for the four-momentum p~ and angular 
momentum tensor M ~I-' corresponding to e ~v and M ~I-'V, In 

Sec. II B, we show that the totalfour-momentum pI-' and the 
total angular momentum tensor M AI' of a charged classical 
point particle in an external electromagnetic field exist and 
are conserved quantities. In Sec. II C general properties of 
the new definitions are discussed. 

Also, in light of the new definitions we undertake the 
study of different items for a charged classical particle, pre
viously considered in the literature in light of definitions 
( 1.1) and (1.2). In Sec. III, we discuss the radiated part of 
the four-momentum and angular momentum tensor togeth
er with their splitting in a spin and orbital part. The problem 
of the corresponding energy momentum and angular mo
mentum density tensors is also discussed. In Sec. IV, the 
bound part of the four-momentum and angular momentum 
is considered. We use two different methods to reach the 
PWL, which lead to two different results. The problem ofthe 
corresponding bound energy momentum and angular mo
mentum density tensors is also addressed. In Sec. V, from the 
conservation law of pI-' and M AI-', we consider the problem of 
extracting an equation of motion for the particle. 

Throughout this paper we emphasize obtaining results 
in which both the four-momentum and the angular momen
tum tensor are inextricably linked. 

We shall follow Rowe'sl4 notation, i.e., the metric ten
sor g has signature + 2 and the speed of the light is taken as 
1. When convenient, indices on vectors and tensors will be 
omitted, and scalar products will be indicated by a dot. A 
parenthesis ( . , . ) or a bracket [ . , . ] will denote symme
trization or antisymmetrization, respectively, of the en
closed variables (withollt a factor !). The PWL is z( r), 
where ris the proper time; v( r) =v(v2 = - 1) and a( r) =a 
(v' a = 0) are its four-velocity and four-acceleration, re
spectively. The components of the total electromagnetic en
ergy tensor eelm for a charged point particle and an external 
electromagnetic field are 

e~~ = (1/41T)(Pl-'apVa - !gI-'vp a(3Pa(3) ' (1.3) 

where 
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(1.4 ) 

The electromagnetic field tensor F~';; is the one corre
sponding to the retarded Lienard-Wiechert potential. The 
nonsingular external electromagnetic field F ~~ satisfies 
Maxwell's equations for a vacuum and vanishes adequately 
asymptotically (see Sec. II B). Corresponding to the super
position showed in (1.4) we obtain (in obvious notation 14), 

using (1.3), 

( 1.5) 

Retarded coordinates will be used here (see, e. g., Refs. 9 
and 14). Then for any space-time point x, we define 
R=X-Z(T), R 2=O (Ro>O), p=-v'R, and u 
=R /p - v. In these coordinates, 

9 ret = ~(~ g + vv - uu) ~ + ~(a - ua . u, !i.) ~ 
41T 2 p4 41T P p3 

e2 RR + _[a2 - (a . U)2] -. (1.6) 
41T p4 

The tensor 9 ret has been split in several ways. 5.15.16 Here 
we shall consider the splitting proposed in Refs. 15 and 16, 
that is, 

9 ret =9B +9s +9L , 

where 

( 1.7) 

9s=~[(a,R) _ 4a. RRR + a' R(v,R)] ~ (1.8) 
41T P p3 p2 p3 

and 
e2 RR 9 L =- [a2 - (a . U)2] - . (1.9) 
41T p4 

In Rowe's notation, 9 B =91, 9 s =92, 9 L =93, 
Given an arbitrary energy momentum tensor 9 ~v, we 

define its corresponding angular momentum tensor density 
M~l'v as 

( 1.10) 

The material properties of the particle will be character
ized by the standard 14.16 bare energy momentum tensor 9 lr 
given by 

9~v= J mo(T)uI'(T)VV(T)t5[X-Z(T)] dT, (1.11) 

where mo( T) is an arbitrary scalar, and by a bare angular 
momentum tensor density, given by (see, e.g., Ref. 6) 

J(~I'V = M~l'v + y~l'v, (1.12) 

where y~l'v is an intrinsic angular momentum density, anti
symmetric in the indices A and f.L. We shall choose y~l'v as 

y~l'v= J SAI'(T)VV(T)t5[X-Z(T)] dT, (1.13) 

where SAI'( T) is an arbitrary antisymmetric tensor. 
Then, the total energy momentum tensor 9 I'V for a 

charged classical point particle in an external field will be 
given by 

9 I'V = 9 ~v + 9~;;' , (1.14) 

and the total angular momentum tensor density M AI'V will be 
given by 

(1.15) 
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where M:t:: is the tensor corresponding to 9 ~;;, . 
Given an arbitrary TWL with parametric equation 

zI'( T), we shall define several hypersurfaces related to it that 
will be used throughout the paper. We shall designate the 
future light cone with apex atzl'( T) by C( T). We shall desig
nate a connected band on C( T) by U c (or u; ), '1i' being de
fined by '1i' =inf"c p. A special band on C( T), denoted by 
C( T,E1,E2), is determined by the intersection of C( T) and 
two Bhabha tubes9.'7 ofradiusE, and E2 withEI <E2 (here 
'1i' = E1). Another special band on C( T') denoted by 
'if ( T' ,po,E) is determined by the intersection of C( T') with 
the Bhabha tube of radius E, and the intersection of C( T') 

with the hyperplane with normal nl'( T), where T' < T, 
E> sup Po (Po being the set of values of the p coordinate on 
the intersection with the hyperplane; '1i' = infpo). We shall 
designate an arbitrary connected surface laying between 
C( T 1) and C( T2) and intersecting them (T1 < T2, E=inf:l: p) 
by I.(E,T1,T2). For the special case when I.(E,T1,T2) is a 
segment of the Bhabha tube of radius E, we shall use the 
notation I.=B(E,T1,T2). We know9.14 that the hypersurface 
elements of a Bhabha tube dBv and of a light 
cone dCv are dBv = E2 dTdn(uv + a . uRv) and 
dCv = -pdpdnRv' 

II. CONSERVATION LAWS 

A. General theory 

Given an auxiliary TWL, let To be an arbitrary proper 
time referred to the TWL. We shall consider all the physical 
phenomena on the space-time region no contained in the 
absolute future light cone C( To). Let us note that the limit 
To-+ - 00 is not excluded here. 

Let us consider energy momentum tensors 9 ~v and an
gular momentum density tensors M;r in a general classical 
field theory, for which the following three conditions hold. 
Given a TWL, the following statements hold. 

(a) There exists in no a world volume Wwhose inter
section with every lightlike surface is bounded, and such that 
av9 ~v = 0, avM~v = 0 on n~ =0.0 - W (this means that 
the field sources are contained in W). 

(b) The integrals 

i 91'v dC A v 
CIT) 

(2.1 ) 

and 

r M~v dCv (2.2) 
JC(T) 

exist for all 'TE [ To, 00 ). 

(c) There exists a surface I.(E,To,T) such that the inte
grals 

lim i 9 ~v dI.v 
E- 00 X(E,Tn.T) 

(2.3) 

and 

lim i M~v dI.v (2.4) 
E- 00 l:(E,'TwT) 

exist for all 'TE [ To, 00 ). 

The existence of the integrals (2.1) and (2.2) imply'8.'9 
that, for 'TE[ To, (0), 
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lim r a ~v dCv = 0 , 
W_ oo Juc 

(2.5) 

and that 

lim r M1'v dCv =0, 
W_oo Ju

c 

(2.6) 

for any band (Tc on C( 'T). 

Let us now show that the imposed conditions (a)-(c) 
imply that the integrals (2.3) and (2.4) are independent of 
the surface ~(E,'To,'T). In fact, let ~(E,'To,'T) and B(E' ,'To,'T) 

on fib (E' < E) define the bands (T; and (Tc on C( 'To) and 
C( 'T), respectively (see Fig. 1). Then, by Gauss' theorem we 
obtain that 

i a ~v d~v - r a ~v dBv 
l:.(E,T",'T) JB(E',{(UT) 

= r. a ~v dCv _ r a ~v dCv . 
Juc Juc 

(2.7) 

Taking the limits E --+ 00 and E' --+ 00, the proof for a A is 
now complete using (2.5). Obviously, the same procedure 
holds for M ~Jl.v. 

For arbitrary tensors a ~v and M 1'v for which condi
tions (a)-(c) hold, we define for any 'TE ['To, (0) the corre
sponding four-momentum p~ ('T) and the corresponding 
angular momentum tensor M l' ( 'T) from 'To up to the proper 
time 'T as (see Fig. 1) 

M).JI.('T) = 1 M).Jl.V dC + lim i M).Jl.V d~ A A v A v' 
C(r) E-oo l:(E,r",r) 

(2.9) 

FIG. I. Hypersurfaces used to define p~ and M~" and toevaluateP~", and 
M~:)(. 
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where the surface ~ that connects C( 'To) and C( 'T) is arbi
trary. Since we showed that the last integral appearing in 
(2.8) or (2.9) doesnotdependon~,P~ andM1' are unam
biguously defined. Hence in the following we shall use the 
special surface B(E,'To,'T) instead of a generic ~(E,'To,'T) 
whenever necessary. 

Now, we shall show that if a ~v and M ~Jl.V obey a conser
vation law in differential fonn, that is, 

ava ~v = 0, a vM1'v = 0 , (2.10) 

everywhere in fio, then P~ and M l' are conserved quanti
ties for all 'TE [ 'To, 00 ); that is, we obtain conserved quantities 
in integral fonn. 

For the proof, we use Gauss' theorem and (2.10) in the 
region shown in Fig. 2. We obtain 

(L(r,.o,E,) a ~v dCv + i(E,.r'''T') a ~v dBv ) 

- (1 a Jl.V dC + r a Jl.V dB ) 
C(T1.O,E.) A v JB(E1,To.T

1
) A v 

=1 a~vdCv' (2.11) 
C(To.E.,E2 ) 

Then taking the limits E2 --+ 00 and EI --+ 00 in (2.11) and 
using (2.8) and (2.5), it follows that 

P~ ('T I ) = P~ ('T2) . 

Following the same steps, we obtain that 

M1'('T I ) =M~JI.('T2)· 

(2.12) 

(2.13 ) 

Let us obtain P~ ('T) - P ~ ('T) and M1'( 'T) - m1'( 'T) 

for a a ~v and M1'v for which conditions (2.10), (b), and 
(c) hold, and where the integrals (1.1) and (1.2) defining 
p ~ and m~JI. exist [to perfonn the comparison we take the 
limit 'To-+ - 00 in (2.8) and (2.9)]. Using Gauss' theorem 
and (2.10) in the region fi shown in Fig. 3, it is easily ob
tained, if the limits E-+ 00, 'To-+ - 00 are taken, that 

P~('T) -p~('T) = lim lim r a~vdCv' 
Tu - - 00 E-oo J(C(To.po.E) 

(2.14) 

~ ;] 
~ ..§ 

N N 
!:! !:! 
CD 

IX> 

FIG. 2. Space-time region used to prove the conservation laws in integral 
form. 
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.... 
~ .3 
.... ~ 

-..; CD 

FIG. 3. Space-time region used to relate p~ and?:. or M1' and m1'. 

MT( r) - mT('T) = lim lim ( MTv dCv . 
To- - 00 E- 00 J(C (r",pu,E) 

(2.15 ) 

B. Electrodynamics 

We shall apply the general setting of Sec. II A to a 
charged classical point particle in an external field. We need 
to verify if conditions (a )-( c) hold for each of the parts of 
the total O,.V and MA,.v defined by (1.5), (1.6)-( 1.9), and 
( 1.1 0) - ( 1.13) . We shall impose that F ~~ = 0 in a region nb 
[see the definition of nb in Sec. II A (a) ] . 

The singularities of this theory at the PWL lead us to 
restrict the TWL to the PWL in order to carryon the renor
malization procedure. We know (see Refs. 12, 15, and 16, 
for OB' Os, OL' and 0mix) that 

outside the PWL (and the same for each of the correspond
ing parts of M A"V, since the theory is well defined and sym
metric there). Hence condition (a) is satisfied for each of 
these parts of 0 ,.v and MA,.v. For condition (b) it is obvious 
that the improper integrals ofOL , Os, 0mix' Oexto M L , M s, 
M mix ' and M ext over C(r) are absolutely convergent (and 
hence they exist), since 0 i.v dCv = 0 ~v dCv = 0 and 
M?V dCv = M~v dCv = 0, and at infinity on C( r) we have 
that 0 ~~ = 0 ::.:x = 0 and M :~v = M;:;;; = 0, because of 
the assumed properties of F ~~. The existence of the improp
er integral of 0 iJJv and M 'Jr on C( r,E, 00 ), where E> 0, 
follows directly 18, 19 from the fact that the integrals 

1.i~oo L(r.E,E') 10 ~vRv I p dp dn, (2.16) 

(2.17) 

exist, as can be verified easily (notice that since Olr and 
M ~,.v vanish outside the PWL, the above discussion is un
necessary for them). To treat the singularities of 0 ~v and 
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M'Jr at the PWL [i.e., the respective integrals over 
C( r,O,E) ], we shall see in Sec. IV that the renormalization 
procedure with 0 bV and M ~,.v can be carried on . 

Condition (c) is automatically satisfied by 0 0 , 0ext' 
0mix' Mo, Mext' and M mix ' since these quantities vanish on 
the surface B(E,ro,r) , for Ebig enough [and hence the re
spectiveintegrals (2.3) and (2.4) vanish]. The existence of 
the integrals (2.3) and (2.4) for OB' Os, Ou M B, M s , and 
ML on the surface B(E,ro,r) are well known results. 

From the discussion carried on above, it follows that the 
parts of the pI' and M A,. corresponding to each of the terms 
Os, Ou 0mix' 0exl' M s ' M L , M mix , and M ext exist. More
over, if a renormalization procedure is taken at the PWL, the 
same statement holds for 0 0 + 0 Band Mo + M B' Hence we 
have proved that the total four-momentum pI' and the total 
angular momentum tensor M A,. exist for each 1'E [ r 0,00 ). 

The evaluation of pI' and MAp will be performed throughout 
Secs. III-V. 

Now, let us consider the conservation laws. If (2.10) is 
assumed for 0 ,.v and M A"V, it follows from the existence of 
pI' and MAl' that they are conserved quantities (see Sec. 
II A). Moreover, since avo ~~ = 0 everywhere in no is as
sumed, it also follows that P ~xt and M:~ obtained from 0 ~~ 
and M:~v, by Eqs. (2.8) and (2.9), are independently con
served quantities. 

c. Discussion 

Let us elaborate on the physical relevance of the new 
definitions, comparing them with the standard ones. For this 
purpose, the following numbering with a (i) will refer to the 
general theory, and with a (ii) will refer to classical electro
dynamics. 

(i.1) A physical advantage of definitions (2.8) and 
(2.9) is that the tensors 0 ~v and M ~,.v may be specified only 
on no, in contraposition with definitions (1.1) and (1.2), 
where this specification is not enough. The choice of the 
complete Minkowski space-time instead of an no can be phy
sically too demanding, since information on the system out
side an no can be unnecessary or even physically inaccessible 
for its description. 

(i.2) With definitions (2.8) and (2.9), if P~ and M~" 
exist and (2.10) holds, then automatically P~ and MT are 
conserved quantities. This is not generally the case for ~ 
and m~". 

(i.3) If, besides the conditions imposed in order to ob
tain (2.14) and (2.15), it happens that p ~ and m~" are con
served quantities, then the right-hand sides of (2.14) and 
(2.15) are constant tensors (independents of r). Hence, in 
this case, p ~ and P ~ (or mT and M~") will carry the same 
physical information. 

Moreover, if the fields vanish outside a volume Wofthe 
type specified in (a) of Sec. II A, as is often supposed (see, 
e.g., Ref. 1), the right-hand sides of Eqs. (2.14) and (2.15) 
vanish automatically [also, in this case, (1) conditions (a), 
(b), and (c) hold trivially; and (2) the only integrals that 
survive in definitions (2.18) and (2.19) are the ones over 
C(r)]. 

(i.4) Definitions (2.8) and (2.9) depend on the refer-
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ence time ro, so for different reference times the values of P~ 
and M l' are different. However, as is clear from the defini
tions, the differences between these values are constant ten
sors, independent of r (moreover, for an asymptotic behav
ior of the fields as in Ref. 1, these constant tensors are the 
zero tensors). Hence the same physical consequences will be 
obtained. 

(i.5) It is important to observe that, as was mentioned 
for definitions (1.1) and (1.2), definitions (2.8) and (2.9) 
can similarly be given without the use of an auxiliary TWL. 
This is so because.t'( ro) can be chosen as an arbitrary point 
in space-time, .t'( r) being another arbitrary point on no; 
~(E,ro,r) is then an arbitrary surface connecting C( r) and 
C( ro). 

(ii.1) For a charged point particle the difference be
tween the existence found for M AI' and mAl' comes basically 
from the way the infinity is reached. For mAl' the infinity is 
reached following a spatial hypersurface, and for M AI' the 
infinity is reached following a future light cone. We can say 
that the Coulomb field has (as far as the angular momentum 
is concerned) a "bad" asymptotic behavior on spatial hyper
surfaces, but a "good" asymptotic behavior for lightlike sur
face. 

Because of that we expect that definitions (2.8) and 
(2.9) will be useful for extended charged bodies [but not 
definitions (1.1) and (1.2) 10], since asymptotically the be
havior of the field of a charged body is like the field of a point 
particle. 20 

Moreover, for Schwinger'S 13 charged spherical model 
[see his relation (30)], it is obtained (the calculations are 
straightforward) that the total angular momentum MAl' 
exists and that M AI'( r) = [z1( r),PI'( r)], where z1( r) 
characterizes the four-position of the charge center, and PI' 
is the total four-momentum. 

(ii.2) For the case of a charged point particle we saw 
that for the existence of P I' and M AI' no asymptotic conditions 
need to be imposed on the four-acceleration of the particle. 
Treatments involving dropping this condition have been un
successful (see, e.g., Ref. 21). 

Ill. RADIATION PART OF THE LINEAR AND ANGULAR 
MOMENTUM 

We define P:ad , the radiation part of the four-momen
tum, and M ~, the radiation part of the angular momentum 
tensor (between ro and r), as 

P:ad (r) == lim i a:;; d~v , 
E- 00 l:(E.To.r) 

(3.1) 

(3.2) 

where ~(E,ro,r) is arbitrary. These definitions are the usual 
ones, and that they are unambiguous (i.e., independent on 
~) is shown in Refs. 4 and 22-24 (see, also, our Sec. II B). 

The evaluation of P :ad and M;.icJ is straightforward and 
well known (see, e.g., Refs. 4, 7, 8, and 22). That is, 
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P:ad (r) = ~ e2 r a2
( r')v"( r')dr' , 

3 Jro 
M;.icJ(r) = 2e

2 r [v"{r'),al'(r')] dr' 
3 J1"o 

+ i~ [z1( r')'P:ad (r')] dr' . 

(3.3 ) 

(3.4) 

Let us observe that the same results (3.3) and (3.4) are 
obtained if a I'V and M AI'V are used in Eqs. (3.1) and (3.2) 
instead of a:;; andM;~v (this is so because of the properties 
assumed for F:;; ). 

Several splittings of a :e~ and M ;~v have been exposed 
in the literature (see Refs. 5, 15, and 16). Given a splitting 

n 

a I'V = " a I'V 
ret - 4.t i' 

;= I 

and 
n 

M AI'V=" // AI'V 
ret-~vUi , 

j~1 

if to each term a fV an autonomous physical meaning is ad
script, each part Ji'11'v should be constructed in terms ofe fV 
(only), i.e., Ji'11'v==Ji'11'V(a j ). Although this condition is 
rather physical, some authors dispense ofit (see, e.g., Refs. 7 
and 9). 

The different splittings of a :e~ and M ;~v have been con
sidered in order to obtain (among other things) a part that 
can be interpreted as a radiation energy momentum tensor 
and an angular momentum density tensor, which leads to a 
local criteria of radiation. Let us state the properties we shall 
impose for a symmetric radiation energy momentum tensor 
a ~v and the associate angular momentum density tensor 
M AI'V 

R . 

(a) The radiation angular momentum density M:tv is 
given by (1.10). 

(b) Off the PWL, we must have 

(c) Off the PWL, we must have 

Rva~v=o. 

( d) Finally, 

P:ad(r) =P~(r), 

(3.5) 

(3.6) 

(3.7) 

M~(r)=M:t(r), (3.8) 

where P~ and M:t are given by Eqs. (2.8) and (2.9), re
spectively. 

Condition (a) has been used (see, e.g., Refs. 15 and 25), 
although some authors dispense of it (see, e.g., Refs. 7 and 
9). 

From the symmetry of a ~v and requirements (a) and 
(b), it follows that, off the PWL, 

(3.9) 

From requirements (a) and (c), it follows that, off the 
PWL, 

(3.10) 

Requirements (b) and (c) are widely used, and have 
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been discussed in the literature (see, e.g., Refs. 5, 7, 9, and 
26). 

Condition (3.7) is always used in the literature,5.7.9,15,16 
but condition (3.8) is not imposed [together with require
ment (a)]. However, both conditions are pretty physical, 
since they are crucial for the interpretation of e ~v (and its 
corresponding M 1'V) as a radiation part of the energy mo
mentum tensor, i.e., with these tensors we must obtain the 
radiated four-momentum P~ad and radiated angular mo
mentum tensor M:1:d given by relations (3.3) and (3.4), 

Requirement (d) imposes severe restrictions on the ad
missible e ~v tensors. 

It is very important to observe that for a general e ~v 
and M1'v for which conditions (a)-(d) hold, instead of 
evaluating P~ and M1' with Eqs. (2.8) and (2.9), we can 
use the following ones: 

(3.11 ) 

M1'(r) = r M1'vd~v' 
Jl:(E,T",T) 

(3.12) 

This statement can be made because, from Eqs. (3.5) and 
(3.6) and Gauss' theorem, it follows directly that the evalua
tion of integrals in (3.11) and (3.12) does not depend on the 
surface chosen between the two light cones (see, e.g., Refs. 9 
and 26). Then, since from Eqs. (3.6) and (3.10) it follows 
that e ~v dCv = 0 and M 1'v dCv = 0, we have that the limit 
E- 00 is not necessary in Eqs. (2.8) and (2.9). 

Since the limit E - 00 is not involved in Eqs. (3.11) and 
(3.12), we have through them a local radiation criteria (for 
discussions on local radiation criteria, see, e.g., Refs. 4, 5, 
and 26). 

For a radiation energy momentum tensor consistent 
with requirements (a)-(d), we propose 

(3.13 ) 

For this particular choice, Eqs. (3.5) and (3.6) have 
been proved in Refs. 15 and 16, and Eqs. (3.7) and (3.8) 
follow by a direct evaluation of the integrals. 

In the literature (see, e.g., Refs. 5, 7, 9, 15, 16, and 25) 
the tensor e L has been the standard choice for the radiation 
part of the energy momentum tensor, which satisfies5 Eqs. 
(3.5)-(3.7). However, this tensor is not consistent with (a) 
and (3.8). For example, in Refs. 15, 16, and 25, requirement 
(a) is accepted, but (3.8) does not hold; in Refs. 7 and 9, 
(3.8) is satisfied, but their angular momentum density lead
ing to M l' is not constructed in terms of the radiated part of 
the energy momentum tensor (e L ) alone. 

Equation (3.4) suggests 7,9 that the radiation angular 
momentum M:1:d is composed of two parts: one that is trans
lationally invariant, which we shall call the spin part M ;~n , 
and the other one that depends on the origin of the reference 
system, which we shall call the orbital part M ~~b' That is, 

MAl' _MAl' +MA/l-
rad - spin orb , 

where 

350 

M;~n (r) = 2e
2 rT 

[if( r'),a/l-( r')] dr' . 
3 )ro 

J. Math. Phys., Vol. 30, No.2. February 1989 

(3.14 ) 

(3.15 ) 

The term M ;~n is a kind of classical "analog" of the 
total spin (or helicity) of the photons in a quantized theory. 

The tensor e!ft chosen in (3.13) can be split in two 
parts e ~v and e 'tv (already defined in Sec. I), which can be 
interpreted as a spin energy momentum tensor and an orbital 
energy momentum tensor, respectively, since we have that 
requirements (b) and (c) hold for them, and that, if their 
associate M ~w and M tv are obtained through requirement 
(a), it is easy to show that 

M;~n(r)=M~(r), (3.16) 

M~:t(r) =Mt(r), (3.17) 

where M~ and Mt are given by (2.9). Furthermore, P~ 
given by (2.8) is easily evaluated and gives (cf. Ref. 15) 

P~(r) =0. (3.18) 

Hence it follows that 

P't (r) = P~ (r) . ( 3.19) 

Equation (3.18) is crucial in order to interpret e ~v as a spin 
energy momentum tensor. 

As for the tensor e !ft, we can show that 

P~(r) = r e~vd~v' (3.20) 
)1:(£.'T'II.'1') 

M~(r)= r M~vd~v' 
Jl:(E,Tn.T) 

(3.21 ) 

(3.22) 

(3.23 ) 

the integrals being independent of the surface chosen be
tween the two light cones, and hence providing local criteria. 

IV. BOUND PART OF THE LINEAR AND ANGULAR 
MOMENTUM 

From the bare energy momentum tensor ~v its corre
sponding M~/l-V, and Eqs. (2.8) and (2.9), the bare four
momentum P b and the angular momentum tensor M ~/l- are 
obtained. They are 

Pb(r) = mo(r)if(r) , (4.1) 

M~/l-(r) = [zt(r),Pb(r)] , (4.2) 

where moe r) is the particle bare mass. 
Using definition (2.9) for y~/l-V defined in (1.13), it is 

found that 

y~/l-(r)=SA/l-(r). (4.3) 

Then, the bare angular momentum tensor is given by 

1~/l-(r) =M~/l-(r) +y~/l-(T). (4.4) 

Let us notice that 

Pb=i ebvdCv , 
C(T) 

(4.5) 

1~/l-=i 1~/l-VdCv' (4.6) 
C(T) 

It is now natural to define P bound' the bound part of the 
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electromagnetic four-momentum of the particle, and 
M ~und' the bound part of the electromagnetic angular mo
mentum tensor of the particle, as 

Pbound =P~et - P~ad , (4.7) 

(4.8) 

where P ~t and M ~t are evaluated from e ~e~ and its corre
sponding M~tV, through Eqs. (2.8) and (2.9), and where 
P~ad andM~~ are defined by Eqs. (3.1) and (3.2). Hence it 
follows that 

Pbound (1') = f e ~e~ dCv , (4.9) 
Jcer) 

M~und(r)= f M~:tdCv' (4.10) 
JC(T) 

For e ~; and its corresponding M ~tV we have seen that 
definitions (2.8) and (2.9) are particularly suited to discuss 
the bound and radiated parts in integral form. The integral 
on C(r) of definitions (2.8) and (2.9) are explicitly inde
pendent on the history of the particle as it should be for the 
consistency of the interpretation as bound parts; cf. (4.9) 
and (4.10). The remaining integrals in definitions (2.8) and 
(2.9) correspond to the standard identification as radiation 
parts [cf. (3.1) and (3.2) ]. 

We know that the evaluation ofEqs. (4.9) and (4.10) 
gives an infinite Pbound and M ~und' because of the singular
ity at the PWL. In order to deal with these infinities8.27 the 
integrals in Eqs. (4.9) and (4.10) are evaluated on a surface 
that avoids the PWL and that depends on a scalar E (E > 0), 
such that under the limit E --+ 0, it goes to C( 1'). Then, once 
the integrals are evaluated on the chosen surface (with 
E> 0), the standard renormalization5,8.11.27 procedure is per
formed with Pb and 1 ~Jl (where the limit E --+ 0 is involved). 

We know8.12.27.28 that the results obtained with the 
above-mentioned procedure depend on the chosen surface 
(i.e., on the chosen way to reach the singularity). We shall 
consider two different approaches here. 

(a) A spacelike approach (cf. Ref. 8) consists of evalu
ating 

lim f e~e~ dCv , 
E-oo j<6(T-e.po,E) 

(4.11 ) 

( 4.12) 

where Crf ( l' - E,po,E) has been defined in Sec. I. Notice that 

lim Crf (1' - E,Po,E) = C( r,O,E) . 
e-O 

The evaluation of ( 4.11) gives8 

e2 [4v(r) . v(r-E)if(r-E) + if(r)] 
6 v(r) . [z(r) -z(r-E)] 

The evaluation of (4.12) gives8 

[zA(r-E),f~(E)] . 

f~(E) . 

(4.13) 

(4.14) 

Then, through the mass renormalization procedure, it is ob
tained8 that 
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Pb(r) +Pbound(r) = lim [Pb + f~(E)] 
e-O 

(4.15 ) 

and that 

1~Jl(r) +M~Und(r) 

=lim{1~Jl+ [zA(r-E),f~(E)]} 
e-O 

= [z"(r),m(r)if(r) - je2aJl (r)] + y~Jl(r), 
(4.16) 

where m ( 1') is the renormalized mass. 
(b) A lightlike approach (cf. Ref. 27) consistsofevalu

ating 

lim f e~e~ dCv ' 
E-oo JC(T,e,E) 

(4.17) 

lim f M~tV dCv • 
E_ 00 JC(T,e,E) 

(4.18 ) 

The evaluation of ( 4.17) gives27 

(4.19) 

The evaluation of ( 4.18) is straightforward, and gives 

[z"(r),(e2/2E)if(r)] . (4.20) 

Then, through the mass renormalization procedure, it is ob
tained27 that 

Pb(r) +Pbound(r) = lim [Pb + (e2/2£)if] 
e-O 

= m(r)if(r) . (4.21) 

Also, it follows that 

1~Jl( 1') + M~und (1') = lim {1~Jl + [z",(e2/2E)ifJ} 
e-O 

= [z"( r),m( r)if( 1')] + y~Jl( 1') • 

(4.22) 

We want to close this section discussing the possibility 
of having an energy momentum tensor e tV that can be inter
preted as a bound part of e ~;. That is, a e tV such that 

Pt (1') = Pbound (1') (4.23) 

and 

M~Jl( 1') = M ~und (1') , (4.24) 

where Pt and M ~Jl are evaluated with e tV and its associated 
M~JlV, through Eqs. (2.8) and (2.9). Also, off the PWL, we 
must have 

avetv=o. (4.25) 

Given an arbitrary radiation energy momentum tensor 
e ~v satisfying requirements (a)-(d) set in Sec. III, it fol
lows trivially that 

(4.26) 

is a tensor that can be interpreted as a bound part of e ~; . 
Furthermore, it also follows [Eq. (4.26)] that 

(4.27) 
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M~Il(r) = r M~l'v dCv , (4.28) 
JC(r) 

as it is evident from Eqs. (3.6)-(3.8) and (3.10). With our 
chosen radiation energy momentum tensor a ~v given by 
(3.13) it follows that the bound energy momentum tensor is 
given by a IfJv [see Eq. (1.7)], i.e., a B =ab • 

V. EQUATION OF MOTION 

With a ~:x and its corresponding M;!:i;, we shall evalu
ateP~ix andM;!:ix defined by Eqs. (2.8) and (2.9). Since off 
the PWL ava ~:x = 0, using Gauss' theorem on Fig. 1, we 
obtain 

= r a~:x dCv + r a~~x dl:v ' (5.1) Ju; JB(E'.Tu.T) 

Let us call 

&,Il(ro)=r a~~xdCv' (5.2) 
JC(To ) 

Performing the limits E' --+0 and E--+ 00 in (5.1), we obtain 

P~ix (r) = - e f F~~(r')vv(r')dr' + &,Il(ro), (5.3) 

where 

F~~ (r) =F~~ [z( r)] = lim _1_ J dO. F~~ (E,r,o.). (5.4) 
E-O 417' 

In the same way, we obtain that 

M;!:ix (r) = - e f [Z« r'), F~~ (r')] 

X Va (r' ) dr' + ,.AI"AIl( ro) , 

where 

(5.5) 

,.AI"AIl( ro) = r M;!:i; dCv • (5.6) 
Jc(r,,) 

Let us observe that we have 

because of the properties usuallyl2 assumed for F~~. Fur
thermore, if it is the case that F~~ = 0 on C( ro), we shall 
have that &,Il( ro) = 0 and ,.AI"AIl( ro) = 0 automatically. 

The total four-momentum pil and the total angular mo
mentum tensor M All, given by 

pll(r) =P{;(r) +PIfJ(r) +P~(r) 

+P~ix(r)+P~xt(r), (5.7) 

MAIl( r) = 1~1l( r) + M-:t( r) + M:t( r) 

+M;!:ix(r)+M;~(r) (5.8) 

are now completely specified. From the conservation law 
proved for them in Sec. II B, it follows that 

FIl(r) =0, MAIl(r) =0. (5.9) 

As we shall see, the consistency of the equations in (5.9) 
will imply some restrictions on the phenomenology of the 
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particle (together with its equation of motion), and hence 
there is no need to impose from the beginning strong as
sumptions about the phenomenology. 

From the discussion in Sec. IV, it is clear that different 
evaluations of Pb + PIfJ and 1~1l + M -:t (which depend on 
the way the PWL is reached) will lead to different expres
sions for the Eqs. (5.7) and (5.8). We shall discuss the two 
approaches taken in Sec. IV. 

(a) With the spacelike approach, it follows from Eqs. 
(3.3), (3.4), (4.15), (4.16), (5.3), (5.5), (5.7), and (5.8) 
and the fact that P~xt and M;~ are independently conserved 
quantities (see, Sec. II B) that 

FIl(r) =~[m(r)uIl(r)] -~e2all(r) 
dr 3 

+ ~ e2a2(r)uIl(r) - eF~~ (r)vv(r) , 

MAIl( r) = [Z« r),FIl( r)] + 'y~Il( r) . 

(5.10) 

(5.11 ) 

The conservation law for pil applied to the expression 
( 5.10) leads to a conserved renormalized mass m ( r) and to 
the Lorentz-Dirac equation of motion. Furthermore, (5.11) 
shows that the conservations laws for pil and MAl' are com
patible only for a particle with an independently conserved 
intrinsic angular momentum y~l'( r). 

(b) With the lightlike approach, it follows from Eqs. 
(3.3), (3.4), (4.21), (4.22), (5.3), (5.5), (5.7), and (5.8) 
and the fact that P ~xt and M;~ are independently conserved 
quantities that 

FI'(r) =~[m(r)uIl(r)] +~e2a2(r)uIl(r) 
dr 3 
-eF~~(r)vv(r) , (5.12 ) 

MAl' ( r) = [Z< ( r) ,F I' ( r)] + j e2 [ vA ( r) ,al' ( r) ] 

(5.13 ) 

The conservation law for pI' applied to the expression 
(5.12) leads to the Bonnor equation ofmotion29 and hence 
to a variable renormalized mass m (r). For physical discus
sions on this equation see, e.g., Refs. 14,27, and 29. 

Equation (5.13) shows that the conservation laws for 
pI' and MAl' are compatible only for a particle with a vari

able intrinsic angular momentum y~l'( r), such that 

'y~Il(r) = -je2[vA(r),al'(r)]. (5.14) 

In this case, the change in the spin part of the radiated 
field [see Eq. (3.15)] is supplied by the change in the intrin-
sic mechanical angular momentum of the particle [see Eq. 
(5.14)] ,just as the energy rate of radiation :Yt emitted by the 
particle (i.e., :Yt = - VI'F~ad) is supplied by the change in 
the renormalized mass.29 

It has been said30 that Bonnor's equation does not con
serve angular momentum. However, as we have seen, if an 
intrinsic (mechanical) angular momentum for the particle is 
assumed such that Eq. (5.14) holds for it, Bonnor's equation 
is consistent with both the conservation of four-momentum 
and angular momentum. The fact that Bonnor's equation is 
not in conflict with the conservation laws, provided that the 
particle has an intrinsic angular momentum, has been point
ed out before; see the second footnote on p. 47 of Ref. 9. 
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The Lagrangian variational principle with the classical action leads, in stochastic mechanics, to 
Madelung's fluid equations, if only irrotational velocity fields are allowed, while new 
dynamical equations arise if rotational velocity fields are also taken into account. The new 
equations are shown to be equivalent to the (gauge invariant) system of a Schrodinger 
equation involving a four-vector potential (A,<I» and the coupled evolution equation (of 
magnetohydrodynamical type) for the vector field A. A general energy theorem can be proved 
and the stability properties of irrotational and rotational solutions investigated. 

I. INTRODUCTION 

As shown in a series of recent papers, 1-4 stochastic vari
ational principles with classical action appear to be a natural 
way of introducing quantum dynamics. 

This must be understood as a completion of the work 
initiated by Nelson in 1966, who gave the first (Newtonian) 
dynamical formulation of stochastic mechanics.5 

After the theorem by Carlen6 on the existence of non
smooth extremal diffusions for the above-mentioned vari
ational problems (see also Refs. 7-9), one can claim that 
stochastic mechanics represents nowadays a mathematically 
well-founded reformulation, with real time, of Feynman's 
path integral. 

It turns out that, like in hydrodynamics, two different 
types of variational principles can be stated: the Eulerian 
principle, where the action functional is written in terms of a 
velocity field, and the Lagrangian one, where the action is 
seen as a functional on the paths. 

In hydrodynamics, even in the simplest case of an ideal 
fluid, the two principles are not trivially equivalent, since in 
the Eulerian principle the solutions are restricted to the set of 
irrotational flows, unless, as discovered by Lin in 1963, the 
identity of the fluid particles is taken as an explicit con
straint. 1O 

The problem of considering also rotational motions 
does not seem to be of any interest in stochastic mechanics, 
since the fluid-dynamical version of the SchrOdinger equa
tion, that is Madelung's fluid equations, describes the evolu
tion of an irrotational flow. 

Indeed Madelung's equations are recovered in the Eu
lerian picture without any additional constraint,1 while for 
the Lagrangian problem irrotationality must be explicitly 
assumed.3 

Moreover, the whole class of Lagrangian solutions can 
be explicitly calculated, leading to new (quantum) equa
tions of motion.4 

In the classical limit such equations do not reduce them-

a) On leave from Dipartimento di Matematica, Universita di Siena, 1-53100 
Siena, Italy. 

selves to the Hamilton-Jacobi fluid equations, but to the 
more general Euler equations, where rotational velocity 
fields are also allowed.4 

In this work we study some mathematical aspects of the 
unrestricted Lagrangian picture. 

In particular, we shall show that the new equations can 
be transformed into a Schrodinger equation for a quantum 
particle in a vector potential, whose time evolution is cou
pled with that of the wave function. This also leads to a gauge 
invariant form of the original dynamical equations. 

Finally, by exploiting the first result and variational 
techniques we prove a general energy theorem. 

II. THE LAGRANGIAN VARIATIONAL PRINCIPLE IN 
STOCHASTIC MECHANICS 

For the sake of simplicity we shall limit the discussion to 
the simple Lagrangian of a particle of mass m in a scalar 
potential <l>ext. 

The classical action functional, for the time interval 
[ta,tb],is 

A[~ •. tbdq(·»)= fb[~ m4(t)2_<I>ext(q(t),t)]dt, (2.1) 

where q(t) is the position of the particle at time t. 
In stochastic mechanics the classical kinematical posi

tion defining the velocity v(t), 

4(t) = v(t) , (2.2) 

is generalized through the stochastic differential equation 

dq(t) =v+(q(t),t)dt+ (fz/m)I/2dw(t) , (2.3) 

where w(t) is a standard Wiener process and the drift v + is a 
velocity field, to be determined by the initial conditions and 
dynamical constraints. 

Denoting by {ti}i = I •...• N an equipartition of the interval 
[ta ,tb ], and by tJ. the time difference (tb - ta )/ N, the mean 
discretized action is defined by 
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AN (. '»)='ll{~ (.lm(q(t;+d-q(t;W 
[Ia.lb] q , .~ 2 A2 

1=1 L.1 

- cpexI(q(t;),td)A} , (2.4) 

where 'll denotes the integration with respect to the Wiener 
measure. 

As shown by Nelson,2 (2.3) can be iterated to estimate 
q(t;+ I) - q(t;) to the order A3/2, so that the following de
composition holds: 

'll (.l m (q(t;+ I) - q(t;)f) 
q(t) 2 A2 

(
1 2 Ii 3 Ii ) = 'llq(l) -mv+ +-Vov+ +--+o(A) , 
2 2 2 A 

(2.5) 

where 'll q(l) denotes the conditional expectation given the 0" 

algebra generated by q(t). 
Let now q(t) be a smooth diffusion in the sense ofNel

son2 and Carlen,6 so that it has a positive definite probability 
density. Then the diffusion has a backward representation 

dq(t) =L(q(t),t)dt+ (li/m)I/2dw*(t) , (2.6) 

where w~(t) is a "reversed" Wiener process and v_the 
backward drift, that, if we denote by p the probability den
sity of q (t), is defined by the equality 

L = V + - (li/m)V lnp. (2.7) 

Then, by means of straightforward calculations one can 
get from (2.5) the equality 

'll(1 (A+q(t;)f)_'ll(l ) 
2 m A2 - 2 mv

+
oL 

+ ~ : + o(A), (2.8) 

that, by the Markov property of q(t), is equivalent to 

where we have defined A +q(t) =q(t + A) - q(t) and 
A -q(t) =q(t) - q(t - A). Equalities (2.5) and (2.8) are 
typical of the Eulerian picture, while (2.9) leads to the La
grangian one. 

In particular, (2.5) allows one to consider the regular
ized action in the continuum limit as a functional of the drift 
field v +. 

Thus the variational principle of stochastic mechanics 
in the Eulerian form can be stated by asking the stationarity 
of the mean classical action with respect to variations of the 
velocity field v + (that, of course, cancels the divergent 
term). This has been done in Ref. 1, by exploiting a type of 
stochastic control technique. One gets the following suffi
cient and necessary conditions for the action to be station
ary: 
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v+ +v_ VS 
----'---=-

2 m 

a,p= -vo(:: p), (2.10) 

a,s + (VS)2 _ ~ V2..Jji + cpexI = 0 . 
2m 2m..Jji 

The more general case of a four-vector potential 
(AexI ,cpex!) does not give rise to difficulties, and yields2 

v+ + v_ + Aex! = VS, 
2 m m 

(
VS _ Aex! ) 

alP = -Vo m p, (2.10') 

a,s + (VS - Aex!)2 _ ~ V2..Jji + cpex! = 0 . 
2m 2m ,fji 

It is not surprising that the irrotationality condition 
comes from the principle. 

Extending Lin's constraint to this case should be possi
ble in principle, but we do not do this in the present work. 

By going to the Lagrangian picture, we are forced to 
perform the calculus of variations with the discretized time: 
in fact, q(t) has no differentiable sample paths, so that the 
most strict analog of q (t) is the ratio (q (t; + I ) - q (t; »)/ A. 

Consequently we consider the discretized action (2.4) 
and use the decomposition of the kinetic term (2.9). 

The procedure is the following: for every Wiener path 
the corresponding one for the diffusion q (t) is varied by 
means of an arbitrary change of the drift. Then, by estimat
ing the stochastic increments to the order A3/2, a discrete 
"integration by parts" is performed. Finally one integrates 
over all paths with respect to the Wiener measure and goes to 
the continuum limit. 

The variations are stochastic processes, which can be 
characterized as follows: by setting 

8q(t) = Eh(t) , (2.11) 

so that 

8v +(q(t),t) = d(q(t),t) + o(€) (2.12) 

for a certain vector field f, one gets that h (t) satisfies the 
linear differential equation 

• 3 a 
h(t) = L (ajv+(q(t),t)hj(t) + f(q(t),t), aj =-. 

j= I BXj 

(2.13 ) 

As a consequence h (t) is not a Markov process and has dif
ferentiable sample paths. 

Since Eq. (2.13) is of first order, we can only impose 
either h(ta) = 0 or h(tb) = O. Nevertheless we can fix, for 
example, like the classical case, the initial position and the 
final momentum. 

In this case, therefore, with the proper definition of the 
action functional 

N {( N 1 (A+q(t;»)2 
A [',Adq('" );PI.) = 'll i~1 2 m A2 

- cpeX!(q(t; ),t;))A + PI;q(tb) } , 

(2.14 ) 
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the Lagrangian variational problem is formulated as follows: 
for any [ta ,tb ] find a (smooth) diffusion q ( ., ) such that 

(2.15 ) 

for all admissible variations such that 8q(ta ) = O. 
Since, like in the Eulerian case, the variations leave the 

diffusion coefficient unchanged, the variation is finite in the 
continuum limit. 

One could say that, up to a proper final condition, and 
some attention to the measurability properties of h (t), the 
procedure (with discretized time) to get a sufficient condi
tion for the stationarity of the action is conceptually the clas
sicalone. 

On the contrary, some troubles arise in proving the ne
cessity of the same condition; since h(t) is nonmeasurable 
with respect to the u algebra generated by q (t), the standard 
argument fails. 

We summarize the sufficient condition in the following 
theorem. 

Theorem 1: Let q (t) be a smooth diffusion with stochas
tic differential equation (2.3). Also letp denote the probabil
ity density of q(t), v_the backward drift, and set 

(v+ +L)/2=v, (1i/2m)Vlnp=u. (2.16) 

Finally assume A fta.tb] (q ( ., ) ;Pt.l to be defined by (2.14), 
whereptb is a measurable random variable. Then, ifp(q(t),t) 

and v(q(t),t) satisfy the system of equations 

atP = - V"(pv) , (2.17a) 

atv + (V"V)v - [2: V2u + (U"V)u] 

- u+-V AVAv= ---, ( Ii) V <l>ext 

2m m 
(2.17b) 

and the final condition v(q (tb ),tb) = Pt/m, one has 

lim 8A fta.tbdq(·, );Pt.l = o(€), (2.18) 
Nt"" 

whenever the variation is defined through (2.11 )-( 2.13) 
and preserves the initial position. 

The proof we give here for completeness is rephrased 
from Refs. 3 and 4. 

Proof First we decompose the variation of the action as 
follows: 

N 

- € L 1f(V<I>ext(q(tj),t;)"h(tj»A 
i= 1 

The divergent term 31i/2A does not give a contribution to the 
variation and, since A ± h(t) are of first order in A, we can a 
priori neglect terms of order A3/2 in the estimate of A ± q(t). 

The analysis of the kinetic terms gives 
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1f( A +q(t~~ -h(t») = ! 1f (v +(q(t),t)"A -h(t) + o(A» 

and 

1f( A -q(t~~ +h(t») 

= ! 1f( v _(q(t),t)"A +h(t) 

+ (~) 112 A -w. (t)oli(t) + O(A») , 

where we have exploited the measurability properties ofh( t) 
and the fact that A +w(t) is independent of the past of q(t), 
while A -w. (t) is independent of the future and not of the 
past of q (t). Moreover we have taken into account that the 
term of order A3/2 in the expansion of A +h(t) gives, when 
mUltiplied by A -w. (t), a contribution with zero mean [see, 
for details, Eq. (15') in Ref. 3]. 

A discrete integration by parts then gives 

L(q(t),t)"A +h(t) = A + [L(q(t),t)"h(t)] 

- A +v _(q(t),t )"h(t) + o(A) 

and 

v +(q(t),t )"A -h(t) = A - [v +(q(t),t )"h(t)] 

- A -v+(q(t),t)"h(t) + o(A) . 

We now exploit Ito's rule to get 

1f(A +L(q(t),t)oh(t» = 1f(D+L(q(t),t)oh(t)A + o(A» 

and 

1f (A -v +(q (t) ,t )oh(t» 

= 1f(D_v+(q(t),t)oh(t)A 

(
1i)1I2 3. ) 

+ - .L A-w'!,Av+(q(t),t)oh(t) +o(A) , 
m }=\ 

where D + and D _ denote the mean forward and backward 
conditioned derivatives. 

Therefore, by collecting all terms, one finds 

lim 8A fta.tbdq ( ., ) ;Pt.l 
Nt"" 

=€1f{{b[ _ ~ m(D+L +D_v+)(q(t),t) 

- V<I>ext(q(t),t)]oh(t)dt} 

+ €1f {[ + m(v + + L )(q(tb ),tb) - Ptb ]-h(tb)} 

We now observe that, from (2.3) and (2.6), we have the 
following representation of A -w. (t): 

A -w. (t) = 2(m/li) \/2u(q(t),t)A 

+A+w(t-A) +o(A), 
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so that, exploiting (2.13) and Ito's rule, we have 

~Ltl [hj(t;) - ktl hk(t;)ajV~ (q(t;),t;)]a-w~(t;)} 

= ~{ktljtl 2(~)1/2[(akvj+ 
-ajV~ )(q(t),t)]ui(q(t),t)hk(t)a} 

+ ~{ktl Ltl (~y/2aj[(akvj+ 
- ajvk+ )(q(t),t)] a + o(a) ]hk (t)} . 

Recalling that, for any smooth real-valued function 
!(q(t),t), one has2 

D ±!(q(t),t) = (at + v ±·V ± (1i2/2m)V2)!(q(t),t) , 

we finally get 

lim oA ft.,t.] (q(',' );Pt.) 
NT"" 

= €~ {L· [ -atv - (v·V)v + 2: V2u + (u·V)u 

(
Ii) V<I>ext] } + u + 2m V 1\ V 1\ v - -;;;- ·h(t)dt 

+ €~ n mv(qUb ),tb ) - Pt.} + o(€) . 

Since for any diffusion satisfying (2.3) and (2.6) the con
tinuityequation (2.17a) also holds,5 the theorem is pro
ved. • 

A necessary condition, which works in the same way in 
the irrotational and rotational cases, is proved in Ref. 3, p. 
1986. 

In the irrotational case, by setting v = VSlm, (2.17) 
immediately gives Madelung's equations. 

In the general case the dynamical equations are differ
ent, due to the presence of a new quantum corrective term 
(of first order in Ii), that depends on the vorticity of the 
current velocity v. 

Notice that, by the definition ofu and (2.7) one has 

u=(v+-L)/2, (2.19) 

so that, while v +, V _, and v change sign by time inversion, U 

does not. 
One can see that, as a consequence, Madelung's fluid 

equations are time-reversal invariant, while in the new equa
tions such an invariance is broken. The reason lies in the 
nature of the set of variations we have chosen: In spite of the 
fact that they are the most natural ones (we have simply 
asked that the variations change diffusions into diffusions 
with the same coefficient), one can see from (2.13) that they 
are not time-reversal invariant, since they are functionals of 
the past of q (t). Thus they are measurable with respect to the 
u algebra generated by the past of q (t) but not with respect 
to that generated by the future. This asymmetry is responsi
ble for the rotational terms in (2.17b). 

The time-reversed version of (2.17) is 

a,P = - V·(pv) , (2.17a') 
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(2.17b') 

which describes a flow with initial current velocity 
V =Pt.1m. 

III. GAUGE STRUCTURE 
The previous quantum dynamical equations (2.17) and 

(2.17') can be put into a more useful form, partially recover
ing the Schrodinger equation structure. Let (p,v) satisfy 
(2.17) or (2.17') and let S be an arbitrary smooth scalar 
field. Then, by defining the vector field A by 

A = VS - mY, (3.1) 

and exploiting the equality 

V(v2/2) = (v·V)v + v 1\ (V 1\ v) , (3.2) 

Eqs. (2.17b) and (2.17b') can be written, respectively, in the 
form 

(1Im)atA + (v ± u) 1\ (V 1\ v) ± (1i/2m)V 1\ (V 1\ v) 

= i. v(ats + i. mv2 _..!£-. v2,Jp + <l>ext) . (3.3) 
m 2 2m /ji 

By the arbitrariness of S, we can fix S = So, where So satisfies 
the equality 

as. + i. mv2 _..!£-. v2
/ji + <l>ext = 0 . (3.4) 

to 2 2m/ji 

But it is immediately seen that (3.4) and the continuity 
equations (2.17a) or (2.17a') formally give Madelung's flu
id equations for a quantum particle with the four-vector po
tential (Ao,<I>ext), where Ao is defined by (3.1) for S=So. 
Hence, by defining 

l{Io =p1/2 exp(iSo/li) , (3.5) 

and recalling that, by (3.1), mV 1\ v = - V 1\ Ao, Eqs. 
(2.17) and (2.17') can be rewritten as the system of a Schro
dinger equation for a quantum particle in the vector poten
tial Ao and the coupled evolution equation for Ao, that is, 
respectively, 

iii at l{Io = (112m) (iIiV + Ao)21{10 + <l>extl{lo, 

atAo = v ± 1\ (V I\Ao) ± (1i/2m) V 1\ (V I\Ao) , 

where v ± are defined by 

mv ± = VSo ± (1i/2)V lnp - Ao, 

and then must be seen as a functional of l{Io and Ao. 

( 3.6a) 

(3.6b) 

(3.7) 

It is worth noticing that (3.6b) has a strict analog in 
magnetohydrodynamics. 11 Indeed, the evolution equation 
for the "magnetic field" B = V 1\ Ao, obtained by taking the 
curl of both sides of ( 3. 6b ) , is formally the same as in magne
tohydrodynamics. 

It is also possible to rewrite (3.6) in a gauge invariant 
form. In fact, for any smooth scalar field ¢;, let us define 

S=So+¢;, 

A=Ao+V¢;, 

<I> = <l>ext - at¢; . 
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As a consequence (3.6) transform to 

jfz at 'I' = (112m) (jfzV + A)2'1' + <11'1' , (3.9a) 

a,A = v ± 1\ (V I\A) ± (fz/2m) V 1\ (V I\A) 

+ V(<IIex! _ <II) , (3.9b) 

where (A,<II) is now defined up to a gauge transformation. 
Notice that <II is not coupled with 'I' and is simply fixed by 
the gauge. 

IV. ENERGY THEOREM AND STABILITY OF 
IRROTATIONAL MOTIONS 

By substituting into (3.9) V 1\ A = 0, one can prove, by 
straightforward calculations, that the system is reduced to 
the usual linear Schrodinger equation 

ifz at 'I' = ( - (fz2 /2m) v2 + <IIex!)'I', (4.1) 

so that, defining the energy function E by 

E = !mv2 + !mu2 + <IIext, (4.2) 

and the Hamiltonian operator H by 

H = - (fz2/2m)V2 + <IIex!, (4.3) 

one has, if at <IIex! = 0, the well-known equality5 

!!...1f{E(q(t),t)} =!!... ('I',H'I'), 
dt dt 

(4.4) 

where ( , ) denotestheinnerproductinL 2(R 3,d 3x). 

We now want to study the time evolution of 
If{E(q(t),t )}, where Eis still being defined by (4.2), in the 
general case of rotational velocity fields. 

To do this let ("p,S,A) denote a solution of (3.9) in the 
gauge <II = <IIex! , and let us consider the linear SchrOdinger 
equation 

whose real and imaginary parts are 

a,P = - V·( (VS - A)p/m) , (4.6a) 

The energy conservation law reads still as in (4.4), where E 
is defined by (4.2), with the only change that now we have 
mv=VS-A.2 

We define the Hamiltonian density by 

)liP = Ep, (4.7) 

that is, by explicitly displaying the dependence on p and S, 

)liP = )liP(p,S,A) 

= [ (VS - A)2 + _1_(~ V In p )2 + <IIexI] p. 
2m 2m 2 

(4.8) 

We shall show that (4.6) can be derived from a variational 
principle with Lagrangian density 

.2"=Sp-)liP. (4.9) 

Let Sand p denote smooth scalar fields and consider, for any 
time interval [ta ,tb ], the functional 
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I[t",tb] (p,S) = ('b dt r d 3x[Sp - )liP(S,p,A) ](X,t) . 
J,o JVOI 

(4.10) 

We seek the sufficient and necessary conditions to ensure the 
stationarity conditions of such a functional with respect to 
independent variations of Sand p that vanish at the bound
ary. 

Denoting by D(s) and 8(p) the variations with respect to 
Sand p, respectively, we have 

D(s)I[t.,tb] (p,S) = ('b dt r d 3x[p8S - D(s»)liP] (x,t) , 
J10 JVOI 

(4.11a) 

8(PJ[t",tb] (p,S) = ('b dt r d 3x[ - S8p - 8(p»)liP] (x,t) , 
)to JVOI 

(4.11b) 

and also 

1{ -8(s»)liP = - V·[ (VS - A)p8S] 
m 

- V·[(VS - A)p]DS}, (4.12a) 

(4.12b) 

where 

D(p) [(;: rp] = v-(~ 8p) - v-(;: )DP - (;: )8p. 

(4.13 ) 

Let us now assume, as usual, that, if p is equal to zero at the 
boundary, then Vp also goes to zero, thus maintaining Vp/p 
finite. By integrating on the volume, the first term on the 
right-hand side of ( 4.13) gives a vanishing contribution. 

Then, by inserting (4.12) in (4.11), one can see, by the 
standard argument, that the functional (4.10) is stationary 
if and only if (4.6) is satisfied. 

Moreover, by integrating (4.6) on the volume and ap
plying (4.12) again, we can also get the "mean Hamilton 
equations" 

r p(x,t)DS(x,t)d 3X = r [8(s) )liP(p,S) ] (x,t)d 3X , 
JVOI JVOI 

(4.14a) 

r S(x,t)Dp(x,t)d 3x = - r [D(p»)liP(p,S)] (x,t)d 3x, 
JVOI JVOI 

(4.14b) 

where p and S play the role of conjugate canonical variables. 
Let us now particularize 8S and Dp to 

(4.15 ) 

Then, for any· solution to (4.6), 
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- 1f{E} = - ffi"(p,S,A) (x,t)d 3x d di -
dt dt Vol 

= lim ~ ( [8(s) ffi" + 8(p) ffi"] (x,t)d 3X 
.5'10 8t JVOI 

= ( [pS - Sp](x,t)d 3x 
JVOI 

+ (a,tt>exp d 3x. (4.16) 
JVol 

Thus we can conclude that, if tt>ext is time independent, for 
any solution (S,p) to (4.6) the corresponding mean energy 
evolves in time according to the equality 

d i [(VS-A)~] -1f{E} = - .Ap (x,t)d 3x. 
dt Vol m 

( 4.17) 

In particular, (4.17) must be true for (S,p) = (S;p), which 
together with A, satisfies the system (3.9), and then in par
ticular (3.9a), in the gauge tt> = tt>ext. So, by recalling the 
equalities 

VS-A=mv, v± =v±u, (4.18) 

one gets by (3.9b) 

(VS,:- A)-A 
= - mv.[(v + u) 1\ V 1\ v + ~ V 1\ (V 1\ V)] - -2m 

= =Fmv.[(u+ 2: V)I\Vl\v]. ( 4.19) 

Concluding, we can state the following extension of the 
energy theorem. 12 

Theorem 2: Let (p,v) be any solution to (2.17) [resp. 
(2.17') ] and let us assume that if p is zero at the boundary V p 
also goes to zero maintaining V pi p finite. By defining the 
energy function E = !mv2 + !mu2 + tt>ext, with u 
= (li/2m) V In p and time-independent external potential, 

then 

~ 1f {E} = ± m 1f { V' [ ( u + 2: V) 1\ V 1\ v]} , (4.20) 

where + refers to (2.17) and - to (2.17'), respectively. 
It is interesting to inquire into the consequences of 

(4.20) in the case when (p,v) are solutions to (2.17'), which 
correspond to the equations for a flow with fixed initial ve
locity field. 

Let us consider the particular case of a particle either in 
the free space or in the presence of perfectly smooth and 
reflecting barriers. As is well known, this implies, in quan
tum mechanics, that p is zero at the boundary. Let us main
tain this condition in the general case: by integrating by parts 
we obtain 
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1f{ v·( (li/2m)V 1\ (V 1\ v»)} 

= - 1f{v·(u 1\ (V 1\ v»)} + (li/2m) 1f{ (V 1\ V)2}, 
(4.21 ) 

so that, for (p,v) solutions to (2.17'), we have 

!!...1f{E} = - !i. 1f{(V 1\ V)2} . 
dt 2 

(4.22) 

Thus, in the assumption of Theorem 2 and if the density is 
zero at the boundary, the mean energy related to solutions to 
Eqs. (2.17') has a negative time derivative, which is equal to 
zero if the current velocity field is irrotational. As a conse
quence, the set of solutions such that 

p(VI\V)2=0 (4.23) 

works as a collection of attractors. Then we can also con
clude that, in this case, if a solution is time independent it 
must be also irrotational, wherever p is different from zero. 

V. DISCUSSION AND OUTLOOK 

We have seen that the unrestricted Lagrangian vari
ational principle in stochastic mechanics leads to a sort of 
(nonrelativistic) gauge structure and that, in the case of the 
flow described by (2.17'), the set of irrotational motions is 
an attracting set. 

As a final remark we might also observe that the "quan
tum state" is, in such a case, represented by four scalar fields, 
in place of the two scalar fields defining the wave function in 
the standard case. 

This would be the case of a quaternionic quantum me
chanics, whose mathematical possibility, from an axiomatic 
point of view, was conjectured by Birkoffand Von Neumann 
since 1936.13 

Recently a quaternionic field theory has been proposed 
by Adler,14 who has also applied the results to the CP viola
tion in K meson decay. 15 

Possible connections between the unrestricted Lagran
gian principle in stochastic mechanics and a quaternionic 
quantum dynamics could represent, to the authors' opinion, 
a challenging subject of future research. 
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Local observables of an infinite system are described by a quasi local C *-algebra A. 
Traditionally classical observables are introduced as parameters that can be assigned to certain 
states on the local observables. As fundamental theories should be essentially free of 
parameters this can hardly be regarded as satisfactory. In the present paper classical 
observables are introduced explicitly as operators by a transitive system of imprimitivity of a 
kinematical group in the center of the W*-algebra 1T(A)" belonging to a representation 1T of A. 
The states of the system are represented by linear functionals on 1T(A) ", which are dispersion
free on the center of 1T(A)". For classical observables related to a kinematical group a W*
description-with algebra 1T(A)" and its associated linear functionals that are dispersion-free 
on the center and normal on the noncentral part of 1T(A) "-is equivalent to a C *-description
with algebra A and a distinguished family of linear functionals on A, determined uniquely by 1T. 
The implications of these results on the interpretation of quantum mechanics of infinite 
systems are discussed. 

I. INTRODUCTION 

For infinite systems (systems with infinitely many de
grees offreedom) it is important to distinguish between local 
and global observables. Global observables compatible with 
all other observables are called classical. 

The many classical global observables of an infinite sys
tem allow a decomposition of the system into many indepen
dent autonomous descriptions of the system. A set of classi
cal global observables characterizes the system in a special 
context. To select a particular context means to concentrate 
attention on a particular phenomenon and to ignore effects 
of secondary importance. In the context of equilibrium sta
tistical mechanics one concentrates on the thermodynamical 
classical observables like temperature and chemical poten
tial. 

Infinite systems have an adequate description within the 
framework of algebraic quantum mechanics. In the tradi
tional discussion classical global observables are not intro
duced explicitly but they are described by parameters that 
can be assigned to certain states on the local observables. In 
the present paper, classical observables are introduced expli
citly by a kinematical group as elements of an algebra of 
observables, which are compatible with all other observa
bles. A state of the system in a given context is described by 
an eigenstate of all classical observables referring to the giv
en context. It is the main result of the present work that both 
descriptions of a given context are compatible. 

In algebraic quantum mechanics, the basic objects of 
interest are the observables forming an algebra A (C *- or 
W*-algebra). States of the system are represented by the 
positive linear functionals on A normalized to 1. The expec
tation value of an observable a = a* in A with respect to a 
staterp is the number rp(a). If rp(a)2 = rp(a2) we say that the 
observable a is dispersion-free with respect to the state rp or 
equivalently rp is an eigenstate of a. In this case, we interpret 

rp(a) as the value the observable a has in the state rp. 
The center Z(A): = {aEA lab = ba, for all bEA} of A is a 

commutative subalgebra of A. The observables belonging to 
Z(A) are called classical observables. In the usual individual 
realistic interpretation of classical physical theories, classi
cal observables are those observables that are always actua
lized. Therefore, the functionals onA that are dispersion-free 
on the center are taken as the physical states of the system. 

In the framework of algebraic quantum mechanics of 
infinite systems, the quasilocal observables are described by 
a primitive C *-algebra A supporting a quasilocal structure 
(cf. Ref. 1): for any bounded open region D ofR3 there exists 
a subalgebra A (D) of A containing those local observables 
that can be performed inside of D. The algebra A is the norm 
closure of the union of all subalgebras A (D). A primitive 
algebraA has a trivial center, i.e., ZeAl = {Ct}. This is ex
pressed in the formalism that classical global observables 
correspond to operations that are performed outside of any 
bounded region. But one can think of global observables as 
averages of local observables over the whole space. To in
clude such observables one can represent the abstract C *
algebra A faithfully on a Hilbert space Kin a representation 
1T. The weak closure 1T(A)" of the C *-algebra 1T(A) is a W*
algebra, which contains many new observables. It is espe
cially true that 1T(A) " can contain classical observables. 

In the traditional description to each state of the system 
in a given context corresponds a state on the quasilocal alge
bra A (cf. Ref. 2). In the context of equilibrium statistical 
mechanics a maximally specified equilibrium situation, 
which refers to particular values of the intensive thermody
namic quantities like the temperature or the chemical poten
tial, is described by a KMS factor state. A given context is 
therefore described by a restriction of the state space of the 
quasilocal algebra to a family of states. A state belongs to this 
family ifit describes a state of the system in the given context. 

In the present paper a given context is described by a 

361 J. Math. Phys. 30 (2). February 1989 0022-2488/89/020361-08$02.50 © 1989 American Institute of Physics 361 



                                                                                                                                    

W*-algebra 1T(A)" of a representation 1T of A and its asso
ciated physical states. The classical global observables that 
define a given context are represented as elements of the 
center of 1T(A)". A state of the system in the given context is 
described by an eigenstate qJ of all classical observables. In 
the state qJ of 1T(A) " , the classical global observables have a 
particular dispersion-free value. The nonclassical local ob
servables are, e.g., not dispersion-free in the state qJ. 

In algebraic quantum mechanics, the conceptual char
acterization of the algebra of observables of a physical sys
tem is of central importance. Historically Bohr's principle of 
a correspondence between classical mechanics and quantum 
mechanics allowed one to handle special observables, but 
this recipe does not solve the conceptual problem. A deeper 
foundation of the correspondence principle can be related to 
the representation theory of an appropriate kinematical 
group, the Galilei group (cf. Refs. 3 and 4). 

The important idea of this concept to look at observa
bles is the use of a kinematical group. Kinematical groups 
can be considered as reflecting the idealizations and abstrac
tions of a theory.5.6 Every element of a kinematical group 
describes the admissible change between equivalent points of 
view in the context of a chosen abstraction. A well known 
example of a kinematical group is the Galilei group. But 
kinematical groups are not restricted to describing abstrac
tions in time and space; elementary chemical kinetics (with 
the scaling group) is a theory formulated without reference 
to space. 

Starting from a kinematical group observables can be 
introduced as operators transforming suitably under the 
group. This idea goes back to Wey1.7 In the framework of 
algebraic quantum mechanics a symmetry group appears as 
a homomorphism into the automorphismgroup of the re
spective algebra of observables. An algebra A and a homo
morphism a of a kinematical group are said to have observa
bles if there exists a system of imprimitivity for the algebra A 
and the action a of the kinematical group (cf. Refs. 3, 8, and 
9 and Sec. II). The theory of imprimitivity systems is suffi
cient for the treatment of observables such as position and 
momentum4 and of classical observables. More general 
situations have been studied in Ref. 10. 

In the present paper those classical observables are dis
cussed that are related to a kinematical group. Given a quasi
local algebra A and a continuous action a of a kinematical 
group the generation of classical observables in representa
tions 1T is discussed under the following three conditions: (1) 
the kinematical symmetry is not broken in the representa
tion 1T; (2) the W*-algebra 1T(A)" has classical observables 
generated by the kinematical group; and (3) the system un
der description can be characterized by countably many ex
periments. In the algebraic formalism these conditions can 
be transferred to the following conditions for representa
tions 1T of A. 

( 1 ) Every automorphism a g , gEG, of A has an extension 
to an automorphism a; of 1T(A)" such that a;01T = 1TOa g • 

(2) There exists a system of imprimitivity in the center 
of the W *-algebra 1T(A)" with respect to the action a" of the 
kinematical group. 

(3) The physical state space of 1T(A )" is separable. 
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A structure theory for representations 1T satisfying the 
conditions (1 )-(3) has been developed for separable C *
algebras and separable, locally compact kinematical groups, 
which is reviewed in Sec.II. Using these results it is shown 
that a C *-description of a given context is compatible with a 
W*-description of the same context. Given a representation 
1T satisfying the conditions (1 )-( 3 ), it is shown that a W *
description [with observable algebra 1T(A)" and its associat
ed physical states normal on the noncentral part of 1T(A ) " ] 
is one-to-one with a C *-description (with observable algebra 
A and a distinguished family of states of A, determined by 1T). 

II. INDUCED REPRESENTATIONS AND DISPERSION
FREE STATES 

A C *-system is a triple (A,G,a) consisting of a C *-alge
bra A, a locally compact group G, and a continuous homo
morphism a of G into the group Aut(A) of *-automor
phisms of A equipped with the topology of pointwise norm 
convergence. A W*-system (vII,G,a) is defined similarly: 
vii is then a W*-algebra and Aut(vII) is equipped with the 
topology of pointwise (7-weak convergence. 

A representation (1T,JiY) of a C *-algebra A is said to be 
separable if the representation Hilbert space is separable. A 
quasi-invariant representation of a C *-system (A,G,a) is a 
quartet (1T,JiY,G,a"), where (1T,JiY) is a representation of A 
and a" a homomorphism of G into Aut(1T(A)") such that 
a;01T = 1TOa g , gEG. 

A. Induced representations 

In the following, G will always denote a second count
able, locally compact group and H a closed subgroup of G. 
On G I H, the space of left cosets of H in G, there exists a 
unique (up to quasiequivalence) probability measure v, qua
si-invariant under the transitive representation 

Sk: G I H -+ G I H, gH -+ kgH , 

k,g,EG, and a measurable cross section r: G I H -+ G. (Denote 
by p the projection mapping of G onto G I H. A cross section r 
is a map with the property por = id.) The left regular repre
sentation AG/H of G on L 2 (G IH,v) is defined by 

. (dVOS k _, • )112 
{AGIH(k)t}(g) = dv (g) t(Sk' (g»), 

tEL2 (G IH,v) , 

where dvosk -, I dv denotes the Radon-Nykodym derivative 
of the translated measure dvoSk-' with respect to v. In the 
following, elements gH of G I H will be denoted by g. 

Let (A,G,a) be a C *-system and let (1To,JiYo,H,y) be a 
separable quasi-invariant representation of the C *-system 
(A,H,a). A separable quasi-invariant representation 
(1T,JiY,G,a") of (A,G,a) can be defined by 

(1T,JiY): = ('" (1Tooa r(W"JiYo)dv(g) , 
JGIH 

{a};x}(g): = YrW-'kl1sk ,W) (X(Sk-' (g))) , 

xE1T(A)", kEG. 
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The representation (1T,K,G,a"): = ind~ ( 1T o,Ko,H, y) is 
called induced up from the representation (1To,Ko,K, y). 
(1T,K,G,a") does not depend (up to quasiequivalence) on 
the choice of the quasi-invariant measure v and the measura
ble cross section r. (1T(A)",G,a") is a W*-system. (For 
proofs and more information, see Ref. 11.) 

B. Observables 

Similar to Refs. 3,9, and 12, we introduce the following 
definition: A W*-system (vR,G,a") hasclassicalobservables 
(with respect to the kinematical group G) if the center of vR 
admits a transitive system of imprimitivity. This is equiva
lentl3

,14 to the existence of a closed subgroup H of G and a 
normal *-homomorphism r from Loo (G /H) into Z(vR) 
with the covariance property 

(4) a;or= roadAG/H(g), gEG. 

HereL oo (G /H) is the W*-algebra of equivalence classes of 
essentially bounded complex-valued v-measurable functions 
on G/H. 

c. Representations generating classical observables 

As explained in Sec. I, we consider representations of a 
C*-system (A,G,a) that satisfy the following conditions. 

(1) (1T,K,G,a") is a quasi-invariant representation of 
(A,G,a). 

(2) There exists a closed subgroup H of G and a normal 
*-homomorphism rfromL oo (G /H) intoZ(1T(A) ") satisfy
ing (4). 

(3) K is separable. 
If A is a separable C *-algebra, any representation satis

fying (1 )-(3) is quasiequivalent to an induced representa
tion. II ,13 More precisely, this means that there exists a quasi
invariant state rp of (A,H,a) with representation 
(1T""K""H,y) and a *-isomorphism K from 1T(A)" onto 
1Tq, (A)", such that 

K01T = 1Tq, , 

KOa; = a;,g oK, gEG, 

K(r(/»)=df , IELoo (G/H), 

where we used the following definitions: 

¢: = ( rpoarW -' dv(g) , 
JG/H 

df : = ("' I(g) 1", dv(g), 
JGIH 'i' 

(1Tq"Kq"G,a;): = ind~(1T""K""H,y) . 

The quasi-invariant representation (1T ",,:JtP ""H,y) is unique 
up to quasi equivalence. 

These results allow one to consider only induced repre
sentations for the generation of classical observables in case 
A is separable. The corresponding results are not available 
for nonseparable C *-algebras. But any induced representa
tion of a nonseparable C * -algebra A satisfying (2) and (3) 
generates classical observables. 

All results derived in the next sections are valid for in-
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duced representations 1T '" on arbitrary unital C *-algebras A 
satisfying (2) and (3). In the representation 1T"" the W*
algebra 1T '" (A)" can be identified with the W*-algebra 
L 00 (G / H) ® 1T '" (A) " that factorizes into a commutative al
gebra L 00 (G / H) generated by the classical observable, and 
into a noncommutative algebra 1T '" (A) " . 

D. Examples 

(a) Let G denote the Galilei group and H the closed 
subgroup generated by rotations, time translations, and 
space translations. Then the corresponding classical observ
able based on G /H is a momentum operator, 15 

(b) Let G denote the Galilei group and H the closed 
subgroup generated by rotations, space translations, and ve
locity translations. Then the corresponding classical observ
able based on G I H is a time operator. 12 

(c) Let G denote the gauge group acting on the quasilo
cal algebra of an infinite free Bose gas. Then the classical 
observable corresponding to G = G /{e} is a phase opera
tor. 16 

E. Dispersion-free states 

For our purpose it suffices to consider W*-algebras 
vR = L 00 (G / H) ®:7, :7 an arbitrary W *-algebra, and 
states 0 on vIt, which are dispersion-free on the W *-subalge
bra L 00 (G / H) ® {C I}. The set of these states we denote by 
D(vIt), i.e., 

D(vR): = (oeS(vIt)IO(r) = 0(Z)2' 

Vz =z*ELoo (G/H) ®{cl}} . 

IfG IHis not countable as a set then any state in D(vIt) 
is singular (finitely additive) (cf. Appendix B). 

A state 0 on vIt is called a product state [with respect to 
the factorization vIt = L 00 (G I H) ® :7] if there exists a 
state 0 I of L 00 (G I H) and a state Oz of :7, such that 
O(x®y) = 0 1 (x)Oz(y), for all xELoo (G /H) andJlE:7.1t 
is an immediate consequence of Ref. 17, IV.4.11), that any 
OeD(vIt) is a product state where 0 1 is a multiplicative 
(hence pure) state of L 00 (G I H). On the other side, every 
product state 0 with a multiplicative state 0 1 belongs to 
D(vIt). Therefore 

D(vIt) = {oeS(vIt) 10 is a product state 

and 0 1 is pure} . 

We use the following partition of D( vIt) : 

Df(vIt) = {OeD(vIt) 10 1 ~ Coo (G /H) ;60}, 

Doo (vIt) = {OeD(vIt) 101 ~ Coo (G /H) = O}. 

For states 0 belonging to Df(vIt), the classical observable 
generating L 00 (G / H) has a finite value. In the opposite case, 
OeD 00 (vIt), the classical observable has infinite value. 

We interpret classical observables as those observables 
that are always actualized. Therefore, only those functionals 
of D(vIt) describe a state ofthe system that is dispersion-free 
on the center of vIt. If Y is a factor, every functional of 
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D(JI) is dispersion-free on the center of JI. Especially in 
this case, we consider the set 

<p(JI): = {OED(JI) 102 is normal}. 

Here <p(JI) contains those functionals of D(JI) which are, 
e.g., singular on the commutative (classical) part L 00 (G I 
H) ® {e I} and normal on the strictly noncommutative 
(purely quantum mechanical) part {el} ® Y. We use the 
partition of <p(JI) in <Pf(JI) = <p(JI) nDf(JI) and 
<Poo (JI) = <p(JI) nDoo (JI). 

III. EXTENSION OF STATES TO DISPERSION-FREE 
STATES 

In this section we consider the extension of an arbitrary 
state OJ on a C *-algebra A to a state 0 on JI = 1T q, (A)" , 
where <p denotes an induced state on A. The results of this 
section are valid under the following assumptions for the 
induced representation 1T q, and the associated induced state 

<p = ( q;Oar(g)-' dv(g). 
JG/H 

Assumption 1: r is a continuous cross section. 
Assumption 2: The states q;Oa r(g) -, ,gEG I H, are mutual

ly disjoint. 
These assumptions are satisfied in every known physical 

example (cf. Sec.I1). Note that Assumption 2 is always satis
fied for the states q;Oarw -' ,kEG IH - N, whereNisa v-null 
Borel set of G I H. If H is a normal subgroup or rop is a 
homomorphism and HgH = Hg, gEG, the null set N can be 
shown to be empty (cf. Lemma 2.6 in Ref. 11). There are no 
general conditions known to the author implying the conti
nuity of the measurable cross section r. 

Lemma 3.1: Let (1Tv ,Lz( G IH,v») denote themultiplica
tion representation of the C *-algebra Cb (G IH), the bound
ed complex-valued continuous functions on G.; H, defined by 

{ 1Tv (/)4}(g) = /(g)t(g). 

taz(GIH,v), /ECb(GIH). 

Then 1T v is a faithful representation. 
Proof Use that v( u) > 0 for any nonempty open subset u 

of G IH (cf. Ref. 18, Lemma 1.3 and Ref. 19,9.2.2). 0 
IdentifyingJl = 1Tq, (A)" withL oo (G I H) ® 1T <p (A)", it 

is important to consider the following C *-subalgebras of JI: 

cff: = 1Tv(Cb (G IH») ® 1T<p (A)", 

ffoo: =1Tv(Coo (GIH»)®1T<p(A)" , 

(/f: = 1Tv(Cb(GIH») ®1T<p (A), 

(/f 00: = 1Tv(Coo (GIH»)®1T<p(A). 

Here Coo (G I H) denotes the C * -algebra of bounded com
plex-valued continuous functions on G I H vanishing at infin
ity. If and only if G I H is compact, Coo (G I H) 
= C b ( G I H) and ff = ff 00' (/f = (/f 00 • 

Let B be a C *-algebra. By Cb (G I H,B) we understand 
the C *-algebra of bounded continuous functions from G I H 
to B, and by Coo (G I H,B) the subalgebra offunctions x van
ishing at infinity, i.e., the function g-+ IIx(g) II belongs to 
Coo (G I H). It follows from Ref. 20, Chap. 1.22, that we can 
identify 
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Cb (G IH,B) ;:;;;Cb(G IH) ®B, 

Coo (GIH,B);:;;;C oo (GIH) ®B. 

Furthermore, we can identify 

Cb(G IH) ®B~1Tv(Cb (G IH») ®B, 

Coo (GIH) ®B~1Tv(Coo (GIH»)®B, 

under the *-isomorphism 1T v ® id (due to Lemma 3.1). 
Lemma 3.2: If r is continuous, 1Tq, (a), aEA,. belongs 

to (/f. 
Proof The direct integral operator 

1T",(a) = (e 1T<p(arcw , (a»)dv(g) 
JG/H 

can be regarded as measurable mapping 
{g-+1T II' (a rLw , (a»)} from G IH into 1T rp (A). If r is contin
uous, the map {g-+1Trp(a,w-' (a»)} belongs to 
Cb(G IH,1T II' (A»). Identifying Cb(G IH,1T rp (A») with (/f, the 
result follows. 0 

Lemma 3.3: Let '" be a pure state of L 00 (G I H) and 
'" t Coo (G I H) oF O. Then there exists goEG I H, such that 
"'(/) =/(go), for all/ECb (G IH). 

Proof From Ref. 21, 2.3.21, and Ref. 22, (20.52), there 
exists goEG I H, such that "'( /) = /(go)' for all /EC 00 (G I 
H). As Coo (G IH) is a hereditary C*-subalgebra ofCb (G I 
H), the state defined onC 00 (G I H) has a unique extension to 
a state of Cb (G I H) (Ref. 23, 3.l.6). This extension is, of 
course, given by "'(/) =/(go) for/ECb(GIH). 0 

The following lemma shows that there exists states on 
JI, which are dispersion-free on L 00 (G I H) and which have 
an infinite value for the classical observable generating 
L"" (G I H), if and only if G I His noncompact. 

Lemma 3.4: If G I H is noncom pact there exists a pure 
state", of L "" (G I H) such that'" t Coo (G I H) = O. 

Proof: Coo (G I H) is a closed two-sided ideal of 
Cb (G I H). As G I His noncompact the quotient C *-algebra 
U: = Cb (G I H)IC 00 (G I H) is nontrivial. The set 

S",,: {q;ES(L"" (G IH»)Iq; t Coo (G IH) = O} 

contains a set that is affine linear isomorphic to S( U), the 
state space of U. Here S 00 is a nonempty convex weak*
compact set which has an extreme point", (Krein-Milman). 
Assume that", can be decomposed in '" = A"'I + (1 - A) "'z, 
o <A < 1, and "'1,"'2 states of Loo (G IH). Then 
0= ",(a) = AtP) (a) + (1 - A)tP2(a), 'rJaEC", (G I H) +. 

Hence tP) t Coo (G IH) = tP2 t Coo (G IH) = O. Therefore 
tPI'tPzESoo and", = tPl = "'2' Hence tP is pure. 0 

Lemma 3.5 and Corollary 3.6 following connect the dis
persion-free states on JI having a finite value for the classi
cal observables generating L 00 (G I H) with the points of the 
"phase space" G / H and the states on 1T tp (A)". 

Lemma 3.5: Let 0 be an element of Df(JI). There ex
ists goEG IH such that for any x = {g-x(g)}E.ff we have 
O(x) = 02(X(gO»)' 

Proof: By definition, 0 is a product state where O2 is a 
state of 1T <p (A)" and 0 I a pure state of L 00 (G I H) which do 
not vanish on Coo (G I H). It follows from Lemma 3.3 that 
there exists a pointgoEG Ih such that 0 1 (/) = /(go) , for all 
/ECb (G IH). For any {g-X(g)}ECb(G IH, 1Trp(A)") there 
exists a sequence 
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{

N(n) } 

m~ fnm ® anm 
nEN 

in ff such that 

{ 

N(n) } 

lim sup IIx(g) - L fnm (g)anm II = 0 . 
i/EG/H m = I 

Now 

N(n) 

= lim L fnm (go)!12(anm ) 
m=l 

= lim 02(:~)fnm (go)anm ) = 02(X(gO») . 0 

Corollary 3.6: (Let r be continuous.) If OeDf(J(), 
there exists goEG I H such that 

!l(1T<,6(a») = 02(1Tq>(ar(go)-1 (a»)), 

for all aEA. 
The quasilocal C *-algebras usually occurring in physics 

are simple, i.e., every representation of the respective algebra 
is faithful (with the exception of the noninteresting zero rep
resentation). The following Theorem 3.7 shows that every 
state w on a simple C*-algebra can be extended to a disper
sion-free state on the generated W*-algebra of an induced 
representation. If the state w is pure then this extension may 
be chosen to be pure, too. 

Theorem 3.7: Let 1T q> be faithful and let w be a state of A. 
For every pointgoEG IH, there exists a state !leDf(J() giv
en by O(x) = 02(X(gO»), x = {g--+x(g)}Eff, such that 
001T = w. If w is a pure state of A then 0 may be chosen to be 
a pure state of J(. 

Proof: LetgoEG IH. Denote by 0 1 apurestateofL"" (G I 
H) such that !ll(f) =f(go), for all jECb(GIH). Put 
O2: = wOa (. ) 01T - I. By the Hahn-Banach theorem, the r go fP 

state !l2 of 1T q> (A) admits an extension to a state of 1T q> (A)" 
(Ref. 23, 3.1.6), which we denote by the same letter. The 
product state 0 = 0 I ® O2 of L "" (G I H) ® 1T q> (A)" admits 
an extension to a state of J( (Ref. 23, 3.1.6). By construc
tion OeDf(J() and, according to Corollary 3.6, 

0(1T q> (a») = !l2( 1T q>(ar(go)-I (a»)) = w(a), for all aEA . 

If w is pure then O2: = woarW 01T; I is pure and!l2 admits 
an extension toa pure state of1Tq> (A)" (Ref. 21, 2.3.24). The 
product state 0 I ® !l2 of L "" (G I H) ® 1T q> (A) " is a pure state 
(Ref. 17, IV.4.13) and admits an extension to a pure state of 
J( (Ref. 21, 2.3.24). 0 

Theorems 3.9 and 3.10 following characterize the exten
sion properties of states of a C * -algebra A to states of a W *
algebra J( = L"" (G I H) ® 1T q> (A)" that are dispersion-free 
on L "" (G I H) and normal on 1T q> (A ) ". The physical mean
ing of these extension properties is described in the following 
section. Lemma 3.8 following is needed in the proofs of 
Theorems 3.9 and 3.10. 

Lemma 3.8: Let 7/J be a state of A, 1T '" the G NS represen
tation of 7/J, and 1T an arbitrary representation of A. Consider 
the following conditions: 

( 1) 7/J is a 1T-normal state, 
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(2) 1T '" is quasiequivalent to a subrepresentation of 1T (in 
sign 1T '" <, 1T) , 

(3) 1T '" is quasiequivalent to 1T (in sign 1T '" =1T). 
It follows that (1) <=>(2) ~ (3). If, moreover, 1T is a 

factor representation, then all conditions are equivalent. 
Proof: ( 1) => (2). We use the notations of Appendix A. 

The representation rea): = c( 1T)1Tu (0), aEA, is quasiequi
valent to 1T. It follows from Appendix A that there exists a 
normal state w of r(A ) ", such that w ( 1'( a» = 7/J( a), aEA. 
At the same time, there exists a unit vector 7JEK u such that 
(1/I1Tu (a)1/) = w(r(a»), aEA. By normality this equation be
comes (1/IX1/) = w(c( 1T)X), xEA ". By substituting c( 1T) for x 
we obtain 

IIC(1T)1/11 2 = (1/lc(1T)1/) =W(C(1T») = 7/J(1) = 1 = 111/112. 

Thus 1/ lies in the range of c( 1T). Denote by p the projection in 
A I with range [1T u (A)1/]. Thus (1T u (. )p,p~u ,1/) is the GNS 
representation of 7/J. As 1/ lies in the range of c( 1T), we have, 
from 

C(1T)1Tu (a)1/ = 1Tu (a)c(1T)1/ = 1Tu (a)1/, aEA, 

that p<,c( 1T). Therefore p<,c( 1T ",) <,c( 1T) and 1T '" <,1T. 
(2) => (1). Follows from Appendix A and {7/J} 

CN(1T",) CN(1T). If1Tis a factor representation, then C(1T) 
is an atom in the center of A" (cf. Ref. 23, 3.8.13). It follows 
from the proof of (1) => (2) that c( 1T ",) = c( 1T). Hence 
(1) => (3). 0 

Theorem 3.9 (existence of extension): Let w be a state of 
A and 1T OJ the GNS representation of w. Consider the follow
ing conditions: 

(1) there exists an OEtPf(J() such that 001T<,6 = W, 
(2) there exists a goEG I H such that 1T OJ <, 1T q> °a r(go) -I , 
(3) there exists a goEG I H such that w=<poar(&,)-" 

It follows that (1) <=> (2) ~ (3). If, moreover, <p is a 
factor state then all conditions are equivalent. 

Let G I H be noncom pact. If, in addition, there exists a 
representation (1T "" ,~q> ) of A such that 1I1T q> (a rCW' (a) ) 
- 1T "" (a) 11--+0, aEA, for some net {g} running out of any 

compact subset of G I H, consider the following conditions: 
(4) thereexists!lEt/J"" (J() suchthatOo1T<,6 =w, 

(5) 1Tw<,1T "", 
(6) 1T", =1T ",,' 
It follows that (4) <=> (5) ~ (6). If, moreover, 1T "" is a 

factor representation then all the conditions are equivalent. 
Proof: (1) => (2). According to Corollary 3.6, we have 

!l(1T<,6(a») = !l2 (1Tq> (ar(g,,)-' (a»)) = w(a), aEA, 

for some pointgoEG I H. Therefore, w is a 1T q> Oa r(go) -, normal 
state and 1Tw<,1Tq> 0a r(g,,)-' (Lemma 3.9). 

(2) => (1). According to Lemma 3.9, there exists a 
normal state O2 of 1T q> (A)" such that 

02(1Tq>(ar(g,,)-' (a))) = w(a), aEA. 

Denote by 0 I a pure state of L"" (G I H) such that 
!ll(f) =f(go)' fECb(GIH). By the Hahn-Banach 
theorem, the product state 0 I ® O2 of L "" (G I H) ® 1T q> (A) " 
admits an extension to a state of J( (Ref. 23, 3.1.6). As ris 
continuous, 1T<,6(A)Cff and !l(1T<,6(a»)=w(a) (Lemma 
3.5). If <p is a factor state, <poar(go)-' is a factor state and 
(2) => (3) follows from Lemma 3.9. 
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( 4) => (5). By definition, 1T 00 (A) C 1T '" (A). Therefore, 
the constant function {g -+ 1T 00 (a)} is an element of JV for all 
aEA. From the definition of 1T 00 and from Ref. 24, 42.8, it 
follows that {g- (1T",(a,cw' (a») - 1T 00 (a»} belongs to 
JV 00' As OEtPoo (A"), we have 0 ~ JV 00 = O. Therefore 

O(1T.p(a» = O({g-+ (1T",(a,w-' (a») 

- 1T '" Ca»}) + 0({g-+1T 00 (a)}) 

= O({g-+ 1T 00 (a)}) = 02(1T '" (a»), aEA. 

O2 is a normal state of 1T '" (A)" and therefore a normal state 
of 1T 00 (A)". Hence cu is a 1T 00 -normal state and 1T.,";; 1T 00 

(Lemma 3.9). 
(5) => (4). By Lemma 3.9 there exists a normal state 

O2 of 1T 00 (A)" such that 02(1T '" (a») = cu(a), aEA. There 
exists a trace class operator y on K", such that 
02(X) = tr(xy), XE1T 00 (A)". Extend O2 to a normal state of 
1T '" (A)" defining O2 (x) = tr(xy), XE1T '" (A)". According to 
Lemma 3.4, there exists a pure state 0 1 on L", (G IH) such 
that 0 1 t Coo (G I H) = O. The product state 0 1 ® O2 on 
L 00 (G I H) ® 1T q;> (A)" admits an extension state of A" (Ref. 
23,3.1.6). By construction OEtPoo (A"). By the very same 
argument as in (4) => (5) we have O(1T.p(a») 
= 02(1T '" (a») = cu(a), aEA. If 1T '" is a factor representa
tion, (5) => (6) follows from Lemma 3.9. D 

Theorem 3.10 (uniqueness of extension): Let cu be a 
state of A. Suppose there exists OjEtPf(A"), i = 1,2, such 
that O j01T.p = cu. Then 0 1 t JV = O2 t JV. 

Let G I H be noncompact. Assume that there exists a 
representation (1T '" ,K q;> ) of A with the properties described 
in Theorem 3.10 and such that 1T 00 is disjoint to any 
fPoarw-" gEG IH. Suppose there exists O;EtP(A"), i = 1,2, 
such that O j01T.p = cu. Then there remain two possibilities: 

(a) OjEtPf(A") and then 0 1 ~ JV = O2 ~ JV, 
(b) O;EtP", (A") and then 

0 1 ~ {Cl}®1T '" (A)" = O2 t {cl}®1T 00 (A)" . 

Proof" Let us first assume 0 J,02EtP f (A"). According to 
Corollary 3.6, there exists gj EG I H and normal states 02j of 
1T", (A)", such that 0;(1T.p (a») = 02j(ar(g;)-' (a»), aEA. 

Therefore cuEN(1Tq;> 0a,(g,)-') nN(1T",Oa,(g,)-')' It follows 

from Assumption 2 that g3=f=g4 implies 
1T",Oa,(g,)-' 6 1T",Oa,(g,)-' or equivalently 
N( 1T q;> oa,(g,)-' ) nNe 1T", oa,(g.)_' ) = (2) (cf. Appendix A). 
Therefore gl = g2 and 021(1T", (a») = 022(1T", (a»), aEA. As 
02i are normal states of 1T q;> (A)", we have 0 21 = 0 22, There
fore the product states 011 ® 0 21 and 0 21 ® 0 22 of JV coin
cide. 

Now let OIEtP", (A") and 02EtP(A"). Then 
0 1 t JV '" = O. By the very same argument as in the proof of 
Theorem 3.10, (4) => (5), we have 01(1T.p(a») 

= Od1T '" (a»), aEA. 
Case 1: 02EtPf(A"). It follows as above 

CUEN(1T '" ) nN(1T",Oa,(g,)-')' By assumption 

1T '" 6 1T '" 0a,(g,) -,. This is a contradiction. 
Case 2: 02EtPoo (A"). Then 02(1T.p(a») = 022(1T '" (a»), 

aEA. As 02j are normal states of 1T '" (A)", we have. 
0 21 t 1T '" (A)" = 0 22 t 1T '" (A)". D 
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IV. COMPATIBILITY OF C*- AND W*-ALGEBRAIC 
QUANTUM MECHANICS 

A W*-algebraic description of an infinite system in a 
particular context has to fulfill compatibility conditions with 
its underlying C *-algebraic description. The compatibility 
conditions we introduce are 

( 1) only certain states cu on the quasilocal C *-algebra A 
can be extended to states on A" = 1T.p (A)" belonging to 
Df(A"), 

(2) states OED(A") extending a given state cu cannot 
have different values for the classical observables generating 
Loo (GIH). 

Condition (1) states that not all states onA can describe 
physical situations corresponding to values of the classical 
global observables generating L 00 (G I H). Condition (2) ex
cludes that a state cu on A can at the same time describe two 
physical situations that differ with respect to an infinite 
number of degrees of freedom. 

The quasilocal C *-algebras usually occurring in physics 
in the description of the local context-independent features 
of an infinite quantum system are simple. Therefore 
Theorem 3.7 states that any (pure) state cu on a quasilocal 
C*-algebra A can be extended to a (pure) state 0 on A" 
belonging to Df(A"). Furthermore, a (pure) state cu on A 
admits an extension to a (pure) state 0 belonging to Df(A") 
having any point of the "phase space" G I H as value for the 
classical observables generating L 00 (G I H). Hence the com
patibility conditions (1) and (2) can be maximally violated 
with states in Df(A"). 

The corresponding questions for infinite classical sys
tems are not settled. The quasilocal C * -algebras of an infinite 
classical system -are, of course, never simple. This makes it 
more difficult to prove the existence of suitable faithful rep
resentations as presupposed in Theorem 3.7. 

In the case where all classical global observables of a 
given context are generated by a kinematical group the W*
algebra A" factorizes into a classical part, the center L 00 (G I 
H) of A", and a purely quantum mechanically part, a factor 
algebra. Every state on A" that is dispersion-free on the cen
ter of A" factorizes in the same way. Theorems 3.9 and 3.10 
are tailored for this situation. They show that a W*-descrip
tion of a given context-with algebra A" and the subset 
tPf(A") = SJr of all states on A" -is equivalent to a C*
description-with algebra A and a subset 

SA = {CUES (A) lcu is quasiequivalent tfpoar(dg)-"dgEG/H} 
of all factor states on A. 

Theorem 3.10 shows that any state cu in SA admits an 
extension to a state 0 in SJ/ and that any state cu not in SA 
does not admit such an extension. 

Theorem 3.11 shows that two states OJ and O2 in $~ 
extending a state cu in SA have the same value for the classical 
observables generating the center of A" and are equal on the 
purely quantum mechanically part of A". Although the two 
states 0 1 and O2 can differ mathematically as functionals on 
A" they describe physically identical states of the system in 
the given context. Two states 0 1 and O2 with these proper
ties are henceforth called physically identical. 

These results may be regarded as an a posteriori explana
tion of the fact that in the traditional description of infinite 
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systems in C * -algebraic quantum mechanics factor states are 
used to describe a maximally specified physical situation re
ferring to a given context and of the fact that only normal 
states on the corresponding factor algebra are considered. 

Furthermore, these results open the possibility to intro
duce classical observables as parameters related to a kinema
tical group which can be assigned to certain states on a quasi
local C*-algebra. This possibility does not depend on any 
limiting process involving the local C *-algebras usually oc
curring in the parameter description of classical observables. 

v. INTERPRETATIONS OF QUANTUM MECHANICS OF 
INFINITE SYSTEMS 

An interpretation of algebraic quantum mechanics of an 
infinite system in a particular context corresponds, on the 
one hand, to a subset SA of the set of all states on the quasilo
cal C *-algebra A and, on the other hand, to a subset SJt' of 
the set of all states on the W*-algebra..4 = 1T.p (A) It ofobser
vables. A minimal requirement that a particular interpreta
tion is admissible is the compatibility of the C *-algebra de
scription and the W*-algebra description as described in the 
previous section. 

Therefore the results of the previous sections have the 
following consequences. 

Consequence 1: An individual interpretation of an infi
nite system in a particular context whose respective W*-al
gebra of observables is of type III or type II is not possible. 

An individual interpretation of quantum mechanics 
presupposes the existence of "suitable" pure states. In the 
previous section we have seen that a W *-algebra description 
corresponding to all pure states on the W*-algebra of obser
vables is not compatible with a C *-algebra description. A 
W*-algebra description corresponding to all pure states on 
the respective W*-algebra of observables that are normal on 
the purely quantum mechanical part of the respective W*
algebra is compatible with a suitable C *-algebra description. 
But this description is only possible if the factor part of the 
respective W*-algebra is a type I factor, since on a factor of 
type III and type II no pure normal states exist (cf. Lemma 2 
in Appendix B). 

The same result has also been established in Ref. 25 us
ing completely different methods. 

Consequence 2: An interpretation of algebraic quantum 
mechanics of an infinite system in a particular context where 
the classical observables of the respective W*-algebra are 
interpreted as belonging to an individual system and the 
purely quantum part as belonging to an ensemble of systems 
equals the interpretation of the traditional description where 
the classical observables defining the given context are treat
ed as parameters. 

This consequence is established by the compatibility of 
the W*-algebraic description [..4,S.§ = tPf(..4)] and the 
C *-algebraic description [A,SA ], where SA consists of the 
factor states on the C *-algebraA that are quasiequivalent to 
rpoa,w -, , gEG I H. 

APPENDIX A 

Let (1T u ,K u ) denote the universal representation of the 
C *-algebra A and c( 1T) the central COver ofthe representa-
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tion (1T,K). The strong closure of 1T u (A) will henceforth be 
denoted by A It. The set of 1T-normal states of A is defined by 
N(1T): = {mo1Tlm a normal state of the weak closure of 
1T(A) }. 

The concepts of quasiequivalence, disjointness, and 
quasisubequivalence are basic in the theory of representa-
tions (Ref. 26, Chap. 5). The implications 
(1) {::> (2) {::> (3), (1') {::> (2') {::> (3'), (lit) {::> (2") 
{::> (3") between the following conditions are well known: 

(l) 1T 1 is quasiequivalent to 1T 2' 

(2) C(1T)=C(1T2)' 
(3) N(1Tl) = N(1T2), 
(1 ') 1T) is quasisubequivalent to 1T2, 

(2') C(1T),C(1T2), 
(3') N(1T) r;;,N(1T2), 

(1") 1T) and 1T2 are disjoint, 
(2") c( 1T) )lc( 1T2), 

(3") N(1T) nN(1T2 ) = 0. 
Proof: (1) {::> (2) ¢:} (3) (Ref. 17,111.2.12). 
(1') {::> (2') (Ref. 27, 10.5.42), 
(lit) {::> (2") (Ref. 23,3.8.10). The representation 1'j 

defined by 1'j (a) = c( 1T; )1Tu (a), aEA, is a quasiequivalent to 
1Tj (Ref. 23,3.8.2). Therefore N(1';) =N(1Tj ). From the 
proof of Lemma 3.9 it follows that 

N( 1';) = {(~ l1Tu (.)~ lI~ a unit vector in Ran c( 1T;)}. 

(2') ¢:} (3'). 

c( 1T) ,,;;c( 1T2) {::> Ran c( 1T) 

r;;, Ran c( 1T2) {::> N( 1T) r;;,N( 1T2). 

(2") ¢:} (3"). 

c(1T)lc(1T2) {::> Ran C(1T) 

nRan c( 1T2) = tP {::> N( 1T) nNe 1T2 ) = 0. 

APPENDIXB 

o 

Lemma 1: Let v denote the probability measure on G I H 
introduced in Sec. II. Then (G IH,v) is an atom-free measure 
space iff G I H is not countable as a set. 

Proof: G I H is a second countable, locally compact 
Hausdorff space. Therefore G I Hbecomes a countab1y sepa
rated measure space (Ref. 19, 8.6.11). It follows from Ref. 
28, p. 589, that (G I H, v) is nonatomic iff v( (g}) = 0, for all 
gEG I H. The assertion is then an immediate consequence. 0 

Lemma 2: A normal state rp of a W *-algebra..4 is pure 
iff its support projection s( rp) is an atom in JI. 

Proof: Ltp: = {aEvR'lrp(a*a) = O} = ..4(1 - s(rp») (cf. 
Ref. 20, 1.14.2). Ifs(rp) is not an atom in..4, thenLtp is not a 
regular maximal left ideal of ..4, and rp is not pure (Ref. 23, 
3.13.6). If s(rp) is an atom in ..4, then s(rp)as(rp) 
= rp(a)s(cp), aEvR'. Suppose t/Jis a state of..4 majorized by 

rp. Then tP(s(rp») = 1 and 

t/J(a) = tP(s(rp)as(rp») = tP(rp(a)s(rp») = rp(a), aE..ff. 

Hence rp is pure. o 

JR. Haag and D. Kastler, I. Math. Phys. 5, 848 (1964). 
2D. Kastler, "Equilibrium states of matter and operator algebras," in Sym
posia Mathematica, Vol. 20 (Academic, London, 1976). 

JOrgen pottinger 367 



                                                                                                                                    

3J. M. Jauch, Foundations of Quantum Mechanics (Addision-Wesley, 
Reading, MA, 1968). 

4J._M. Levy-Leblond, "Galilei group and Galilei invariance," in Group 
Theory and its Applications. Vol. 2, edited by E. M. Loebl (Academic, New 
York,1971). 

sH. Primas, "Kinematical symmetries in molecular quantum mechanics," 
in Group Theoretical Methods in Physics. Lecture Notes in Physics, Vol. 79 
(Springer, Berlin, 1978). 

6H. Primas, Chemistry, Quantum Mechanics and Reductionism, Lecture 
Notes in Chemistry, Vol. 24 (Springer, Berlin, 1981). 

7H. Weyl, Z. Phys. 46, 1 (1927). 
8G. W. Mackey, Induced Representations of Groups and Quantum Me
chanics (Benjamin, New York, 1968). 

9C. Piron, Foundations of Quantum Physics (Benjamin, Reading, MA, 
1976). 

lOA. Amann, Fortschr. Phys. 34,167 (1986). 
IIJ. Pottinger, Ph.D. dissertation, ETH Ziirich, 1988. 
12A. Amann, Helv. Phys. Acta 60,384 (1987). 
13M. Takesaki, Acta Math. 119, 273 (1967). 
14G. W. Mackey, Acta Math. 99, 265 (1958). 

368 J. Math. Phys., Vol. 30, No.2, February 1989 

"A. Amann and U. Miiller-Herold, Helv. Phys. Acta 59,1311 (1986). 
16H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963). 
17M. Takesaki, Theory of Operator Algebras I (Springer, New York, 1979). 
'"G. W. Mackey, Acta Math. 55,101 (1952). 
'"D. L. Cohn, Measure Theory (Birkhiiuser, Boston, 1980). 
21'S. Sakai, C·-Algebras and W*-Algebras (Springer, Berlin, 1971). 
"0. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statisti

cal Mechanics (Springer, New York, 1979 and 1981), Vols. I and II. 
22E. Hewitt and K. Stromberg, Real and Abstract Analysis (Springer, New 

York,1965). 
BG. K. Pedersen, C·-Algebras and Their Automorphism Groups (Aca

demic, London, 1979). 
24H. Bauer, Wahrscheinlichkeitstheorie und Grundzuge der Masstheorie (de 

Gruyter, Berlin, 1974). 
25A. Amann, J. Math. Phys. 28, 2384 (1987). 
26J. Dixmier, C·-Algebras (North-Holland, Amsterdam, 1977). 
27R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Opera

tor Algebras (Academic, Orlando, 1983 and 1986), Vols. I and II. 
2"p. R. Halmos and J. v. Neumann, Ann. Math. 43, 332 (1942). 

JUrgen Pottinger 368 



                                                                                                                                    

Additive functionals and operators on a quaternionic Hilbert space 
c. S. Sharma and D. F. Almeida 
Mathematical Research Unit, Birkbeck College, University of London, 43 Gordon Square, London WCI H 
OPD, England 

(Received 26 July 1988; accepted for publication 28 September 1988) 

It is shown that the structure of functionals and operators on a quaternionic Hilbert space is 
much richer than is generally appreciated, but one has to work simultaneously with the usual 
definition and an unusual one of multiplication by scalar for functionals-the different 
definitions, of course, give rise to different vector spaces. A generalized version of the Riesz 
representation theorem for quaternionic Hilbert spaces is proved along with the basic theorem 
on the algebra of additive operators on such a space. 

I. INTRODUCTION 

It has become abundantly clear that quaternionic vector 
spaces have important roles to play in celestial mechanics, I,Z 

in quantum mechanics,3,4 and in relativity.5.6 For a study of a 
quaternionic Hilbert space as a possible model for quantum 
phenomena, Jauch and co-workers7

,8 have done some pio
neering work on the theory of operators on a quaternionic 
Hilbert space. Our involvement with quaternionic spaces 
started with an attempt9 to clarify and simplify the work of 
Jauch and co-workers. The referee of Ref. 9 raised a number 
of interesting questions and this led us to consider the struc
tures of complex and quaternionic vector spaces at a very 
basic level. to The insight gained in Ref. 10 was used to devel
op a theory of semi linear operators lion a complex Hilbert 
space and to demonstrate that this theory had both expected 
and unexpected applications in physics. In the present work 
we return to quaternionic Hilbert spaces at a very basic level 
and study additive functionals and operators on such a 
space. It is shown that in this context additivity has a some
what unexpected but nevertheless simple yet rich structure. 
We will see that for a full exploitation of the structure of 
additive functionals it becomes necessary to work with more 
than one definition of multiplication by scalars. 

In Sec. II we establish our notation and state with indi
cations of a proof a lemma that collects some of the proper
ties of quaternionic numbers we are going to need in later 
sections. 

In Sec. III we study additive functionals on a quater
nionic Hilbert space. The collection of additive functionals 
on such a space forms a vector space with the usual definition 
of multiplication by scalars, but the Riesz representation 
therorem3 has a very restricted form. We define a Riesz set of 
additive functionals that is a proper subset of the underlying 
set of the space of additive functionals but is not a subspace. 
We endow this subset with a vector space structure by defin
ing a somewhat unusual multiplication by scalars and then 
we prove a generalized version of the Riesz representation 
theorem that establishes a linear vector space isomorphism 
between the vector space of bounded Riesz functionals and a 
direct sum of two copies of the quaternionic Hilbert space. 
For a real Hilbert space of dimension n the space of bounded 
additive functionals is just the space of linear functionals on 
the space and has the same dimension, for a complex Hilbert 
space of dimension n the space of bounded additive function-

als is isomorphic to a direct sum of two copies of the Hilbert 
space and thus has dimension 2n. We prove in this work that 
in a quaternionic Hilbert space of dimension n the space of 
bounded additive functiona1s is isomorphic to a direct sum 
offour copies of the Hilbert space and, therefore, has dimen
sion 4n. 

In Sec. IV we use the insight gained in the previous sec
tion to deduce various formulas for the adjoints of additive 
operators on a quaternionic Hilbert space and then state and 
prove the basic theorem on the algebra of additive operators 
on a quaternionic Hilbert space. 

In Sec. V we conclude with a few remarks. 

II. FORMALITIES 

We denote the fields of real and complex numbers by R 
and C, respectively, and the skew field of quaternionic 
numbers by H. Elementary properties of quaternions are de
scribed in Ref. 9. We state briefly the properties we are going 
to need in this work. Quaternions form a normed associative 
division algebra over R and are best described with the help 
of three distinct linearly independent abstract square roots 
of - 1, which are denoted by symbols i,j, and k and whose 
products are defined by 

P=/=k Z = -1, 

ij= - ji= k, 

jk= -kj=i, 

ki= - ik=j. 

(2.1) 

(2.2) 

(2.3 ) 

(2.4 ) 

It is easy to verify that H is a four-dimensional vector space 
over R where 1, i,j, and k are members of a basis. Thus any 
YEH has a unique representation as 

Y = Yo + y.i + yzj + Y3k, (2.5) 

with YO'YI,Yz'Y3ER. Quaternionic conjugation is defined by 

l*=I,i*= -i,j*= -j,k*= -k. (2.6) 

It is easy to verify that H is a normed algebra with the norm 
defined by 

Ilyll = (y*y)IIZ. (2.7) 

In addition to the axioms of the norm, the norm satisfies, as 
in the complex case, 

(2.8) 
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The remaining properties of quatemionic numbers that we 
need are collected together as the following lemma. 

Lemma 2.1: Let ]IEH. Then 

(i) Y = 0 <=> Yo = YI = Y2 = Y3 = 0, 

where Yo, YI' Y2' and Y3 are as in (2.5). 
(ii) If the imaginary square root of - 1 in C is identified 

with the quatemionic i then Y has a unique representation as 

Y=Co + clj, (2.9) 

with co,cleC and further 

iyi*= -iyi=co-cd (2.10) 

Furthermore, in the preceding assertion i can be replaced by 
j (resp. k) andjby k (resp. 0. 

(iii) L 1'Y1' = - Y - 2y*. (2.11 ) 
T= iJ,k 

Proof Statement (i) follows from the fact that 1, i,j, and 
k form a basis in H as a vector space over Rand (ii) and (iii) 
follow as a result of straightforward calculations using 
(2.1)-(2.6). 0 

Let JY be a vector space over F, where F = R, C, or H. 
We define a positive definite Hermitian form on JYby 

( , ):JYxJY -+F, 

(pu,qv) = p(u,v)q*, 

(u + v,w) = (u,w) + (v,w), 

(u,v)* = (v,u), 

(u,u) = 0 only if u = 0, 

(2.12) 

(2.13 ) 

(2.14 ) 

(2.15) 

wherep* = p ifF isreal,p* is the complex conjugateofp ifF 
is complex, and p* is the quaternionic conjugate of p if F is 
quatemionic. 

LetJYI and JY2 be Hilbert spaces over F. We say that a 
map A: JYI-+JY2 is additive if and only iffor all u,veJYl 

A(u + v) =A(u) +A(v). (2.16) 

If, in addition, the map A satisfies 

A (pu) = pA (u), (2.17) 

for allpeF and all ueJYl, then it is called linear. 
If, on the other hand, A satisfies 

A (pu) = p* A (u), (2.18 ) 

for all peF and all ueJY I' then it is called semilinear. It was 
shown in Ref. 10 that semilinear maps according to this par
ticular definition do not exist for the quatemionic case, 
where it is necessary to define three different kinds of semi
linearities called i,j, and k semilinearity thus: an i-semilinear 
map A from JYI to JY2 is an additive map that satisfies 

A(ru) = rAu, AUu) = iAu, 
(2.19) 

A(ju) = -jAu, A(ku) = -kAu, 

for all TER and all UeJYl and j and k semilinearities have 
analogous definitions. It was shown by Coulson 12 that any 
additive map A can be written as a sum of four maps Ao' A I' 
A2, and A3, where Ao is linear and A I' A2, and A3 are, respec
tively, i, j, and k semilinear and that this decomposition is 
unique. In this decompositionAo' A I,A 2, andA3 are given by 

Aou = HAu - iAUu) - jA(ju) - kA(ku)], (2.20a) 
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Alu = HAu - iAUu) + jA(ju) + kA(ku», (2.20b) 

A2u = HAu + iAUu) - jA(ju) + kA(ku)], (2.2Oc) 

A3U = HAu + iA(iu) + jA(ju) - kA(ku)]. (2.20d) 

It was proved by Pian and Sharma 13 that in the complex 
case every additive continuous map from JYI to JY2 is a 
direct sum of a linear and a semilinear continuous map from 
JYI to JY2. (Reference 13 was in the more general context of 
Banach spaces of which Hilbert spaces are particular cases.) 

A map from a Hilbert space JY to itself will be called an 
operator on JY. 

Let A be an additive operator on JY. A norm of A de
noted by IIA II is defined by the formula 

IIA II = sup IIAxll· 
II xII = I 

(2.21) 

Let 51 $ 52 be the direct sum of two normed spaces 
51 and 52' An element of 51 $52 is a pair (X I,X2) with 
XIe.A'1 andx2e.A'2· A norm of (X I ,X2 ) denoted by II (X I ,X2 ) II 
can be defined by the formula 

(2.22) 

LetA be a bounded additive operator on a complex Hil
bert space JY. Then by the theorem of Pian and Sharma 13 A 
belongs to the direct sum ofthe spaces of bounded linear and 
semilinear operators on JY and hence by (2.22) its norm is 
defined by 

(2.23) 

where AI andA2 are, respectively, the linear and semilinear 
components of A. 

Let A be an operator or a matrix. Then A is said to be 
involutivel4 if and only if 

A 2 = l. (2.24) 

Let .sf be an algebra. An involution * on .sf is an involu
tive operator .sf that takes A to A * and satisfies the following 
properties: (i) * is a homomorphism of the additive group in 
the algebra, that is, 

(A +B)* =A * +B* (2.25) 

for all A, Be.sf; (ii) * is product reversing, that is, 

(AB)* = B *A * (2.26) 

and being involutive, of course, means that it satisfies 

A ** =A, (2.27) 

for all Ae.sf. This definition is a generalization of the one 
given by Rudin. 15 Here, unlike Rudin, we do not require * to 
be semilinear but we require it to be additive. 

III. ADDITIVE FUNCTIONALS ON A QUATERNIONIC 
HILBERT SPACE 

A deeper study of additive functionals reveals that they 
have a much richer structure than has been realized in earlier 
studies,7-12 but one has to work with two different kinds of 
multiplication by scalars. For a map f that takes values in 
any vector space over a field F, multiplication by a scalar s (a 
scalar is any member ofF) is normally defined to give a map 
sfwith the property 

(sf)(u) = s(f(u»). (3.1) 
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It was pointed out in Ref. 9 that for vector spaces over the 
quaternionic field scalar multiples of linear maps are not 
linear. However, for the special case offunctionals on such 
vector spaces, it is possible to define an unusual multiplica
tion by scalars in such a way that it turns the set of linear 
functionals into a vector space over the quaternions. 

Definition 3.1: Let Fbe an additive functional on a vec
tor space 'Y over H. Multiplication of Fby SEH on the left is 
defined by 

(soF) (x) = F(x)s* VXE'Y. (3.2) 

It is easy to verify that this definition satisfies all the neces
sary axioms and the collection of additive functionals on a 
vector space is a vector space over H whether we use the 
usual definition of multiplication by scalars or this one, but 
in any vector space only one kind of multiplication by scalars 
is allowed and thus the two definitions lead to two different 
vector spaces though they share the same underlying set. We 
shall retain the bullet whenever we use the new definition to 
emphasize that we are using the alternative definition. We 
shall denote the vector space of bounded additive functionals 
on cW"by .xf (cW") when the usual definition of multiplication 
by scalars is used and by .xfo(cW") when our alternative defi
nition is used. The collection of bounded linear functionals 
with the alternative definition of multiplication by scalars is 
a subspace of .xfo(cW") and will be denoted by 2'o(cW"). 

Given a linear functional F, it is easy to verify that rF 
(r = iJ,k) is r semilinear. The multiplication by scalars de
fined through (3.2) not only turns the collection of bounded 
linear functionals into a subspace but the collection of 
bounded r-semilinear functionals that we denote by 
Y 2' r (cW") for each value of r also becomes a subspace; 
which, as in the linear case, we denote by Y 2' rO(cW"). Mul
tiplication by r on the left in .xf o(cW") is then a linear opera
tor that satisfies 

(3.3 ) 

but one must carefully remember that in this structure 

r(poF) =1= (rp ) of. (3.4 ) 

In the next lemma we summarize some properties of 
.xf 0 (cW") in this context. 

Lemma 3.2: The vector space .xfo(cW") has the decom
position 

(3.5) 

Multiplication on the left by each r (r = iJ,k) in .xfo(cW") is 
a linear automorphism that takes each of the subspaces in 
the decomposition (3.5) to another in the same family. 

Proof: The decomposition follows from (2.20a)
(2.2Od) and the observation that the collection oflinear and 
r-semilinear functionals in this structure are subspaces. Lin
earity of multiplication on the left by r follows by definition 
(3.3). That it is a bijection and therefore an automorphism 
follows from (2.1) and a straightforward calculation using 
definitions (2.17) and (2.19) shows that r maps bijectively 
2'o(cW") and Y 2' rO(cW") into each other and the remaining 
two subspaces into each other. 0 

As was stated in the previous section and proved in Ref. 
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10, in a quaternionic Hilbert space cW", an additive map A 
with the property 

A(px) = p*Ax, VpEH and VxEcW", (3.6) 

does not exist. However, in the special case offunctionals it is 
possible to define an antilinearity by the following definition. 

Definition 3.3: Let Fbe an additive functional on a qua
ternionic Hilbert space cW". Here F is said to be antilinear if 
and only if it satisfies 

F(px) = (F(x»)P*, VpEH and VxEcW". (3.7) 

It is easily verified that a scalar mUltiple (with the usual 
definition) of an antilinear functional is antilinear and the 
collection of bounded antilinear functionals on cW" is a sub
space of .xf (cW"); this subspace will be denoted by Y (cW"). 

We have seen that every additive functional can be de
composed into a sum of a linear and an i-, a j-, and a k
semilinear functional according to Eqs. (2.20a)-(2.2Od). 
For a decomposition of an additive functional in which anti
linearity plays a role corresponding to that played by linear
ity in the decomposition just referred to, it is necessary to 
define three kinds of semiantilinearity. 

Definition 3.4: Let Fbe an additive functional on a qua
ternionic Hilbert space cW". Then Fis said to be i semiantilin
ear if and only if it has the following properties: 

F(ru) = rF(u), FUu) = - F(u)i, F(ju) = F(u)j, 

F(ku) = F(u)k, VrER and VuEcW". (3.8) 

There are analogous definitions ofj and k semiantilinearities. 
We can now state the following lemma. 
Lemma 3.5: Let Fbe an additive functional on a quater

nionic Hilbert space cW". Then F has the following decompo
sition: 

F = Fo + FI + F2 + F3, 

where 

(3.9) 

Fo(u) =HF(u) +FUu)i+F(ju)j+F(ku)k], (3.lOa) 

FI(u) =HF(u) + FUu)i-F(ju)j-F(ku)k], (3.lOb) 

F2(u) =HF(u) -FUuH+F(ju)j-F(ku)k], (3.1Oc) 

F3(u) = HF(u) - FUu)i - F(ju) j + F(ku)k]. (3.lOd) 

In this decomposition Fo is antilinear and FI, F2, and F3 are, 
respectively, i,j, and k semiantilinear. 

Proof: By adding together (3.lOa)-(3.IOd) we get 
(3.9). The rest of the assertion follows by equally straight
forward computation. 0 

We can now observe that under the usual multiplication 
by scalars in .xf (cW") not only the collection of bounded anti
linear functionals denoted by Y(cW") but also the collec
tions of bounded r-semiantilinear functionals, denoted by 
.xf Y r (cW") for each value of r, constitute subspaces. It is 
now possible to define an operator R r , multiplication on the 
right by r in .xf (cW"), by 

(RrF) (x) =F(x)r, VxEcW", (3.11) 

similar to multiplication on the left by r in .xf 0 (cW"). We now 
have a lemma that is merely the dual of Lemma 3.2. 

Lemma 3. 6: The vector space.xf (cW") has the decompo
sition 
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d (jy') = Y (jy') Ell d Y i (jy') Ell d Y j (jy') 

Ell d Y k (jy'). (3.12) 

Multiplication on the right by each 'T ( 'T = iJ,k) in d (jy') is 
a linear automorphism that takes each of the subspaces in 
the decomposition (3.12) to another in the same family. 

Proof The proof is similar to that of Lemma 3.2. 0 
We define next a very obvious conjugation for additive 

functionals. 
Definition 3. 7. Let Fbe an additive functional on a qua

ternionic Hilbert spacejy'. The conjugate ofF denoted by F * 
is defined by the formula 

F*(x) = (F(x»)*, 'dx6:'lr'. (3.13) 

We state next the obvious properties of conjugation of 
functionals as a lemma. 

Lemma 3.8: Conjugation is a norm-preserving linear 
isomorphism between d(jy') and do(jy') in which the 
subspaces Y(jy') and 2'o(jy') correspond to each other 
and so do subspaces d Y T (jy') and Y 2' T o(jy') for 
'T = iJ,k. 

Proof' Let FEd (jy'). Additivity of F * follows from the 
additivity of F and the additivity of conjugation of quater
nionic numbers. Linearity of conjugation follows from its 
evident additivity and the following calculation: 

(sF)*(x) = (sF(x»)* = (F(x»)*s* = F*(x)s* 

= (soF*)(x). (3.14) 

The involutive property of conjugation proves that it is a 
bijection. The norm being preserved follows from the fact 
that conjugation of quaternionic numbers is norm preserv
ing. Next suppose F is linear. Then the calculation 

F*(px) = (F(px»)* = (PF(x»)* = (F(x»)*p* 

=F*(x)p* (3.15 ) 

shows that F* is antilinear. A similar calculation shows the 
correspondence between 'T-semilinear and 'T-semiantilinear 
maps. 0 

Before proceeding further we should point out that in 
Refs. 7 and 8 multiplication by a scalar in a quaternionic 
vector space was defined on the right while operators and 
maps acted from the left. If that convention is used then the 
usual multiplication by a scalar of a linear functional will 
yield a linear functional and thus linear functionals will nat
urally form a subspace of the space of additive functionals. 
On the other hand, one will have to define an unusual multi
plication by scalars to turn the collection of antilinear func
tionals (these will have a somewhat different definition in 
the notations of Ref. 7) into a vector space. The advantage of 
that approach is that linear functionals that many workers 
regard as more important have the usual and more familiar 
multiplication by scalars. The advantage of our approach is 
that it reminds us of the fact that additive functionals are a 
very special case of an additive map between two quater
nionic spaces and only in this special case can linear func
tionals be given a vector space structure by a special con
struct and that the usual multiplication by scalars gives a 
vector space structure to antilinear functionals that have no 
counterparts in the more general case. 
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In Ref. 10 it was proved that for the complex case the 
most general version of the Riesz representation theorem 
establishes an additive norm-preserving isomorphism 
between the space of additive functionals and the direct sum 
of two copies of the Hilbert space. In order to get a similar 
theorem for the quaternionic case we have to introduce some 
more definitions and some more new structure. 

Definition 3.9: An additive functional R on a quater
nionic Hilbert space jy' is said to be a RieszJunctional if and 
only if R has the following decomposition: 

R = RL + R A, (3.16) 

where RL is linear and RA is antilinear. The collection of 
Riesz functionals on jy' will be called a Riesz set and will be 
denoted by ~(jy'). 

It is obvious that the decomposition when it exists is 
unique. We establish the necessary and sufficient condition 
that an additive functional on jy'is a Riesz functional. 

Proposition 3.10: Let F be an additive functional on a 
quaternionic Hilbert space jy'. The necessary and sufficient 
condition that Fis a Riesz functional is that it has the follow
ing property: 

3F(x) = I (F( 'TX)'T - 'TF( 'TX) - 'TF(x)'T), 
T= iJ.k. 

'dx6:'lr'. (3.17 ) 

Proof Necessity: From the definitions of linearity and 
antilinearity it immediately follows that if F is either linear 
or antilinear 

F(x) = F( 'Tx)'T - 'TF( 'Tx) - 'TF(x)'T, 
(3.18 ) 

'd'TdiJ,k} and 'dx6:'lr'. 

Suppose that Fis a Riesz functional. Necessity of (3.17) now 
follows by adding the three equations (3.18) for the linear 
and anti linear components of F. 

Sufficiency: Suppose that the additive functional F satis
fies condition (3.17). Define F/ and Fa by 

4F/(x)=F(x)- I 'TF('Tx) , 'dx6:'lr' (3.19 ) 
T= iJ.k 

and 

4Fa (x) = F(x) + I F( 'TX)'T, 'dx6:'lr'. (3.20) 
r= iJ.k 

Comparison of (3. 19) with (2.20a) and (3.20) with (3.lOa) 
immediately shows that F/ is linear and Fa is anti linear. With 
thehelpof(2.11), (3.19), and (3.20) the condition (3.17) 
takes the form 

F = W* + F/ + Fa· ( 3.21) 

By taking the conjugate of (3.21) we obtain 

F*=W+Fr+F~. (3.22) 

By eliminating F* between (3.21) and (3.22) Fcan be writ-
ten as 

F=FL +FA' 

where 

(3.23 ) 

FL = jF/ + jF~ (3.24) 

being a sum oflinear functionals is linear and, similarly, 
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(3.25 ) 

is antilinear. 0 
Since a sufficient condition always implies the necessary 

conditions and a look at the proof will show that the neces
sary condition could have had a somewhat different formu
lation, we have, in passing, proved the following corollary. 

Corollary 3.11: Let Fbe an additive functional on a qua
temionic Hilbert space that satisfies condition (3.17). Then 
it also satisfies (3.18). 

While the set of bounded members of yt (,w') is a subset 
of ..of (,w') , it is a subspace of neither ..of(,w') nor ..ofo(,w') , 
but its definition (3.16) indicates that it is a vector space, 
namely the direct sum of .Sf' ° (,w') and Y (,w'). From this it 
is easy to deduce the prescription for multiplication by sca
lars in yt (,w') that gives it a vector space structure. 

Lemma 3.12: Let ,w' be a quatemionic Hilbert space 
and let yt(,w') be the Riesz subset of the space ..of(,w') of 
bounded additive functionals on ,w'. The prescription for 
multiplication by a scalar on the left which makes yt (,w') a 
vector space is the following. 

Let REyt (,w'). Then R is first decomposed into the sum 
of its linear and antilinear components thus 

R = RL + R A , (3.26) 

then multiplication of R by a scalar pElHI on the left denoted 
by p* R is given by 

p*R =poRL +pRA • (3.27) 

We shall denote the bounded members of the Riesz set 
with this definition of multiplication by a scalar by yt * (,w') 
and call it the Riesz space of the quatemionic Hilbert space 
,w'. We can now state and prove the generalized version of 
the Riesz representation theorem for a quatemionic Hilbert 
space. 

Proposition 3.13: Let,w' be a quatemionic Hilbert space. 
Then there exists a norm-preserving linear isomorphism 
between the Riesz space yt*(,w') of,w' and,w' 91,w'. 

Proof' We recall that 

yt*(,w') = 2"o(,w') 91Y(,w'). (3.28) 

By repeating each step of the proof of the Riesz representa
tion theorem for bounded semilinear functionals on a com
plex Hilbert space as given in Ref. 10 where none of the 
arguments are altered by the changed circumstances: ,w' is 
now quatemionic and 4> is now antilinear, we prove that a 
norm-preserving linear isomorphism exists between Y (,w') 
and JY'. By Lemma 3.8 conjugation is a norm-preserving 
linear isomorphism between Y(JY') and 2"o(,w') , by tak
ing the composition of this isomorphism with the isomor
phism of the preceding sentence we prove that there exists a 
norm-preserving linear isomorphism between 2"o(JY') and 
,w'. By taking the direct sum of the two isomorphisms we get 
the norm-preserving linear isomorphism between yt*(,w') 
and JY' 91 ,w'. 0 

In the complex case, the isomorphism between ..of (,w') 
and ,w' 91 ,w' was merely additive: one of its components was 
linear and the other semilinear. Here it has been necessary to 
arrange things in such a way that both components are lin
ear. We could have contrived the situation in the complex 
case too in such a way that both components of the Riesz 
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isomorphism were linear: it would have been necessary to 
define multiplication by scalars for linear functionals in the 
complex Hilbert space by (3.2) remembering that all com
plex numbers commute. 

We can now state and prove our final proposition on 
additive functionals. 

Proposition 3.14: Both..of (,w') and ..ofo(,w') are isomor
phic with ,w' 91 JY' 91 JY' 91,w'. Given a bounded additive 
functional F on JY' and a definite choice of i, j, and k in 1HI, 
there exist four unique vectors uo, U j, U2, and U3 in JY'such 
that 

F(x) = (x,uo) + i(x,u j) 

+ j(x,u2 ) + k (x,u3 ), VxEK, (3.29) 

and 

F*(x) = (uo,x) - (uj,x)i - (u 2,x)j - (u3,x)k, 

VxEK. (3.30) 

Proof' The proof immediately follows from Lemma 3.2 
and isomorphisms found in Lemma 3.8 and Proposition 
3.13. 0 

An easy corollary of this proposition is the following. 
Corollary 3.15: Let ,w'be a quatemionic Hilbert space of 

dimension n. Then both ..of(,w') and ..ofo(,w') have dimen-
sion 4n. 

Proof' In view of Proposition 3.14, the proof is ob-
vious. 0 

Before concluding this section, we give a nice character
ization of r semilinearity and r semiantilinearity that is coor
dinate-free in both,w' and 1HI. 

Definition 3.16: Let r be any quatemionic square root of 
- 1, then (a) an additive mapffrom a quatemionic Hilbert 

space,w'1 to another such space JY'2 is said to be r semilinear 
if and only if 

f(ax) = rar*f(x), (3.31) 

for all aElHI and for all X~I' and (b) an additive functional 
F on a quatemionic Hilbert space ,w' is said to be r sem ian ti
linear if and only if 

F(ax) = F(x)ra*r*, (3.32) 

for all aEH and for all x~. 
Note that (a) is valid for any additive map from,w'j to 

JY'2 including a functional (JY'2 = 1HI) and an operator 
(,w' 2 = JY'I ) while (b) is valid only for functionals. It is easy 
to verify that the present definitions are completely equiva
lent to the previous ones. Note also that if r is allowed to be a 
square root of either - 1 or + I, then r semilinearity corre-

sponding to r = f+T = 1 is just linearity. 

IV. THE ALGEBRA OF ADDITIVE OPERATORS ON A 
QUATERNIONIC HILBERT SPACE 

Let ,w' be a quatemionic Hilbert space. The existence 
and elementary properties of the adjoint of a bounded linear 
operator JY' were established by Horwitz and Biedenham.3 

Our main aim in the section is to establish the existence of the 
adjoint of any bounded additive operator on,w' and to prove 
the basic theorem on the algebra of bounded additive opera-

c. S. Sharma and D. F. Almeida 373 



                                                                                                                                    

tors on JY similar to the one that was proved for such opera
tors on a complex Hilbert space in Ref. 16. 

It was shown in Ref. 10 that the existence of the adjoint 
of a linear operator in a quaternionic Hilbert space could 
also be demonstrated by treating the quaternionic Hilbert 
space as a complex space. The same method will be used here 
to establish the existence and fundamental properties of 7'
semilinear operators (7' = iJ,k). It is therefore necessary to 
recapitulate briefly the steps that are taken in treating a qua
ternionic Hilbert space as a complex one and then reverting 
back to the original quaternionic structure. First, we make a 
choice of i, j, and k, and then we choose one of these, say 
(without loss of generality), i. We identify quaternionic 
numbers of the form r 0 + r 1 i with C, now every quaternionic 
number r has the unique representation of the form 

r = C1 + jc2, with CI,C2EC. (4.1) 

Next we treat JY as a complex Hilbert space with vectors u 
andju for each uEJY' regarded as not only linearly indepen
dent but also perpendicular. The relation between u andju is 
no longer that of a multiplication by a scalar on the left:j in 
this representation is not a complex number. However,j does 
have interpretation as an anti unitary operator whose square 
is the negative of the identity operator Ion JY as a complex 
Hilbert space: in this context we denote j by a bold Roman 
letter j to remind us that it is an operator and JY by JYc to 
remind us that we are in a complex space. From the proper
ties described in the preceding sentence we deduce 

j*=-j. (4.2) 

In the representation (4.1) we call C1 the complex part of q 
and for the inner product (u,v) c of two vectors u and vinJYc 
we use the formula 

(u,v)c = complex part of (u,v), (4.3 ) 

where (u,v) is the inner product in the quaternionic Hilbert 
space JY. Linear operators on JY continue to be linear on 
JYc and have the property that they commute with j; i-semi
linear operators on JY are also linear on JYc but they anti
commute with j. There are also appropriate representations 
for j- and k-semilinear operators, but we do not need them. 
Finally we can revert to the original quaternionic structure 
by identifying the operator j with the quaternionic number j, 
regarding u andju linearly dependent for all uEJY' and com
puting the quaternionic inner product (u,v) by the formula 

(u,v) = (u,v) c - j(j u,v) c' (4.4) 

These are all the rules we need; further details and explana
tions are given in Ref. 10. We also recapitulate the basic 
theorem on the algebra of bounded additive operators on a 
complex Hilbert space which was proved in Ref. 16 and 
whose counterpart in quaternionic Hilbert spaces we seek. 

Proposition 4.1: The algebra of bounded additive opera
tors on a complex Hilbert space is the smallest algebra con
taining both linear and semilinear bounded operators and in 
this algebra A~A * is a norm-preserving involution. Fur
thermore, in this algebra it is not generally true that 

(aA)' (f3B) = (af3) (AB). (4.5) 

The bounded linear operators form a subalgebra of this alge
bra and for this subalgebra (4.5) is always valid. 
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Every bounded additive operator on a quaternionic Hil
bert space JY is also an additive operator on JYc that is JY 
regarded as a complex Hilbert space; hence the existence and 
the algebraic properties of the adjoint are obtained merely by 
taking the operators into JY c and then bringing them back to 
JY. It has already been shown by this method 10 and by a 
direct method by Horwitz and Biedenharn 3 that for a bound
ed linear operator A on JYthe adjoint A * exists, is linear, and 
satisfies the familiar equation 

(u,Av) = (A *u,v), Vu,vEJY'. (4.6) 

The most important difference between the complex and the 
quaternionic cases is that we no longer have just one semilin
ear operator but for any choice of i,j, and k three different 
kinds of semilinear operators called 7'-semilinear ( 7' = i, j,k) 
operators. Our next task is to establish a formula corre
sponding to (4.6) for a 7'-semilinear operator, which we do 
in our next proposition. 

Proposition 4.2: Let A be a 7'-semilinear operator 
(7' = i,j, or k) on quaternionic Hilbert space JY. Then the 
adjoint A * of A is a 7'-semilinear operator that satisfies 

(u,Av) = - 7'(A *u,v)7', Vu,vEJY', (4.7) 

and 

IIA*II =IIA II· (4.8) 

Proof: Since A is 7' semi linear, an easy calculation involv
ing the definitions shows that B = 7' A is linear and that Band 
A commute with 7'. By taking everything intoJYc ' that is, JY 
treated as a complex Hilbert space, and using Proposition 
4.1 and then bringing everything back to JY, we know that 
the adjoint of 7' is 7'*, which is the same as its quaternionic 
conjugate and satisfies 

7'* = -7' 

and the adjoint of 7'A is given by 

(7'A)* = (A7') * = - 7'A *, 

(4.9) 

(4.10) 

and is linear and therefore A * is 7' semilinear. We can now 
write 

(u,Av) = (u,7'Av) 7' = - (7'A *u,v)7' = - 7'(A *u,v)7', 

VU,v,EJY'. (4.11 ) 

From (4.11) with the help of (2.8) it follows that 

II (u,Av) II = II(A *u,v)11 Vu,vEJY', (4.12) 

which is all we need to prove (4.8); the steps are exactly the 
same as in the proof of the corresponding result for a linear 
operator on a Hilbert space on any field. 0 

We can now define the adjoint of any additive operator 
A on JY: we write A as a sum oflinear and three 7'-semilinear 
(with 7' = i, j, and k) operators where the various compo
nentsaregiven by (2.20a)-(2.2Od) andA * is then defined to 
be the sum of the adjoints of the four operators in this decom
position. It is clear that taking adjoints preserves the norm of 
each of the four components of an additive operator. We can 
now write down the generalization of Proposition 4.1 to qua
ternionic Hilbert spaces. 

Proposition 4.3: In the algebra of bounded additive oper
ators on a quaternionic Hilbert space the correspondence 
between an operator A and its adjoint A * is an additive invo-
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lution that preserves the norm of each component of the 
decomposition of A as a sum of a linear and three r-semilin
ear operators corresponding to r = iJ,k. Furthermore, in 
this algebra it is not generally true that 

(aA)' ({3R) = (a{3)(AR). (4.13 ) 

Unlike the case of bounded additive operators on a complex 
Hilbert space, bounded linear operators (nor for that matter 
bounded r-semilinear operators for any value of r) on a qua
ternionic Hilbert space do not form a subalgebra of the alge
bra of bounded additive operators on the space. 

v. CONCLUDING REMARKS 

We have presented here an architecture of additive func
tionals and operators on a quaternionic Hilbert space, in 
which a great many nice structures are neatly intertwined; as 
a consequence none of the propositions we have put forward 
have required more than a few lines in proof. We would like 
to warn the reader that though the simplicity is quite gen
uine, while working in this area one false turn leads one into 
a maze where one can go round and round in circles or do 
pages of complicated calculations to prove one of our propo
sitions with a few lines of proof. We would like to confess 
that the earlier versions of some of our proofs were very long 
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and messy. A little reflection at this stage enables one to 
appreciate why the structure of a quaternionic vector space 
is called symplectic lO (from avl':TT).'€KTtKO~ in Greek mean
ing twining or plaiting together). We hope to develop this 
theory further and in the light of the insight gained we pro
pose to study also the applications of quaternions in physics. 
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The system of a one-dimensional harmonic oscillator is discussed with the generalized 
commutation relations obtained by Wigner. The Hamiltonian is shown to have self-adjoint 
extensions. The domain of self-adjointness is explicitly specified in some cases. The proof is 
carried out by the use of the Lax-Milgram lemma. A suitable rigged Hilbert space is found for 
this system to reformulate the earlier arguments. The main difficulty is that the momentum 
and Hamiltonian operators contain the reflection Rt/J(x) = t/J( - x) as well as singular terms. 

I. INTRODUCTION 

The canonical commutation relations are postulated to
gether with equations of motion in non relativistic quantum 
mechanics. About 40 years ago Wignerl investigated the 
problem of whether the commutation relations are uniquely 
determined by the equations of motion. In his matrix-me
chanical treatment of the system of a one-dimensional har
monic oscillator, the answer is in the negative. The ground
state energy Eo is found to be arbitrary but positive, and is 
not necessarily equal to! in suitable units. Yang2 discussed 
the same problem in the wave-mechanical representation. 
His conclusion is that if wave functions of this system satisfy 
some stringent conditions, then Eo is specified by discrete 
values of c, a characteristic parameter of the theory, and 
consequently only discrete values of Eo are allowed. This is 
not the case in the matrix-mechanical representation, and so 
there naturally arises a question about the equivalence of the 
two representations. Ohnuki and Kamefuchi3 were the first 
to settle this question, on the natural assumption that wave 
functions are subject to the probabilistic interpretation. 
They dealt with wave functions in the sense of generalized 
functions and solved the eigenvalue problems of the momen
tum and Hamiltonian operators to find two classes of eigen
functions. Mukunda, Sudarshan, Sharma, and Mehta4 

showed that they are mutually unitarily equivalent, i.e., the 
ground states are related to one another by a unitary trans
formation. 

In this paper we shall discuss self-adjointness of the 
Hamiltonian, and then reformulate the earlier arguments on 
this system by constructing a suitable rigged Hilbert space. 
The dynamics of this system should be given by a unitary 
group whose infinitesimal generator is the Hamiltonian. 
Stone's theorems states that the generator is always self-ad
joint. We thus need to prove self-adjointness of the Hamilto
nian in order to guarantee unitarity of time evolution of the 
system. As mentioned above, generalized functions are used 
by Ohnuki and Kamefuchi to deal with wave functions. 
Also, generalized functions called distributions are used sys
tematically to construct rigged Hilbert spaces,6 and conse
quently quantum mechanics can be beautifully formulated. 
We are now interested in constructing a rigged Hilbert space 
for our system. 

In Sec. II we restrict the domain of the Hamiltonian 
operator to some dense subset of the Hilbert space L 2 (R I), 

and then show that it has self-adjoint extensions. In Sec. III 

the domain of self-adjointness is explicitly specified for 
Icl > 1 using the Lax-Milgram lemma, which is a conse
quence of the Riesz representation theorem and plays an 
essential role in our approach. A rigged Hilbert space is 
found in Sec. IV to reformulate the earlier arguments on this 
system in the wave-mechanical representation. Here the 
space including eigenfunctions of not only the position oper
ator but the momentum operator is presented. 

II. EXISTENCE OF SELF-ADJOINT EXTENSIONS 

Canonical variables x and p of our system are assumed 
to satisfy the following generalized commutation relations 
proposed by Wigner!: 

ip = [x,H] and - ix = [p,H] , (G) 

where the Hamiltonian H is of the classical form (p2 + x2) I 
2. 

We shall begin by showing the existence of self-adjoint 
extensions of the Hamiltonian. To this end it is necessary to 
find out concrete expressions for the relevant dynamical 
variables. Suppose that x is an operator of multiplication by 
x. Then the corresponding expression for p, when x and p 
satisfy (G), is derived by Yang2 as follows: 

. d . c R p= -1-+1- , 
dx x 

where Rt/J(x) = t/J( - x) and c is an arbitrary real constant. 
From this we obtain 

H =..l{ - ~ + .!:. (c - R) + X2} . 
2 dx2 x 2 

The ground-state energy Eo is related to c linearly.3 
Theorem 1: For any c, the Hamiltonian has self-adjoint 

extensions. 
Proof Denote by DC n) the totality of Coo functions 

with compact support in the set n = R 1 - {a}, and restrict 
the domain of the Hamiltonian H to D(n). It is easy to 
verify that H is symmetric on D(n) and commutes with 
complex conjugation. Thus the von Neumann theorem? ap
plies. Q.E.D. 

III. THE DOMAIN OF SELF-ADJOINTNESS 

In this section we describe explicitly the domain of self
adjoint ness of H in the case of Icl > 1. We use here the Lax
Milgram lemma, cited below, as a useful tool. This is a conse
quence of the Riesz representation theorem, and has been 
applied to guarantee existence of solutions of elliptic partial 
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differential equations. We consider it reasonable to use it in 
our problem as a sort of elliptic operator H. Our method 
indeed enables us to find out clearly and easily the domain of 
self-adjointness as a concrete subset of the usual Sobolev 
space H I(R I). 

Let us consider the subset 

V = {I/JEH 1 (R I): xt/J,t/JlxEL 2(R I)} 

of L 2 (R I), and the sesquilinear form 

h(t/J,¢) = ~ ( {Dt/J*D¢ 
2 JR' 

+ ~.!!..- (e-R)¢+xt/J*x¢}dx 
x x 

on the product space V X V, where D and * denote the L 2 

derivative and the complex conjugate, respectively. It is ex
pected that H is represented as h (t/J,¢) = (Ht/J,¢) with the 
L 2 inner product (','). 

First we examine the property of the set V. 
Lemma 2: The set V is a Hilbert space with the inner 

product 

(t/J,¢ >v = (t/J,¢) + (Dt/J,D¢) 

+ (xt/J,x¢) + (e2 -lel)(t/Jlx,¢lx). 
Proof: Clearly V is a linear subspace of L 2 (R I). SO it 

suffices to show the completeness of it under the norm 
l'lv = «·,·)v)1I2. 

Suppose \t/Jm -t/Jn\v~O as m,n ...... oo. Then from the 
completeness of L 2 (R I) and H 1 (R I) we can obtain without 
difficulty that t/J" ~ t/J in H 1 (R I) for some t/JElII (R I). and 
that t/J" ..... ¢, xt/J" ~x¢. and t/Jnlx-+¢Ix in L 2(R I) for some 
¢EL 2(R I), with x¢EL 2(R I) and ¢lxEL 2(R I). But 
H I(R I) is continuously imbedded inL 2(R I) and t/J" ~t/Jin 
L 2 (R I). Thus ¢ coincides with t/J, and hence t/JE V and 
It/Jn - t/Jlv~O. Q.E.D. 

Next we apply the following to the form h ( .•. ). 
The Lax-Milgram Lemma: Let W be a Hilbert space 

with inner product ( ., . ) wand norm \ . \ w, and let s( ., . ) be a 
sesquilinear form on W X W satisfying, for t/J. ¢E W, 

(i) Is(t/J,¢) I<KI\t/J\ w [¢I w. 

(ii) s(t/J,t/J»K21,p1~. 

with positive constants K 1 and K2• Then for each given XE W 
there exists a unique t/JE W such that s( ,p,¢) = (X.¢) w for all 
¢JEW. 

For the proof of this lemma see Ref. 8, for example. 
Lemma 3: For each XE V there exists a unique t/JE V satis

fying 

(ii) e<! and e#O, En =!-e+n, 
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h(,p,¢) +!(,p.¢) = (X.¢)v. foraIl ¢JEV. 
Proof: We have only to apply the Lax-Milgram lemma 

to the sesquilinear form t(·,·) = he-,) + !(',) on V X V 
for V. which has been shown to be a Hilbert space by Lemma 
2. A simple calculation shows 

(i) It(,p,¢)I<e2 (e2 -Iei)-Ilt/Jiv 1¢lv, 

(ii) t( ,p,,p) >!i,plt , 
for ,p, ¢E V. Q.E.D. 

We are now in a position to define H as an operator in 
L 2(R I) associated with h(',) = t(·,) - !(.,). 

The Riesz representation theorem9 implies that for an 
arbitrary IEL 2 (R I) there exists a unique XE V such that 

(X,¢) v = (f,¢), for all ¢EV, 

since (f,') is a bounded linear functional on V. Combining 
this equality with that in Lemma 3, we obtain t/JE V with 

t(,p,¢) = (f,¢), for all ¢EV. 

Clearly Vis dense in L 2 (R I), and hence there is a one-to
one correspondence between ,p and! Thus we can define an 
operator H + ! in L 2 (R I) as follows: 

,p belongs to D(H) and (H + !),p = I 
if and only if (D) 

h ( ,p,¢) +! ( t/J,¢) = (j,¢), for all ¢E V . 

This operator H is the desired operator. Indeed, it is easy 
to verify that D(n) is included in D(H), and 

1 { d
2 

e } H1/J = - - -2 + 2(e - R) + x2 t/J, for t/JED(O) . 
2 dx x 

The self-adjointness of H follows from that of H + !. As is 
well known, the operator associated with the adjoint sesqui
linear form I(I/J,¢) = t(¢,t/J) * is nothing but the adjoint op
eratorlO of H +!. An elementary calculation shows 
I( t/J,¢) = t( I/J,¢), which implies the self-adjointness of H + ! 
and hence of H. 

Thus we have proved our main result of this section, 
which is as follows. 

Theorem 4: If lei> 1, then the Hamiltonian with do
main D( 0) is extended to the self-adjoint operator H, whose 
domain D (H) is specified by (D). 

Our method based on the Lax-Milgram lemma is also 
available for eigenvalue problems. Let us study eigenvalues 
of this self-adjoint operator H. Ohnuki and Kamefuchr~ have 
obtained the two classes of eigenfunctions of the Hamilto
nian of the original form as follows: 
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where L ::. (x) denotes the generalized Laguerre polynomial, 
and K,!: denotes the normalization constant. 

Proposition 5: If Icl;;;'2, then the self-adjoint operator H 
has the eigenvalues En (n = 0,1,2, ... ). 

Proof: As for the class (i), clearly tPn belongs to V. Not
ing that d2tPn/dx2 is continuous and belongs to L 2(R I) for 
I c I;;;. 2, and recalling (D), we have that for all ¢JE V, 

( 1 { d
2 

c 2}) h(tPn,¢J) = 2 - dx2 + x2(c-R) +x tPn,¢J 

= (EntPn,¢J) . 

Thus tPn belongs to D(H), and every En becomes an eigen
value of H. The same reasoning goes for the class 
(ii). Q.E.D. 

IV. A RIGGED HILBERT SPACE FOR THE SYSTEM 

In this section we shall construct a rigged Hilbert space 
for this system to reformulate the earlier arguments in the 
wave-mechanical representation. Roberts' method of con
struction II is quite effective in systems whose potentials are 
multiplication operators, even if they are singular and/or 
discontinuous. His method is not applicable directly to our 
system whose potential is not a multiplication operator but 
contains the reflection operator R. However, his idea is still 
useful essentially for our problem, as is exhibited below. 

Lemma 6: D( fl) is a dense subspace of L 2 (R I) and is 
invariant under the operators x, p, and H. 

The proof is simple and hence may be omitted. 
It is known that D( fl) becomes a linear topological 

space when equipped with the usual inductive limit topol
ogy.12 

Lemma 7: (i) Each ofthe operators x, p, and H is con
tinuous in the topology of D( fl). 

(ii) D(fl) is continuously imbedded in L 2(R I), and is 
nuclear. 

Proof: (i) Let {tPn} be a sequence in D(fl) which tends 
to ° as n -+ 00. Equivalently there exists a compact subset K 
of fl satisfying 

supp tPn CK 

and 

sup ItP~a)(x) 1-+0, as n-+ 00 , 
XEK 

where ¢J(a) = (d /dx)a¢J. As for the operator x we have 

suppxtPn CK 

and 

sup I (xtPn (x»)(a)I-+O, as n-+ 00 , 
XEK 

(S) 

which is evident from (xtPn(x»)(a) =xtP~a)(x) 
+ atP~a - I) (x). Thus xtP n vanishes as n -+ 00, i.e., x is con
tinuous. As for the reflection operator R, it is easy to verify 

suppRtPnCK' 

and 

sup I(Rt,bn)(a)(x)I-+O, as n-+oo, 
xeK' 

with K' = K U ( - K), which implies the continuity of R. 
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Showing similarly the continuity of the operators l/x and d / 
dx, we can prove the continuity of p and H. 

(ii) The topology of D(fl) is finer than that induced by 
L 2 (R I), and therefore the imbedding is continuous. For nu
clearity of spaces see Ref. 13, for example. Q.E.D. 

In view of the above lemmas we see that D(fl) fulfils all 
the requirements imposed on the smallest space of triplets. 

Thus we have obtained our desired result. 
Theorem 8: A rigged Hilbert space, 

D(fl) CL 2(R I) CD *(fl) , 

is constructed for our system, where D * (fl) is the dual of 
D(fl). 

Remark: It is well known that S(R I) 

CL 2(R I) CS*(R I) is constructed in the case of c = 0, 
where S(R I) is the usual Schwartz space. This rigged Hil
bert space indeed corresponds to a harmonic oscillator sys
tem with the canonical commutation relations. 

We shall finally discuss our system based on the above 
framework. Ohnuki and Kamefuchi3 have solved the eigen
value problem of the momentum operator to obtain the two 
classes of eigenfunctions. 

(i) For c> - !, 
tPk (x) = Ikxll/2{Jc _ 112 (Ikxl) + i£(kx)Jc + 112 (l kx l)}/2 . 

(ii) For c <! and c#O, 

tPk (x) = Ikxll/2{J _ c+ 112 (Ikxl) 

- i£(kx)J _ c _ 112 (lkx!>}/2 , 

where Jv denotes the Bessel function, and tPk is the eigen
function corresponding to an eigenvalue k. 

Proposition 9: If k #0, then tPk belongs to D *(fl). 
Proof: As for the class (i), we put 

(tPltPk) = f tP*(X)tPk (x)dx, for every t/JED(fl) . 
JR' 

Evidently this is an antilinear functional on D( fl). So it suf
fices to prove its continuity. Let {tPn} be a sequence that 
vanishes in D(fl), for instance, satisfying (S). Then denot
ing by f.l ( .) the Lebesgue measure, we have 

with 

c = supl kx ll/2{supIJc _ 112 (Ikxl) I 
xeK xeK 

+ suplJc + 112 (Ikxl) 1}f.l(K)/2 , 
xEK 

a constant independent of n, which implies (tPn I tPk) -+ ° as 
n-+ 00. The same reasoning goes for the class (ii). Q.E.D. 

Remark: The set {8s : - 00 <5 < oo} is a complete sys
tern of D *(fl). Here 85, defined by 85 (tP) = tP(5) for every 
t/lED(fl), corresponds to Dirac's delta function 8(x - 5), 
and is, moreover, the eigenfunction corresponding to an 
eigenvalue 5 of the position operator x. 
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It was shown in I [J. Math. Phys. 30, 66 (1989)] that the eigenfunctions for the reduced 
motion of the quantum relativistic bound state with O( 3, 1) symmetric potential have support 
in an 0(2,1) invariant subregion of the full spacelike region. They form irreducible 
representations ofSU( 1,1) [in the double covering of 0(2, 1)] parametrized by the unit 
spacelike vector nil' taken in I as the direction of the z axis (the spectrum is independent of this 
choice), for which this 0(2, I) is the stabilizer. Lorentz transformations move these 
representations on an orbit whose range is the single-sheeted hyperboloid covered by this 
spacelike vector, providing a set of induced representations ofSL(2,C). From linear 
combinations of functions from the irreducible representations of SU ( 1,1), the representations 
of the SU(2) subgroup ofSL(2,C) on the orbit are extracted and the differential equations 
that are the eigenvalue equations for the Casimir operators of SL(2,C) are solved. It is found 
that these SU (2) representations form a basis for the principal series in the canonical 
representations of Gel'fand. There is a natural scalar product, obtained from group integration 
on SL(2,C), for which the canonical basis forms an orthogonal set, and the representation is 
unitary. Since the scalar product [over the 0(2,1) invariant measure space] of SU(1, 1) 
irreducible representations is invariant under the action of the little group, the remaining group 
measure [on the coset space SL(2,C)/SU( 1,1)] is the volume on the hyperboloidal spacelike 
hypersurface df.1n = d 4n 8(n 2 

- 1). The family of Hilbert spaces ()r;,) that carries the 
representations of O( 3, 1) is therefore embedded in a larger Hilbert space ff'with measure 
d 4y df.1I1' where the {y} are the space-time coordinates of the restricted region associated with 
nil' The representations with nonrelativistic limit coinciding with the known Schrodinger 
solutions for corresponding spherically symmetric potential problems are in the double 
covering (half-integer values for the lowest L level) of 0(3,1 ). 

I. INTRODUCTION p = ~ (xt - xl') (XIII - X 21l ) =~(XI - X 2 )2, (1.1) 

In a previous paper I (to be called I), we studied the two
body relativistic quantum-mechanical bound-state problem 
for which the dynamical evolution operator K is the sum of a 
part describing free two-body motion and a part describing 
the interaction, represented by a potential function V( p), of 
the invariant (spacelike) interval between the two events. 
Since the part describing the free two-body motion is the sum 
of two terms quadratic in the four-momenta, the center of 
mass motion can be separated as for the nonrelativistic prob
lem. The remaining part, called Kre" of the evolution opera
tor contains a term describing free relative motion and the 
interaction term. The existence of such a potential function 
implies, classically, a correlation between events along the 
world histories of the two events, determining which point 
along one world line, xt, say, corresponds to a point x 2

1l on 
the second world line. Quantum mechanically, this correla
tion is described by the joint distribution represented by the 
two-body wave function. In nonrelativistic classical and 
quantum theory, the potential V( x I - x2 ) refers to points on 
two particle trajectories at a given time t; in the relativistic 
framework that we shall use,2 correlation is achieved by par
ametrizing the evolution of the system with a universal in
variant "historical time" 7. 

For the case of a Coulomb-type potential proportional 
to 1/ p, where 

it was found in I that when the support of the wave functions 
on the relative coordinates (xt - x{) is restricted to an 
0(2,1) invariant subregion of the full spacelike region, one 
finds a lower mass ground state than for the case in which the 
support is on the full spacelike region. This subregion corre
sponds to the part of the Minkowski space exterior (in a 
spacelike direction) to two hyperplanes tangent to the light 
cone and oriented along an axis which, in this paper, we shall 
specify by a unit spacelike vector nil (in I this direction was 
taken to be the z axis). We shall call this subregion the "re
stricted Minkowski space," or RMS (n,,). In Fig. 1 it is 
represented in a three-dimensional form in which we have 

folded the axes x I ,X2 together to form Xl = ~ X I 2 + x 2 
2

• The 
two hyperplanes then become planes and intersect along the 
nil axis. One can similarly use the projective space of Fig. 2 in 
I by tilting the Z ( = zit) axis to the direction of nil' This is 
the subregion RMS (nil)' The fact that this restricted subre
gion admits a lower mass ground state than the full spacelike 
region constitutes a spontaneous symmetry breaking of the 
o (3,1) in variance of the dynamical equations. 

The restriction of the solutions to RMS corresponds to a 
class of admissible correlations between the events associat
ed with the world histories of the two particles. We have 
assumed that these correlations are characteristic of the 
bound state, and that they are maintained in all excited 
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FIG. I. The restricted Minkowski space RMS(n,,), oriented according to 
an arbitrary spacelike direction n", taken for the support of the eigenvalue 
equation for the two-body bound state in relative coordinates. The spatial 
coordinates x , andx2 are folded intoa single axis in this figure (x,); in 3 + 1 
dimensions the RMS is connected. Coordinates in the system with its third 
spatial axis along the direction of n" are called y". 

bound states as well. The mass spectrum of the bound states 
then coincides with the nonrelativistic Schr6dinger energy 
spectrum, for every corresponding central potential; when 
the binding is small compared to the particle masses, the 
mass spectrum (bounded below) is well approximated by 
the results of the nonrelativistic theory. 

The operator K used in I is explicitly a Lorentz (as well 
as a Poincare) scalar, i.e., its form is independent ofthe ref
erence frame chosen to represent it in coordinate space. The 
bound state eigenfunctions, however, form a set of rep res en
tations of SU ( 1,1) [the double covering of 0 (2,1 ) ]. In this 
paper, we shall study the motion of the measure space and 
the transformations of these functions induced by the action 
of Lorentz transformations to construct irreducible repre
sentations of SL (2, C). 

In I, in addition to the d' Alembertian, we made use of 
the set of differential operators 

( 1.2) 

which formally satisfy the algebra of O( 3, 1) and commute 
with K rel • We shall designate the set of elements of this for
mal algebra as 0 (3,1). The measure space of the 
L 2(R4 k; RMS (nl'»)' which contains the bound-state eigen
functions, is invariant only under an 0(2,1) subalgebra (the 
stabilizer of nl') of 0(3,1). The RMS (nl') is also stable 
under the action of the Casimir operator A = (L 2 - A 2) of 
0(3,1). 

TheoperatorsA,L3, andN 2 =L32 
- Al2 - A/, theCa

simir operator of the representation of the 0(2,1) subalge
bra of 0 (3,1), were diagonalized in I along with K re1 • The 
eigenfunctions constitute irreducible representations of 
SU(1,I). 
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Under the action of physical Lorentz transformations, 
i.e., the mapping of space-time coordinates of events in an 
initial frame F to their space-time coordinates observed in a 
moving frame F ', the RMS(nl') is mapped to an RMS(n~), 
which is, in general, different. The operators of 0 (3,1) do not 
induce changes in n 1" and hence, except for its 0 (2,1 ) subal
gebra, which is the stabilizer of nl" 0 (3,1) cannot represent 
the action of the physical Lorentz group 0 (3,1). We shall 
identify this 0 (2,1 ) subalgebra of 0 (3,1 ) as a representation 
on L2(R4k;RMS(nl'») of the subalgebra of the Lorentz 
group that leaves nl' invariant, and for which the RMS(n~) 
in F' is identical to the RMS(nl') in F. 

The RMS (nl' ) in each frame (or corresponding to each 
nl') is isomorphic to any other, and the eigenfunctions of the 
dynamical evolution operator for the relative motion K re1 

form a complete set for the subspace (of the Hilbert space 
associated with nl' ) belonging to the discrete spectrum. The 
wave function in any Lorentz frame is therefore a linear su
perposition of the solutions obtained in some standard frame 
(or orientation). We shall label this standard frame bye "1') 
= (0,0,0,1). As we shall show, changes in these linear su

perpositions correspond to the action of SU (1,1); this ac
tion, together with the change in orientation of the 
RMS(nl')' provides an induced representation ofSL(2,C) 
with SU ( 1,1) little group. 3 

Since the motion along the orbit does not change the 
value of the SUe 1,1) Casimir operator, or that of the 0(3, 1) 
Casimir [this second-order operator is well defined and Her
mitian in the RMS (n I' ) for any n I' ], the linear combinations 
change their structure only in regard to the degeneracy 
quantum number k of SU ( 1,1), corresponding to the action 
of the SU ( 1,1) little group. The coefficients therefore play 
the role of the Wigner D functions in the induced representa
tion of relativistic particles with spin. 

Along with the infinitesimal operators of 0(2, 1) gener
ating transformations in the yERMS(nl') dependence 
[where the coordinates {y I'} are defined in an accompany
ing framefor the RMS(nl') withY3 along the nl' axis] of the 
eigenfunctions, the generators of the Lorentz group contain 
infinitesimal operators generating transformations in the nl' 
dependence of the coefficients of the linear combinations of 
elements of the SU ( 1,1) representations. Because of the fact 
that the Lorentz group generators contain these two pieces, 
as for induced representations for systems with spin, the sec
ond Casimir c2 = L(n) ·A(n) ofSL(2,C) is not identically 
zero and must be considered along with the first, 
c1 = L(n)2 - A(n)2. The operators L(n)2 and Ll (n) com
mute with these, and we decompose the functions along the 
orbits in terms of eigenfunctions of these operators from 
SU(2) CSL(2,C). This decomposition provides the basis 
for irreducible ladder representations (the "canonical" rep
resentations of Gel'fand) of the Lorentz group. It is carried 
out by constructing and solving the differential eigenvalue 
equations for the Casimir operators C 1 and c2• A consistency 
condition for the solutions relates the possible values of C1,C2 
of these Casimir operators. We find that the basis sets 5Lq 
[L(n)2 ..... L(L + 1), L1(n) ..... q] belong to the principal se
ries of Gel'fand,4 corresponding to Ll pure imaginary, Lo 
integer or half-integer, where C2 = - iLoLl' - C1 
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= 1 - L02 - L i (Lo is the lowest value of L in the ladder). 
The representations that correspond to spectra and 

wave functions with nonrelativistic limit coinciding with 
those of the nonrelativistic Schrooinger equation are those 
with half-integer values for the lowest L level. Although the 
quantum number L corresponds to the Casimir operator of a 
rotation subgroup of the Lorentz group, the partial wave 
expansions in scattering theory5 (for the continuous spec
trum of K rel under the same conditions of correlation), for 
the most symmetric case, depend on t, associated with the 
Casimir of 0 (3,1), and n, associated with the Casimir of 
SU( 1,1), and not onL and q. The quantum numbers t and n 
play the role of orbital angular momentum and magnetic 
quantum number of the nonrelativistic theory, and coincide 
with these quantities in the nonrelativistic limit. 

In the nonrelativistic limit, the 0 (3,1) algebra is de
formed to an 0(3) algebra, and its 0(2,1) subalgebra is 
deformed to an 0(2) sub algebra. In this limit, the induced 
representations of SL(2,C) go over to induced representa
tions ofSU(2) with U(1) little group.6 We shall discuss this 
deformation procedure elsewhere. 

The Gel'fand-type representation that we have obtained 
is unitary under integration over the SL(2,C) group. The 
basis used in its construction is a set of functions from the 
Hilbert spaces J¥'n = L 2n (lR4C RMS(np ») with measure 
d 4y, for all np on npnP = 1. Thescalarproductofthesefunc
tions, for each np , is SU (1,1 ) invariant. What remains of the 
group integration is an integral over the single-sheeted hy
perboloid with measure d 4n 8(n2 - 1) [the coset space 
SL(2,C)/SU(1,1)]. This procedure constitutes an embed
ding of {J¥'n} into J¥', a large Hilbert space on 
R4(y) ® R\n) In' = I, with a natural scalar product. 

In Sec. II we construct the abstract formulation of the 
framework for the induced representation of SL(2,C) by 
defining a standard set offrames associated with every value 
of the spacelike vector np' In Sec. III we discuss and con
struct the Lie algebra for the induced representation as a 
commutator algebra among differential operators, and in 
Sec. IV a specific choice is made for the parametrization of a 
set of standard frames on the orbit in order to explicitly con
struct the generators. In Sec. V the Casimir operators for the 
Lorentz group are constructed as differential operators. It is 
shown there that there is a Pauli-Lubanski operator Wp (n) 

for the SU(1, 1) little group, for which WP(n) Wp (n) is the 
invariant SU (1,1) Casimir operator. In the next section, the 
differential equations requiring L2(n), LI (n), and the Casi
mir operators Cl> c2 to be diagonal are solved. A consistency 
relation, - C1 = 1 - il2 - c/lil2, where C1,C2 are the values 
of C1,C2 and il is associated with the value of the Casimir 
operator for SU (1,1 ), is found. In Sec. VII we show, by 
applying Gel'fand's formulas (which follow from the Lor
entz algebra) on the one hand and our differential operators 
on the other to the resulting basis functions extracted from 
the induced representation, that this set off unctions forms a 
Gel'fand canonical basis that is unitary under integration 
over SL(2,C). The consistency relation corresponds to the 
well-known relations between the Casimir operators and the 
pair of numbers parametrizing the Gel'fand ladder. Finally, 
Sec. VIII contains a summary and conclusions. 
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II. INDUCED REPRESENTATIONS BASED ON THE 
SU(1,1) LITTLE GROUP 

The representations of SU ( 1, 1) discussed in I are de
fined on what we shall call here the RMS(np ), oriented ac
cording to the direction of the (arbitrarily chosen) z axis. If 
we view these states from a moving frame, they will appear to 
be distorted by Lorentz transformations. The transformed 
wave functions, however, have support in the corresponding 
transform of the RMS, which is oriented according to the 
transformed z direction. If we represent the state of the sys
tem in every Lorentz frame by the configuration of the wave 
functions in the corresponding RMS, the action of the Lor
entz group will be represented by its action on these wave 
functions and on the orientation of the RMS. The represen
tations of SU ( 1, 1) that were obtained in I are carried on an 
orbit by the action of the Lorentz group, and SU ( 1,1 ) acts as 
a little group in the construction of representations of 
SL(2,C). 

The representations that we shall obtain belong to the 
principal series of Gel'fand, and are unitary in a Hilbert 
space with scalar product that is defined through integration 
over SL(2,C). This includes an integration over the measure 
space of SU(1,I), carried out in the scalar product of 
L 2(R4~RMS(np»), for each np (corresponding to the arbi
trary orientation of the z axis), and an integration over the 
measure ofthe coset space SL(2,C)/SU( 1,1), the hyperbo
loid defined by nPnp . The structure of this scalar product, 
and of the associated norm, implies the existence of a proba
bility measure on R7, with Lebesgue measure 
d 4y d 4n 8(n2 - 1), whereYpERMS(np )' We shall therefore 
consider the wave functions as functions ofbothyp and np; 
the coordinate description of the quantum state therefore 
corresponds to an ensemble of events lying in a set of 
RMS(np)'s over all possible {np }' 

We shall first study the set of elements {\11 n EJ¥' n} and 
their coordinate representation, 

(2.1 ) 

defined by means of the spectral representation of the space
time coordinate operator in each of the Hilbert spaces J¥' n' 

A coordinate system oriented with its z axis along the direc
tion of n p can be constructed by means of a coordinate trans
formation of Lorentz type, 

YP = L(n)p YXy , 

where 

L(n)p Yn y = np = (0,0,0,1). 

(2.2) 

(2.3 ) 

For example, taking xp parallel to np, i.e., xp = Anp, the 
corresponding y p vector has the form 

YP =L(n)py(Any ) =Anw (2.4) 

The family of Lorentz frames defined by L(n)p y de
pends on its particular form. [According to (2.3), they may 
differ by right multiplication by an element of the 0(2,1) 
stability group of n , and mUltiplication on the left by an 

p . 
element of the 0 (2,1) stability group of n p ]. We shall Specl-
fy this matrix function of np later. 

The variables Yp described by the standard coordinati
zation used in I, 
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yO = p sin 0 sinh /3, y2 = P sin 0 sin rP cosh /3, 
(2.5) 

l = p sin 0 cos rP cosh /3, y3 = cos 0, 

provide a complete characterization of the configuration 
space in the RMS (nl-') that is universal in the sense that it is 
of the same form in every Lorentz frame. It is therefore con
venient to define the functions 

(2.6) 

To study the Lorentz transformation properties of these 
wave functions, we define the unitary (in the larger space) 
mapping U(A): Jr'n -Jr'An such that the state vectors are 
related by 

'l'AAn = U(A)'I'n (2.7) 

and lI'I'AAniIAn = II'I'nlln. In the new Lorentz frame [with 
y =L(An)x], 

r An (X) = An (XI'l'A An) 

= An (xlU(A)'I'n) = r An(L T(An)y) 

=1/1' An (y). (2.8) 

If rPn (X) is a scalar under Lorentz transformation, so that 
(with no additional phase) 

r An (Ax) = rPn (X), (2.9) 

it follows from (2.8) that 

(2.10) 

The wave function rPA An (X) describes a system in a Lorentz 
frame in motion with respect to the frame in which the state 
is described by rPn (x), and for which the support is in the 
RMS( (An) 1-'). The value of this function at X in the new 
frame is determined by its value at A -IX in the original 
frame; moreover, the subensemble associated with nl-' in the 
new frame is determined by the subensemble associated with 
(A - In) I-' in the old frame. We define the description of the 
state of the system in the new frame in terms of the set (over 
{nl-'}) of transformed wave functions 

1/I'n(y)=rPn A(x) =rPA~'n(A-Ix) 

= tPA-' n(D -I (A,n)y), (2.11) 

where we have used the relation (2.2) (the transformed 
function has support oriented with nl-') and defined the 
(pseudo) orthogonal matrix 

D(A,n) = L(n)AL T(A -In). (2.12) 

The transformation D -I (A,n) stabilizes nl-' and hence is in 
the 0(2,1) subgroup of the group of Lorentz transforma
tions 0(3,1) that act on space-time. [As we shall show, the 
wave functions transform in the double covering SU ( 1,1) of 
this 0 (2,1 ) ]. Equation (2.11) defines an induced represen
tation ofSL(2,C). 

III. LIE ALGEBRA OF THE INDUCED REPRESENTATION 

In this section, we shall study the representation of the 
Lorentz group that is provided by wave functions of the form 
1/1' n (y), as defined in (2.11). The transformed wave func
tion reflects, along with an 0 ( 2, 1) transformation of its co-
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ordinate dependence, a motion along the hyperboloidal orbit 
parametrized by nl-'. We shall construct the differential oper
ators that generate these transformations by considering the 
action of the infinitesimal Lorentz transformation 

A"",l +A, 

for which 

tPH '\ (y) = tPn _ An(D -I (1 + A,n)y). 

To first order, the little-group transformation is 

(3.1 ) 

(3.2) 

D -1(1 + A,n) "'" 1 - (dn (A)L(n»)L T(n) - L(n)AL T(n), 
(3.3 ) 

where (the derivative with respect to nl-' is taken holdingyl-' 
fixed) 

dn(A)=Al-'vnv~. (3.4) 
anI-' 

From the orthogonality property L(n)L T(n) = 1, it fol
lows that 

(dn (A)L(n»)L T(n) = - L(n)(dn (A)L T(n»), (3.5) 

and hence (3.3) can be equivalently written 

D- I (1 + A,n)"", 1 +L(n)(dn(A)LT(n) -ALT(n») 

= 1 - Gn (A). (3.6) 

From (3.2), we obtain 

tPl + An (y) "'" tPn (y) - (dn (y) + gn (A) )tPn (y), 

where 

gn (A) = Gn (A)I-' VYv ~. 
ayl-' 

With the help of the identity (3.5), one finds that 

[Gn(A2),Gn(A I )] = Gn([A2,Ad) +dn(A2)Gn(A I ) 

- dn (AI)Gn (A2)· 

Let 

hn (A) = - i(dn (A) + gn (A»). 

It then follows from 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

[gn(A2),gn(A I )] = - [Gn (A2),Gn (AI)]I-'Vyv aa , 
~I-' a (3.11) 

[dn (A 2 ),gn (AI)] = (dn (A2 )Gn (AI)I-' v lYv -

ayl-' 

that [note that it is precisely the motion along the orbit, 
generated by d n' that compensates for the differentiated 
terms in (3.9)], 

[h n (A2 ),hn (AI)] 

= dn ([A2,A.d) + Gn ([A2,A.d)1-' VYv / 
~I-' 

= ihn ([22,A.I])' 

IV. EXPLICIT FORM FOR THE GENERATORS 

(3.12) 

It is our purpose to investigate the representations that 
can be constructed from the set of wave functions {tP n (y)} 
that form the bound states of the 0 (3,1 ) invariant two-body 
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relativistic potential problem. The spectrum of the Casimir 
operators and a complete set of commuting generators from 
the algebra (3.12) provides a characterization of these rep
resentations. In order to construct these operators, we shall 
need an explicit form for the 0(2,1) little-group generators 
Gn (A) that act on the RMS (np) variablesyw 

( c~a 0 0 

T - sin UJ sinh a cos UJ 0 
L (n) =. . 

sin r sin UJ sm r cos UJ smh a cos r 
cos r cos UJ sinh a sin UJ cos r - sin r 

where the matrix indices are assigned to be L T (n) I' v. The 
general spacelike vector that we obtain from (2.3) in this 
way is 

(

no) ( sinh a ) n l - sin w cosh a 
np = nz = sin r cos UJ cosh a . 

n3 cos r cos w cosh a 

(4.2) 

It then follows that (note that cos w;;.O in the range of UJ; it 
will, furthermore, always be clear when n stands for the mag
nitude of the space part of np) 

sinh a = no, cosh a = ~n12 + n/ + n/ ==.n, 

sin w = - nl/n, cos UJ = nZ3/n, 

sin r = nZ/n Z3' cos r = n3/n Z3' 

where 

nZ3 = ~ nz 
2 + n3 2 = cos UJ cosh a, 

and hence 

n 0 0 

nonl nZ3 0 
n n 

L T(n) = nonz _ nlnz ..!!..L 
n nnZ3 nZ3 

nOn3 _ n ln3 -~ 
n nnZ3 nZ3 

no 

n l 

nz 

n3 

(4.3) 

(4.4 ) 

( 4.5) 

We remark that the matrix L (n) has just three param
eters, n l,nZ,n3 (ora,w,r).1t is of the form ofa Lorentz trans
formation, since it leaves np nP invariant, but has only the 
role of providing a "standard" set of coordinate frames cor
responding to every np on the spacelike hyperboloid. The 
L (n), in fact, are a representative set of elements from the 
coset 0(3,1)/0(2,1).7 

The explicit form of the generators G n (A) of the little 
group can now be computed from (3.6). Defining the matri
ces A ap according to 

M ap = .( ,aP) v a -l/l, I' x V -a xI' 
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Let us choose for the construction of L T(n) (which 
takes h to n) the product of a boost along the three-direction 
with parameter a in ( - 00, 00 ), followed by a rotation about 
the two-axis with angle w in ( - rr/2,'TT/2) and then about 
the one-axis with angle r in (0,217) (in the sense of Euler 
"rotations") : 

sinh a 
-s;n,"c~a ) 

sin r cos UJ cosh a ' (4.1 ) 

cos r cos UJ cosh a 

we obtain [since the infinitesimal Lorentz transformations 
preserve the relation nZ - noz = 1, the np in L T(n) may be 
differentiated freely] 

Gn (A3) = nn3 A3, 
n23 

G (A 02) = ~A 02 _ nlnz A 01 _ nOnln3 A3 
(4.7) 

n 2 2 ' nn23 n nZ3 nn23 

G (A 03) = nOn ln2 A _ n ln3 A 01 _ ~A 02 
n 2 3 2 ' nn23 n n23 nn23 

where we have called, e.g., A 12 ==.A3, and omitted the infinite
simal factor multiplying each generator. Note that the gen
erators G n (A) are all expressed as linear combinations of the 
generators A3,A 01,IL 02 belonging to the little group in the 
standard coordinate frame (for which np = hp); these ma
trices act on the y I' that belong to the RMS referred to the Y3 
axis, and this measure space remains invariant under the 
action of the little group. In particular, for np ..... hI" we see 
that the G n (A) for A = A I' Az, and A 03 vanish, and 

Gn (A ol) ..... A 01, Gn (A 02) ..... A 02, Gn (A3) ..... A
3

. (4.8) 

Extracting these infinitesimal actions on the y coordinates as 
differential operators on the wave functions [with the defini
tion (3.8)], these becomeA I , A 2, and L 3• 

Expressing the differential operators d n (A) in terms of 
the parameters a,UJ,r of np , we obtain the following expres
sions for the generators of SL(2,C) on the wave functions 
tPn (y): 

hn(AI)=i~ 
ar 

hn (A 3 ) = i(COS r~ + tan w sin r~) + sin r L3 , aUJ ar cos UJ 
h n (A 3 ) = - i(sin r~ - tan w cos r~) + cos r L 3 , aUJ ar cos UJ 
hn (A 01) = - i(sin w ~ + cos w tanh a ~) aa aUJ 

cos UJ A +--- I' 
cosh a 
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.(. a.. h a 
- 1 - sm y cos U) - + sm U) sm y tan a-

aa aU) 

_ cos ytanh a ~) 
cOSU) ay (4.9) 

cos y A + sin U) sin y A +--- 2 I 
cosh a cosh a 

+ tanh a tan U) cos y L 3 , 

hn (A 03) 

.( a h' a - 1 - cos Y cos (U - + tan a sm U) cos y-
aa aU) 

tanh a sin y a) + -
cos U) ay 

. sin U) cos y 
- tanh a tan U) sm y L3 + A I 

_ sin y A
2

• 

cosh a 

cosh a 

The Pauli-Lubanski-type vector (orthogonal to nJ1-) 

WJ1- (n) = !EJ1-VAunahn (A VA) 

(4.10) 

extracts the little-group operators from the generators of the 
total Lie algebra. In fact, using the expressions (4.7), we 
have 

Wo(n) = - inL3' WI(n) = {n~3 A2 - n~1 L3). 

W2(n) = - i(nln2 A2 + !!1....AI + nOn2 L3)' (4.11) 
nn23 n23 n 

W ( ) _.( n ln3 A n2 A nOn3 L ) 3 n -I --- 2+- 1--- 3' 
nn23 n23 n 

In the standard coordinate system where n --> n, the vector 
WJ1- (n) reduces to 

, . -A2 

( 

L3) 
Wen) = -I ~I' ( 4.12) 

Equation (4.11 ) can be reconstructed with the help of ( 4. 5) 
as 

(4.13) 

This vector property of WJ1- follows from the fact that the 
quantities gn (A J1-V) form a tensor up to an additive term that 
vanishes under the formation of the Pauli-Lubanski vector. 

The square of the operator-valued vector Wn (n) is 

WJ1- (n) WJ1-(n) = WJ1- (n) WI'(n) 

=L32 - A I2_A22=N 2
, 

the Casimir operator for SU ( 1,1 ) 

v. THE CASIMIR OPERATORS OF SL(2,C) 

(4.14 ) 

In the previous section, we obtained an explicit form for 
the differential operators representing the generators of 

385 J. Math. Phys., Vol. 30, No.2, February 1989 

SL(2,C) on the family of Hilbert spaces {dY'n}, i.e., on the 
orbit of the induced representation. We shall represent the 
state of the system along the orbit induced by Lorentz trans
formations (Krel is degenerate on the entire orbit) by a linear 
combination of degenerate bound-state eigenfunctions with 
definite values of K rel , the Casimir operator of the SU (1,1) 
algebra stabilizing nJ1- (also invariant along the orbit), and 
the invariant Casimir of 0 (3,1), with coefficients depending 
on nil-" We shall then obtain the irreducible representations 
of the Lorentz group by using these differential operators to 
construct the differential eigenvalue equations correspond
ing to the action of a complete set of operators, including the 
Casimir operators of SL (2, C), and solve them. These opera
tors act on the nJ1- dependent coefficients of these linear com
binations, as well as (in the sense of the action of the little 
group) the coordinate dependence of the bound-state eigen
functions in the accompanying RMS (nJ1-). 

The Casimir operators are8 

CI = L(n)2 - A(n)2, 

c2=L(n)'A(n), 

where, for i = 1,2,3, 

and 

(5.1 ) 

(5.2) 

(5.3 ) 

the space-space and space-time parts of the antisymmetric 
tensor MJ1-V(n) defined by (4.6) and (4.9). 

We shall diagonalize the Casimir operator for the 
SU(2) subgroup ofSL(2,C), 

3 

L(n)2 = I hn (Ai )2, (5.4 ) 
i= 1 

and, as is convenient with our parametrization for nJ1-' 

(5.5 ) 

along with the Casimir operators (5.1). Adding the squares 
of the operators hI! (Ai)' as indicated in (5.4), one obtains 

a2 a 
L(n)2= ---+tanU)-

aU)2 aU) 

1 { a 2 2'L· a L 2} +-- --+ 1 3smU)-+ 3 , 
cos2 U) aT ay 

and, according to (5.5), 

LI(n)=i~. 
ay 

We now let 

z = sin U) 

and obtain 

1 { a2 
• a L 2} + --2 - --::-:2 + 2/ZL3 - + 3 . 

1-z a r ay 
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Adding the squares of hn (A. Oi), one obtains 

a a 
A(n)2 = - --2 - 2 tanh a - + tanh2 a L(n)2 

aa aa 

1 2 2 2 ---(N - 2L3 ) -L3 
cosh2a 

-2i tanha{A I ~-A2_1_~ 
cosh a aw cos w ay 

+ iA2L3 tan w} , (5.10) 

hence the first Casimir operator ci is 

ci = L(n)2 - A(n)2 

a2 a 
= --2 + 2 tanh a - + ----::--

aa aa cosh2 a 

x{L(n)2 + N 2 _ 2L/} + L/ + 2i tanh a {AI ~ 
cosh a aw 

- A2 _1_ ~ + iA2L 3 tan w} , 
cos w ay 

( 5.11) 

where we have used the commutation relations ofthe little
group algebra, 

[L3.A2] = iAI' [L3.AI] = iA2' (5.12) 

and remark in passing that 

[A I .A2 ] = iL3• 

The second Casimir operator c2 is given by 

c2=L(n)'A(n) 

(5.13) 

= __ I_{iA2 ~ + iAI _1_~ +AIL3 tanw} 
cosh a aw cos w ay 

+iL3{:a + tanh a}. (5.14) 

VI. FUNCTIONS ON THE ORBIT WITH DEFINITE 
VALUES OF C1, cz, L(n)Z, AND L1(n) 

We now tum to the structure of wave functions tPn (y) 
which have definite values ofL(n)2, LI (n) and the SL(2,C) 
Casimir operators. Since p is Lorentz invariant, and 
Y3 = P cos 0 is invariant along the orbit [this coordinate is a 
distance along the n,., direction, which moves with the Lor
entz transformation; alternatively, one sees that a lao does 
not occur in the {hn (A.)}], the only possibility for alteration 
of the structure of the linear combination of bound-state 
wave functions belonging to a particular value of K rel , N 2

, 

and the Casimir of the 0 (3,1) algebra [ with value 
l(l + 1) - ~, as given in Eq. (4.16) of I] is a change in the 
coefficients of the linear combinations over the SU ( 1,1) de
generacy index k of the (3,t/J dependent part [defined in Eq. 
(A2) ofI], 

Xn+k -n(;,t/J) =Bn+ k,n({3)<I>n+k(t/J) 

= (1- ;2) 1/4Bn+ k,n (;)<I>n+dt/J), (6.1) 

where 
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; = tanh{3. 

The parameters p,O,{3,t/J are defined in the parametrization 
(3.1) of! given for the restricted Minkowski space; these are 
applicable, as indicated in (2.5), for any n,.,. 

The Casimir operator of 0 (3,1) (with differential oper
ators now defined in terms of the coordinates Y,., ), defined in 
Eq. (2.10) of I, is a second-order differential operator de
pending only on the Y,., and derivatives with respect to y,.,. It 
is invariant, in particular, under 0(2, 1) transformations ap
plied to the Y,.,. The derivatives that the generators hn (A.) 
contain with respect to n,., holdy,., fixed, and the derivatives 
with respect to y,., are contained only in generators of the 
0(2,1) which stabilizes n,.,. It therefore follows that the 
0(3,1) Casimir, the Casimir operator of its 0(2,1) subalge
braN2 which stabilizes n,." L(n)2, LI (n), CI , and c2 all com
mute and can be diagonalized simultaneously. We shall 
therefore study the functions9 

tPn Q(y) = R, (p )0/(O)S Q(n,.,,{3,t/J) , 

where 

(6.2) 

S Q(n,.,,{3,t/J) = L .@ k Q(a,w,y) X n + k - n({3,t/J) , (6.3) 
k 

the functions .@ k Q are coefficients that we must determine, 
and 

Q = {/,n,L,q,c I,C2}' (6.4) 

where the n in the second place labels the Casimir of the 
stabilizing 0(2,1). We have labeled the eigenvalue of 
L(n)2 .... L(L + 1)by L, and denoted the eigenvalue of 
LI(n) byq. 

We now impose the condition that S Q be an eigenfunc
tion with definite value L(L + 1) ofL(n)2 and qof LI (n). If 
we apply the operator L(n)2 to this function, L3 and L/ in 
the expression (5.9) take on values specified by the factor 
cI>n + k (t/J) of Xn + k - n. Requiring that L(n)2 take the value 
L (L + 1) and using the orthogonality of the functions 
X n + k - n, we obtain the differential equation 

-- (l-r)- +-- --+2iMkZ-{
a ( a) 1 ( a

2 
. a 

az az l-r ar ay 

+ Mk 2)} .@ k Q(a,w,y) = L(L + 1).@ k Q(a,w,y), 

(6.5) 

where we have defined 

Mk = n + k+!. 
Imposing the condition 

LI (n).@ k Q(a,w,y) = i ~.@ k Q(a,w,y) 
ay 

= q.@kQ(a,w,y), 

(6.6) 

(6.7) 

separation of variables occurs in Eq. (6.5), and we obtain a 
solution ofthe form 10 

.@kQ(a,w,y) = EQk (a)P\, _ Mk (z)e - i
qy

, 

where the functions PLa,b (z) satisfyll 
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a 2pL apL 
(1 - r) a,b _ 2z __ a_,b 

ar aZ 

- 1 ~ r[b 2 + a2 - 2abz]pLa,b = - L(L + I)pLa,b' 

(6.9) 

and are given byl2 

L (_1)L-b ib- a 
p (z) - ....:.....-----'--

a,b - 2L(L _ b)! 
(L - b)! (L + a)! 
(L + b)! (L - a)! 

In terms of Jacobi polynomials Pk (a,{3l they are13 

(6.10) 

L 1"'- b 
P b(Z) =--

a 2a 

(L-a)! (L+a)! (1_z)(a-bll2 
(L-b)!(L+b)! 

X(1 +z)(a+bl/2PL_ a(a-b.a+bl(z). (6.11) 

For L,a,b together integer or half-integer, and 
a,b = - L, - L + 1, .. .L, the functions Pab L are finite l4 at 
z = ± 1 and, with the yand r/J dependence, form an irreduci
ble representation with angular momentum L of 
SU(2) CSL(2,C). This implies that the indices of P\ -M. 

must be in the range 

q,Mk = - L, - L + 1, ... , + L, 

and hence, since k>0,15 

(6.12) 

n=n + !<.Mk<.L, (6.13 ) 

or 

(6.14 ) 

We shall now impose the condition that the Casimir 
operators CI , c2 be numerical valued (with values c"c2 ) on 
the functions 

SQ'Lq = I2Q'Lq,k(U)P\_Mk(z)ei'IYXn+k -n(p,r/J), 
k 

( 6.15) 

where we have introduced the variable 

u=tanha (6.16) 

and written the quantum numbers L,q explicitly [leaving Q ' 
to denote the remainder of the set (6.4)]. The differential 
operators (5.11) and (5. 14) corresponding to the Casimir 
operators ci and c2 become, in terms of the variables u,z, 

and 
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CI = (1 - U2)2 a 22 + (1 - u2){L(n)2 + N 2 - 2L/} 
au 

+ L32 + 2iU~{AIJ1=? !... 
az 

_ A2 1 ~ + iA2L3 Z } 

J1=? ay J1=? 
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( 6.17) 

C2 = iL3((1 - u2) ~ + u) + -~{iA2J1=? !... 
au az 

+ iA I 1 a + A IL 3 Z } • (6.18) 
J1=? ay J1=? 

Applying the Casimir operators to the functions occurring 
in Eq. (6.15), with the help of the relations (A8) and (A9) 
ofl and the properties 16 

(J1=? !... - a - zb )PLab 
az J1=? 

= - i~(L - b)(L + b + I)P L
a,b+ I 

and 

(J1=? !... + a - zb )PLab 
az J1=? 

= - i~(L + b)(L - b + 1)PL
a,b_t' 

we obtain, for the condition that c.-+c., 

_Q' 1 2 2 a2 
:-Q' c • .::. Lq,k (u) = ( - u) au2 - Lq,k (u) 

+ {(1- u2 )[L(L + 1) + (n 2 -!) 

- 2Mk 2] + Mk 2}2Q'Lq,k (u) 

+ iu~{ak2Q'Lq,k_. (u) 

(6.19) 

(6.20) 

-ak+t 2 Q'Lq,k+'<U)}. (6,21) 

In (6.21), we have used the fact that N 2 takes on the value 
n2 

- !, and we have defined 

ak =~k(2n+k)~(L-Mk + I)(L+Mk ) 

=~k(2n+k)~L(L+ 1) -Mk(Mk -1). (6.22) 

For the condition that c2 -+ c2, we obtain [with the help of 
(19) and (20)] 

c22
Q

'Lq,k (u) = iMk( (1- u2) :u + u )2
Q

'Lq,k (u) 

+ !~(ak2Q'Lq.k_t (u) 

(6.23) 

Since O<.k<.L - n, Eqs. (6.21) and (6.23) form a finite 
system of coupled equations for each L. These equations can 
be solved by dividing out the factor 

(1 _ u2) -Mkl2+ 112 

and studying the special cases k = 0 for the second-order 
equation and L = n (its lowest bound) for the first-order 
equation to obtain the consistency condition 

- c. = 1 - n2 + c/ln2
• (6.24) 

Since the SU(1,1) Casimir (and hence n) and C"C2 are in
variant under the action of the Lorentz group, this relation 
remains valid for all {k,L,q} that are connected to these spe-
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cial cases by the action of the Lorentz group. The solution to 
the system of equations (6.21) and (6.23) is given by 

EQ'Lq,k = ( - l)k~r(2n + k)/r(2n)r(k + 1)NQ'Lq 

x(1- u2) -nI2+IIZpL -ic,ln,n+du), (6.25) 

where NQ'Lq is a normalization constant. In the next sec
tion, we shall show that it is independent of q, and that its L 
dependence (for L>n) is determined by requiring that the 
S Q'Lq transform as a Gel'fand basis. 

VII. THE GEL'FAND-NAIMARK CANONICAL 
REPRESENTATION 

We have imposed the condition on ifPn (y) that it have 
definite values of L(n)2 (labeled by L) and L! (n) (labeled 
by q), along with I, n, and the Casimir operators c! and cz. 
The action of the Lorentz group changes the values of Land 
q, keeping C,' C2 (and I,n) fixed; this action corresponds to 
the infinitesimal motion of our representation of SU ( 1,1 ) 
along the orbit labeled by C"C2• The resulting representation 
of SL(2,C) is the unitary canonical representation of 
Gel'fand and Naimark.4

,8 

To study the structure of this representation, we shall 
apply the generators of SL (2, C) to the basis vectors 

Q' 5 Lq (n}' ,f3,¢;) 
L-n 

= L 2Q'Lq,k(U)P\,_Mk(z)eiqYXn+k -n(p,¢;). 
k=O 

(7.1 ) 

Since we have diagonalized L, (n) = i alar, we define 

L ± (n) = L 2(n) ± iL3 (n) 

_ 'fiY(" f'12 a - z a + i L) -e Nl-'::-+ - 3' 
az ff=? ar - ff=? 

(7,2) 

We now show that the transformation properties of S Lq 
(we suppress the superscript Q' in the following) as a multi
plet under the Lie algebra of SU(2) CSL(2,C) imply that 
ELq,k does not depend onq. As a representation ofSU(2), we 
require that [it follows directly from (7.1) that 
L, (n)SLq = qSLq] 

L± (n)SLq =~(L +q)(L±q+ 1)SL,H!' (7.3) 

Applying the differential operators (7.2) to the function S Lq 

defined by (7.1), we obtain (evaluating L3 on X n + k - nand 
using the recursion relations for the functions pLq, _ Mk) 

xL 2 Lq,k (U)pLq±" _ Mk (z) 
k 

xe-i(q±')YXn+k -no (7.4) 

Comparing this result with Eq. (7,3), using (7.1) for 
SL,q±" one concludes that ELq,k =EL,k is independent of q. 

We now turn to the action of the noncom pact genera
tors, in particular, A,(n). The action of A 2(n), A 3 (n) can 
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then be obtained by commutation with L3 (n). According to 
Gel'fand, '7 we must have 

AI (n)SLq = CL~L 2 - q2SL_ I,q - ALqSLq 

-CL+I~(L+ 1)2- q2SL + I,q' (7.5) 

where 

CL = (iIL)~ (L 2 - L02)(L 2 _ L/)/4L 2 - 1), 

AL = iLoLIIL(L + 1), (7.6) 

and q = - L, - L + 1, ... , + L, L = Lo,Lo + 1, ... , In gen
eral, unitary representations exist'8 in the cases (i) L, purely 
imaginary, Lo arbitrary integer or half-integer, which form 
the principal series, (ii) Lo = 0 and - 1.;;;:L,<I, which be
long to the complementary series, and (iii) a one-dimension
al representation for Lo = 0, L, = I. The representations we 
shall study here are from case (i), the principal series. 

One can now apply A, (n) to the functions of u,z, r,P,¢; 
appearing in (7.1). For this purpose, we write the operator 
in the form 

AI(n)= -i(Z(1-U2)~+U(1-r)~) 
au az 

+ Ir=?JI=U2 A,. (7.7) 

Using the relations (A8) and (A9) of!, (6.19), and (6.20), 
a recurrence relation given in the Bateman series 19 for Jacobi 
functions converted to one for the functions pL ab (x) by Eq. 
(6.11) [the application of the differential operator produces 
combinations of the functions P \b over values of a,b, but 
with L fixed; according to the relation (7.5) of Gel'fand, 
L-L ± I], 

pL-lab(X) = L(2L+ 1) XPLab(X) 
~(L 2 _ b 2 )(L Z _ aZ) 

ab(2L + 1) pLab (x) 
(L+ 1)~(L2_b2)(L2_aZ) 

L~(L+ 1)2-a2)(L+ 1)2_b 2) 

(L+ 1)~(L2_a2)(L2_b2) 

XpL+ 'ab(X), 

and a relation given by Vilenkin,20 

~(L+ 1)2-a2pL+lab(x) 

= ~(L + 1)2 - b 2xpLab (x) 

(7,8) 

+ (i12)~{~(L - b)(L - b + 1)pLa,b+ I (x) 

+ ~(L + b)(L + b + l)pLa,b_I}, (7.9) 

the result agrees with the form (7.5) if 
Q' N L+ I,q 

Q' N Lq 

_ __ (L 1)2 c/ ( L - n + 1 ) 
CL+I + + n2 (2L+l)(L+l) ' 

AL = czlL(L + 1), (7.10) 

and 
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CL = (iIL)~(L2-n2)(L2+c/I;,2)/(4L2-1). 
(7.11) 

Comparing these results with Eqs. (7.6), we see that 

C2 = - iLoL" Lo = n, L, = + ic2/;', (7.12) 

and that the relations for the values of the Casimir operators, 
given by Naimark,21 which are the first of (7.12) and 

- CI = 1 - L02 - L12, (7.13) 

are, with (6.22), clearly satisfied. The wave functions given 
by (7.1) therefore form a canonical basis for L;;;.n. Sincec2 is 
Hermitian in the large Hilbert space 2, which we shall dis
cuss below, and since Lo is real, L, must be pure imaginary. 
We therefore, as remarked above, are dealing with the prin
cipal series (the restriction Lo;;;'~ corresponds to n;;;'O). 

The action of the operators 

A ± (n) = A 2 (n) ± iA 3 (n) (7.14) 

on the basis tLq is determined by (7.5), the commutators 

[L± (n),AI(n)] = +A± (n), (7.15) 

and the relations (7.3), to be of the form given by Gel'fand. 17 
With Eq. (7.11), the ratio of normalization coefficients 

for L values differing by one, Eq. (7.9), can be used to relate 
NQ'L to the coefficient for the lowest element of the ladder, 
i.e., for which L = n: 
NQ'L = (-I)L-;'~(2L+ 1)/(2n+ 1)(L-n)INQ';,' 

(7.16 ) 

Under the action of the Lorentz group, vectors defined 
on the space spanned by the basis {t Lq} have a natural scalar 
product with respect to integration over the group 
SL(2,C) .4 This scalar product results in an embedding of the 
Hilbert spaces 2n in a larger Hilbert space 2. In what 
follows we shall construct this embedding. 

Since, in this case, the Casimir operator c2 has contin
uous spectrum, the basis elements for each value of C2 are not 
normalizable with respect to the norm associated with this 
scalar product; they are distributions, as for wave functions 
of sharp momentum. Denoting these functions by t C'Lq (n), 

to make the C2 dependence explicit, let us define 

(7.17) 

where aLq (c2 ) and bLq (c2 ) are square-integrable functions 
of C2 with measure dC2' The functions ten), 1j(n) are ele
ments of 2n. We now embed 2n in the Hilbert space 2 
with the scalar product 

(7.18) 

where (t(n),1j(n»n is the scalar product defined in2n' and 
the linear operator Tg (n) is defined by the irreducible action 
of g on each component t C'Lq (n) of the Gel'fand basis [for 
which the infinitesimal action is given by Eqs. (4.9), (5.2), 
and (5.3)]. In what follows we shall omit the factors 
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R Q'/(p) and en/(O) from the functions that form a com
plete basis for representing the component of the quantum
mechanical state in 2 n , as well as corresponding integra
tions on p,O, since these variables are invariant under 
SL(2,C). 

The transformation Tg ( n) acts both on n fl and on the 
space-time coordinates y through the SU ( 1,1) little group as 
indicated in the relation (2.12), 

Tg(n)t(n,y) =t(A-'gn,D-'(Ag,n)y), (7.19) 

and since d 4y-and hence cosh fJ dfJ d<fJ-is invariant under 
SU ( 1,1 ), the scalar product in 2 n is given by 

f coshfJ d{3 d<fJ(Tg (n)t(n,y»)*(Tg (n)1j(n,y») 

= f cosh{3dfJd<fJt(A-lgn,Y)*1j(A-lgn,y). (7.20) 

Since nfl is stabilized by the part of A that belongs to 
SU (1,1), the integral over this part of the group acts trivial
ly; hence the scalar products defined by Eq. (7.18) contain a 
common factor of the volume of this SU ( 1, 1). We shall 
therefore omit this (unbounded) part of the integration; 
what remains is only an integration over the hyperboloid 
defined by n2 = 1 with measure 

d 4n b(n2 
- 1) 

= n2 d Inl cos (U dw dY(1/2Inl>£5(lnl - ~ 1 + no
2 )dn()t 

and, carrying out the d Inl integration, we obtain the invar
iant measure 

dp. = ~cosh2 a cos (U dy da, (7.21) 

where Inl = cosh a. 
We remark that the integration over nfl [which is linked 

to the coordinate transformations defined by L (n )] corre
sponds to an integration over the coset space of SL(2,C)1 
SU ( 1,1 ); the integration in the scalar product in 2 n' as we 
have seen above, has the effect of integration over the 
SU ( 1,1) subgroup. In this way, the integration over the en
tire group is taken into account. 

In Eq. (7.20), we can change variables according to 
n ..... Agn to obtain 

(t,1j) = f dp.(t(n),1j(n»). (7.22) 

The norm squared is 

(7.23) 

and may be given the following quantum-mechanical inter
pretation. The norm in 2 n' II t ( n ) 11 2, corresponds to the 
probability per unit volume, with measure dp. on the hyper
surface n2 = I, that the system is in a state for which the 
support is in the RMS(nfl ). The density ItPn (y) 12 corre
sponds to the probability per unit volume in R7, with mea
sure d 4y dp., that an event may be found at the space-time 
point y [ with coordinates measured in the system associated 
with the RMS (nfl ) ], conditioned by the orientation, accord
ing to nfl' of its restricted domain in space-time. The com-
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plete description of the state of the system is then represented 
in the large space jf', with elements S = U(n)}, over all 
unit spacelike vectors nf" 

Since the set of functions we have chosen to span the 
spaces jf'n form a representation ofSL(2,C), the action of 
the Lorentz group results in a natural embedding of the 
transformed vector, an element of jf'n" for n -+ n' under the 
transformation, back into the space jf'n' As we have seen, 
the action of the infinitesimal operators of the Lorentz group 
on the basis elements of jf' n induce linear combinations over 
L,q, according to the formulas of Gel'fand; the result re
mains an element of jf' n' 

Denoting the operators L(n), A(n) collectively by 
M f'V ( n ), we define the operators 

Mf'V = {Mf'V(n)} 

on jf' according to 

Mf'Vs= {Mf'V(n)s(n)}. 

The group element geSL(2,C) has the action defined by 
(7.19) in taking jf' n -+ jf' A -',.n' This action is represented on 
the Gel'fand basis as a linear combination of elements in 
jf'n; we may therefore define the representation 1'g of g on 
jf' according to 

1'gS = {Tg(n)s(n)}, (7.24) 

where 

(7.25) 

The scalar product (1], 1's ) is therefore well defined, and is of 
the form of a direct integral over nf' on the measure d",. 

The operators M f'V are clearly symmetric with respect 
to the scalar product (7.22). We shall now show that they 
are self-adjoint by showing that the operators 1'g are unitary. 
Using the general form of the vectors 1],s given by (7.17), 
and the definition (7.24), one finds 

A A 

(Tg1],Tgs) 

= 2: Id",IdC2dCi'b!q(C2)aL'q,(ci) 
Lq,L'q' 

X (rc'g (n)sC'Lq (n),T\ (n)s C2L 'q' (n»). (7.26) 

The scalar product in the right-hand side of (7.26) involves 
representations for the values C2 and ci ofthe second Casimir 
operator. However, as we shall show explicitly below, ele
ments of Gel'fand representations with different values of C2 

are orthogonal. It then follows from the fact that Gel'fand's 
representation is unitary for each nf' and C2 that the repre
sentations 1'g are unitary as well. The operators M f'V are 
therefore self-adjoint. 

We shall now show that 

(SC'Lq,SC2L ,q') = I d"'(SC'Lq (n),s\'q' (n») = ° 
(7.27) 

for c2 #ci, L #L', q#q'. As evident from (7.1), the scalar 
product (7.27) vanishes for q#q'. What remains is the inte
gral 
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min(L~') -n 'WI d d k.. .. U Z EQ'(c,)· (u)2'Q(Ci) , (u) 
k=O (l_U2)2 L.k L,k 

L L' xP q.-Mk(Z)P q,_M",(Z). (7.28) 

The Z integration, corresponding to the integral on the angle 
OJ, vanishes for L #L ' since22 

fl L L' 2 
dzP ab(z)P ab(z) =---~LL" 

-I 2L+1 
(7.29) 

We now investigate the remaining integral 

(SC'Lq'S\q) 

21r L-nI =-2: 
2L+1k=O 

With the help of Eq. (6.23), one obtains 

(c _C,)L~nI2'Q(C') (u)*2'Q(ci) (u) du 
2 2 k.. L.k L.k ( 1 2) 2 

k=O - U 

L-n 

=2: 
k=O 

EQ(C,) L.du)*2'Q(C2) L.du) I:: 1_ I • 

(7.31) 

It follows from Eq. (6.9) that, in the neighborhood of 
u= ± 1, 

p L . .. (u)-(1- u2)(n+k+ic,/n)12 ( - Ic,/n).n + k , (7.32) 

and hence 

aQ(c,) L.k (u) _ (1 _ u2) (k + 1 + ic,/n)12. (7.33) 

The boundary terms therefore vanish for k> 1. For k = 0, 
these limits have the form 

lim exp{ - i(c2 - ci )/n)ln(1 - u2 )}, (7.34 ) 
u~ ± I 

which is zero as a distribution on spaces of smooth functions 
of C2 - ci. Hence, in the sense of distributions, 

(c2 - ci )(SC'Lq,SC2
Lq ) = 0, 

from which it follows that 

(SC'Lq,SC2Lq ) = ~(C2 - ci), 

(7.35 ) 

(7.36) 

where we have chosen the normalization coefficient arbitrar
ily as unity. 

VIII. SUMMARY AND CONCLUSIONS 

We have shown that the set of eigenfunctions, on the 
RMS based on a standard (arbitrary) inertial coordinate 
frame, for the discrete spectrum of the dynamical evolution 
operator Krel for relative motion for the two-body relativistic 
bound state, forms the basis for a class ofinduced representa
tions from which the principal series of Gel'fand's unitary 
canonical representations can be constructed. The coordi
nates y f' ofthe standard RMS are transported along the orbit 
generated by the action of the Lorentz group by defining 
Yf'=Lf'V(n)xv, where the matrix Lf'V(n) takes nv-+nv 
= (0,0,0,1); the variables Y undergo an action of the 
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SU(l,1) [which acts on the y's as 0(2,1)] little group, 
which leaves the RMS invariant. Wave functions in Kn 
with support in this RMS(nIL ) are represented on the com
plete set of irreducible representations of SU ( 1,1) that span 
this space. In each subspace characterized by a given value of 
the SU( 1,1) Casimir operator, the action ofthe little group, 
induced by Lorentz transformations, transforms the coeffi
cients to a new set in the new frame. 

A fibration of this representation was then constructed 
by extracting irreducible representations of the SU (2) sub
group of SL(2,C) as the solutions of differential equations 
(in nIL as well as YIL ) on the orbit. The resulting eigenfunc
tions ofL(n)z and LI(n) then form the basis for the con
struction ofirreducible representations of Gel'fand's canoni
cal type for SL(2,C). 

The solutions of the differential equations for the Casi
mir operators cI = L(n)z - A(n)z and Cz = L(n)' A(n) 
impose a condition between C I and CZ, i.e., that 

- CI = 1 - nZ + c/lnz, (8.1) 

where n is related to the (invariant) value of the Casimir 
operator of SU ( 1,1 ). Comparing the action of the differen
tial operators representing infinitesimal transformations of 
the Lorentz group, on this basis, with the formulas of 
Ge1'fand, one finds for the coefficients 

CL = (iIL)~(L2-Lo2)(L2-L/)/(4L2-1), 
AL = iLoLIIL(L + 1) (8.2) 

that 

Lo = n, LI = iCzln. (8.3) 

The SL{2,C) Casimirs are related to these parameters by 

- CI = 1 - L02 - L12, C2 = iLoLI' (8.4) 

For square integrability of the irreducible representa
tions ofSU (I, 1) that are eigenfunctions of K rel in the RMS, 
both the label I of the Casimir operator of the algebra of 
differential operators 0 (3,1) defined on the RMS and the 
label n of the Casimir operator of its associated SU ( 1,1 ) 
must be integer or half-integer together. If our solutions are 
to be put into correspondence in the nonre1ativistic limit 
with the solutions of the nonrelativistic Schrodinger equa
tion, for which I and n go over continuously to the orbital 
angular momentum and magnetic quantum number, they 
must be integer valued. It is clear from the structure of the 
induced representations that we found for SL(2,C), e.g., 
from the relation 

(8.5) 

where k is the degeneracy index of SU ( 1,1 ), that in this case 
L, and hence Lo, must be half-integer. Our representations 
are therefore in the double covering of O{ 3, 1), i.e., they are 
representations of SL (2, C). 

It is usual to think of O( 3) C 0(3, 1) as a rotation sub
group associated with a nonrelativistic interpretation. This 
interpretation, in the case of a relativistic particle, is consis
tent with spin, where the little group for inducing represen
tations of the Poincare group is 0 (3), and its representations 
[in fact, for SU(2)] are defined in the "restframe," or p = 0 
state, of the particle. Since the Galilean group is not a sub-
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group of the Poincare group, however, it is not necessary 
thatthe 0(3) subgroup ofO(3,l) which we have used have 
a direct Galilean interpretation; it is a relativistic 0 (3), asso
ciated with relative motion for which there is no rest frame. 
The representations of its double covering, expressed in a 
non unitary finite-dimensional form, may serve as a compos
ite model for spin23 as an intrinsic property of a particle 
associated with the center of mass. The nonrelativistic limit 
of our result arrives at the nonrelativistic 0(3) in a com
pletely different way. The algebra of differential operators 
o (3,1) goes over to the algebra of 0 (3) (sin u, the relative 
time and relative energy go to zero in this limit), and the 
0(2,1) subgroup becomes 0(2) (corresponding to the gen
erator L 3; both pieces n>O and n<;Q must be taken into ac
count). It is remarkable that the quantum numbers I,n de
scribe the states of a relativistic system in a way closely 
analogous to their application to nonrelativistic systems and, 
in this sense, satisfy a correspondence principle. 

We finally wish to comment on the structure of our rep
resentation of SL (2, C) on a Hilbert space :Jr' that is a direct 
sum of Hilbert spaces associated with each point of the 
space1ike hyperboloid for which nIL nIL = 1. The operators of 
the Lorentz group map each of the spaces:Jr' n into itself, and 
therefore the matrix elements of these operators are of direct 
integral form as well. The wave function t/l" (y) corresponds 
to the amplitude for a probability per unit volume in R7

, with 
measure d 4y df..L, that an event may be found at the space
time point y IL [with coordinates measured in the system as
sociated with the RMS(n

IL
)], conditioned by the orienta

tion, according to nIL' of its restricted domain in space-time. 
The complete description of the state of the system is then 
represented in the large space:Jr', with elements if; = {t/l"}, 
over all unit spacelike vectors nIL' 
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f4This condition replaces the requirements of square integrability, since we 

do not consider these functions as elements of a Hilbert space as yet. We 
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shall carry out such an embedding in a later section. 
fSWe remark that for the solutions with n + k<O corresponding to 

Xn"' n', M, ~ - M, in Eq. (6.7). 
"See Ref. 6, p. 143. 
"See Ref. 4, p. 194; see Ref. 8, p. 104. 
"See Ref. 4, p. 206. 
f"Higher Transcendental Functions, Vol. 2, Bateman Manuscript Project, 

California Institute of Technology, edited by A. Erdelyi (McGraw-Hill, 
New York, 1953). 

~oSee Ref. 6, p. 158. 
~fSee Ref. 8, p. 144. 
2>See Ref. 6, p. 168. 
11R. Arshansky, Ph.D. thesis, Tel Aviv University, 1987, p. 160. 
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As is well known, the binomial theorem is a classical mathematical relation that can be 
straightforwardly proved by induction or through a Taylor expansion, albeit it remains valid as 
long as [A,B] = O. In order to generalize such an important equation to cases where [A,B] #0, 
an algebraic approach based on Cauchy's integral theorem in conjunction with the Baker
Campbell-Hausdorff series is presented that allows a partial extension of the binomial theorem 
when the commutator [A,B] = c, where c is a constant. Some useful applications of the new 
proposed generalized binomial formula, such as energy eigenvalues and matrix elements of 
power, exponential, Gaussian, and arbitrary lex) functions in the one-dimensional harmonic 
oscillator representation are given. The results here obtained prove to be consistent in 
comparison to other analytical methods. 

I. INTRODUCTION 

A common task in quantum mechanical problems is the 
calculation of expectation values and transition amplitudes 
that typically relate to physical information experimentally 
obtained. The numerical or analytical evaluation of such 
quantities is directly connected to the computation of matrix 
elements of potential functions in some suitable representa
tion. 

In a second quantization formalism, ladder operators 
enter as the new variables through which one expresses ma
trix elements of the form {mlf(x} In), where/ex} is an arbi
trary function of x given in terms of two or more operators 
that in general do not commute. The expansion of/ex) in 
powers of x leads consequently to expressions of nonstan
dard form for the matrix elements. Indeed, while boson sys
terns are based on the commutation rule [A,B] = 1, thealge
braic structure of fermion systems is built up on the 
anticommutation prescription [A,B] + = 1. Commutator 
expansions are essential in different branches of physics; 
within time-dependent phenomena in quantum mechanics 
the evolution operator has been the subject of classical stud
ies dating back to the early papers by Dyson I and Feynman,2 

who derived expressions for the chronological ordering op
erator. Magnus3 was able to deduce an infinite series in terms 
of multiple commutators by iterating an integral equation. 
Such a series has been later utilized and refined to derive an 
exponential form of time-displacement operators.4 The cele
brated Baker-Campbell-Hausdorff (BCH) series,5 origin
ally given by an iterative procedure of noncommuting quan
tities, laid the theoretical grounds for addressing a 
continuous version of the BCH formula that yields a general 
algorithm to construct the evolution operator.6 

Recently, Morales et aC-12 have undertaken the prob
lem of evaluating one- and two-center integrals by resorting 
to different approaches: the second quantization formalism 
along with Cauchy's integral formula for a complex variable 
and the BCH exoansion series in commutators,7.8 the hyper-

aJ Also at the UniveI'liidad Autonoma Metropolitana, CBI-Fisica, Azcapot
zalco, Mexico. 

virial theorem combined with second quantization,9.10 and 
parameter differentiation. II In the present work, with the 
purpose of going beyond the binomial theorem, we present a 
similar approach to the one given in Refs. 7 and 8 that prop
erly accounts for the noncommuting nature of the involved 
operators, which specifically transform according to 

[A,B] = c = const , ( 1 ) 

where c in general is complex. In Sec. II a detailed derivation 
of the generalized binomial theorem is provided and some 
connections with earlier investigations are pointed out. It is 
shown how the pertinent expression brings about interesting 
analytical results that relate to orthogonal polynomials. Sec
tion III discusses some applications specialized to matrix 
elements that involve exponential, Gaussian, and more gen
eral functions framed within the one-dimensional harmonic 
oscillator (HO) representation. A few general remarks and 
conclusions are left for Sec. IV. 

II. GENERALIZED BINOMIAL FORMULA 

The binomial theorem has become a widely used math
ematical expression that holds provided that the involved 
quantities commute. The theorem asserts that 

(2) 

which can be readily generalized to the so-called multino
mial theorem 13 

(a l + a2 + a3 + ... + am)n 

n! - L a7'a~2a;3 .. 'a:;, 
- n In In ""n , 

{n,} I' 2' 3' m' 

m 

L nj.=n, 
i= 1 

(3) 

where in either case it is assumed that all variables a j com
mute to one another, i.e., [aj, aj ] = 0 (i,j = 1,2, ... ,m). The 
above formulas can easily be proved by induction or by 
means of a Taylor expansion under the assumption, in both 
cases, that a commutative algebra is being considered. 

In an attempt to transcend the scope of the binomial 
theorem to more general cases dealing with non-Abelian al-
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gebra elements, we address here a formulation that considers 
a pair of operators following the commutation rule given by 
Eq. (1). Such a condition leads to 

[A, [A,Bll = [B, [B,A II = 0 . 

By using Cauchy's integral formula 

(A+B)N= N! A:~e(A+B)t, 
21Ti J t N + I 

(4) 

(5) 

which assumes a contour enclosing the origin once, in con
junction with the relation 14 

~+B = ~eBe- (112)[A,B] , 

one can obtain 

(6) 

(A + B)N = N! A: ~ ~teBte- (l/2)c' 
2 

• (7) 
21Ti J t N+ I 

It is important to notice that by virtue of condition (1), 
formula (6) is rendered as a particular case of the BCH 
series of multiple commutators,6 

~IIB = exp{A + B + HA,B] + -b( [A, [A,B]] 

+ [B,[B,A ]]) + ... }, (8) 

where A and B are elements of an associative but noncom
mutative algebra, and where 

exp(A#B) = exp(A)exp(B) . 

Relation (7) can be reduced by making a Taylor expan
sion of the exponentials, a change of variable, and use of the 
following identity for the Hermite polynomial of zero argu
ment: 

Hn(O) =~A:~e-;. 
21Ti J sn+ I 

(9) 

Thus 

(A + B)N = ~ ~ - -
N N-a NlA aB{3 ( C)P 

- £..£.. '" ' a=O {3=0 a:/3!p. 2 
(10) 

where p = (N - a - /3)/2. In a similar way, by choosing 
the antinormal product, one gets the dual relationship 

(A B)N=±NiaN!BaA{3(~)p. (11) 
± a =0 (3=0 a!/3!p! 2 

The above two forms arise as a natural consequence of 
the commutation rule and give rise to a normal and antinor
mal ordered product in each case. 

A more tractable expression is obtained by slight manip
ulation ofEq. (10), 

(A +B)N 

N NlA aB{3 N- 2 N!a2A aB N- 2-a 
=I +I----

a=O a!(N - a)! a=O a!(N - 2 - a)! 

N-2k N!a2kA aB N- 2k -a N 
+ ... + I +"'+B 

a=O a!(N - 2k - a)!k! 

= ['I,2] N! (_~)\4+.8)N-2k, 
k=O k!(N - 2k)! 2 

a = Ne12, (12) 

where 
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[N 12] = {N 12, N even, 
(N - 1)/2, N odd. 

The notation A,.8 is introduced to distinguish the "ordi
nary" binomial formula, (A + .8) N - 2\ provided we keep 
track of the product An Bm 

• We notice en passant that only 
the first term contributes when e vanishes and therefore the 
binomial original expression is recovered: 

(A + B)N = (A + .8)N. (13) 

As a straightforward application, it is worthwhile to 
note how Eq. (12) may prompt a direct identification with 
the Hermite polynomials 15 given in the form 

[nl2] ( I)S, 
Hn(x)=I - n'(2x)n-2s, 

s=o (n - 2s)!s! 
(14) 

which is readily obtained by using the corresponding gener
ating function. 

On the other hand, one can also realize that there exists 
a connection between binomial expressions containing non
commuting variables and orthogonal polynomials. Indeed, 
if we take advantage of the property [lx, - d Idx] = 2 it is 
immediately inferred that the binomial (lx - d Idx) acting 
on a given function actually gives rise to an algebraic expres
sion in powers of x. Quite simply one can obtain 

(2X- :xr1 
= [ [~] n!( - l)k (d )k] 

£.. -:------:-- (2x) n - 2k - dx 1 
k=O k!(n - 2k)! 

= Hn (x) (15) 

by direct application of Eq. (12). It should be noted that 
proof of the preceding formula would otherwise require the 
usual inductive method. 

Although this merely represents one sole example, it 
suggests an alternative procedure for generating known al
gebraic functions in terms of condensed binomial expres
sions in the manner just shown. This could serve as a math
ematical device to provide new analytical results. 

III. APPLICATIONS 

A. Power operators 

In the HO representation, the coordinate operator x is 
expressed in terms of the creation (at) and annihilation (a) 

operators 

x = (1i12IlW ) 1/2(a + at) , (16) 

fulfilling the condition 

[a,at ] = I, (17) 

with properties 

at In) = rn+rln + 1), aln) = jiiln - 1) . (18) 

Accordingly, the associated matrix elements can straightfor
wardly be evaluated in terms of our formulation yielding 
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X .. (m-aln-p). (19) ( 
m'n' )112 

(m - a)!(n - P)! 

We notice that the overlap integral (m - alb - P) conveys 
the orthogonality condition 

(m-aln-P)=om_a,n_P' (20) 

thereby implying P = n - m + a, and thus reducing the 
double summation to 

1 X , 
a!(m - a)!(n - a)!(k - n - m)/2 + a)! 

(21) 

where [m,n] denotes the smaller of m and n and natural 
units, fz = fl = W = 1, have been assumed. The use of the 
identities 

(t-s)!= (_I)St!/( -t) .. (t+s)!= (t+ 1) s t! 
(22) 

allows us to obtain the final compact expression 

(mlxk In) = ~ --k'(2n+m)1I2 1 
2k mIn! (k - m - n)/2)! 

X F - m - n' + l' -( 
k-n-m 1) 
'2 '2 ' 

(23) 

which gives rise to many other equivalent formulas owing to 
the properties of the hypergeometric function F(a,b;c;z). In 
particular, the latter expression corresponds to Eq. (6) in 
Ref. 7 and also coincides with Eq. (20) in Wilcox's paper16 
upon appropriate identification of units and indices. The 
above formula can also provide an explicit way to evaluate 
anharmonic corrections to the HO within perturbation theo
ry at any order of anharmonicity. For example, let us consid
er the Hamiltonian 

(24) 

B. General f(x) operators 

where p = - i(fzp,wI2) (a - at) is the momentum opera
tor. Assume that A is small enough (<(Iiw) that first-order 
perturbation theory can be safely applied, treating AX4 as a 
perturbation of the HO Hamiltonian. The perturbed energy 
levels are then 

En = (n + !)fzw + An , 

where 

(25) 

(26) 

We thus have a particular case of Eq. (21) that, when ap
plied to the above expectation value, yields 17 

An = A(fzI2flW)2(3 + 6n + 6n2), n>2. (27) 

In addition, Eq. (23) also relates to a general algebraic 
relationship for calculating multipole moments18 in the HO 
representation. In particular, the transition moments 
(mlx2k In) are given as 

A2k (2k)!(2n+ m)1I2 1 
(mix In) = 12k m!n! (2k _ n - m)/2)! 

( 
2k-n-m 1) 

XF -m,-n; 2 + 1;2 ' 

(28) 

where the diagonal elements can be identified with the so
called even moments discussed in Ref. 18, 

( I A2k I) 1 (2k)! m x m = --- -----'----'--
22k - m m!(k-m)! 

XF ( - m, - m; k - m + 1; ~). (29) 

The use of the linear transformation 

F(a,b;c;z) = 1 F(a,c _ b;c; _z_) (30) 
(1-z)Q z-1 

enables us to obtain 

( I A2k I ) _ 1 (2k)! [~I (k + m - a)! 
mx m ---- £.. 

22k k! a=O a!(m-a)!(k-a)! 
(31) 

which coincides with the formula recently derived by Na
mias 19 by solving a finite difference equation generated by a 
recursive relation of the multipole moments. 

In order to discuss matrix elements that entail arbitrary [(x) functions, we consider a Taylor expansion and the result for 
(mlxk In). Thus 

00 [m,(k+m-nl/21 [(kl(O) ( fz )kl2 k!2a~m!n! 
(ml[(x) In> = L L -

k=O a=O k! 2flW 2(k+m- n l/2(k+m-n)/2-a)!(m-a)!(n-m+a)!a! 
(32) 

Replacement of the index k + m - n - 2a by 2r, which follows from the condition of having integer factorial arguments, 
readily leads t020 

( 
m'n' )112 00 m [(2r+n-m+ 2al(0) 

(mlf(x) In) = -' -' , 
r- m r~oa~o 22r + a(m-a)!(n-m+a)!a!r! 

(33) 

where, as before, we have used natural units. 
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c. Exponential operators 

The preceding formula allows us to find the corresponding matrix elements automatically once the function is differenti
ated and evaluated at zero. So, for I(x) = exp( - (Jx), we obtain 

(
m')-I( {J)n-m ({J2) ({J2) (mlexp( - (Jx) In) = -;t - Ii L;:'- m - T exp 4 ' n-,m, (34) 

which has previously been derived by employing the hypervirial theorem and the parameter differentiation technique. II 
D. Gaussian integrals 

In this case, for a Gaussian-type operator, the Nth derivative 

aN e - pX' I = ( - (J) N 12 N!, N = 2r + 2a + n - m , 
axN >:=0 (N /2)! 

(35) 

in Eq. (33), enables us to obtain 

A (m!n!)112"" m (_{J)(2r+2a+n-m)12(2r+2a+n_m)! 
(mlexp( -(Jx2

) In) = -- L L ----'--~-----'-~----'---..:.----
2n- m r=O a=O (2r + n - m + 2a)/2)!22r+a(m - a)!(n - m + a)!na! 

(36) 

Thus it immediately follows that n - m must be an even 
number, which gives rise to a well known selection rule for 
the transition matrix elements involving Gaussian functions. 

After slight manipulation, Eq. (36) becomes 

(mlexp( - (Jx2
) In) 

m 2(n-m+2a)/2 
= (m!n!) 1/2 L 

a=O a!(m - a)!(n - m + a)! 

"" ( - (J)S(2s)! 
X L 2 ' s=(n-m+2a)12 2 Ss!(s-(n-m+2a)/2)! 

(37) 

which has also been derived earlier by means of an entirely 
different formulation. II After identification of the infinite 
sum, one gets 

(mlexp( - (Jx2
) In) 

= ( mIn! )112 i: [_ {J ] (n - m + 2a)/2 

I + {J a = a 2 (1 + (J) 

(n - m + 2a)! 
X----------~--------~---------

(m - a)!a!(n - m + a)!(n - m)/2 + a)! 
(38) 

This equation can already be seen to match Eq. (27) in 
Wilcox's paperl6 and the corresponding formulas of Sack21 

and of Chan and Stelman22 when translated into their nota
tion. In addition, Eq. (38) can be further simplified through 
the properties of the hypergeometric function. In fact, by 
using the identityl6 

(2l + 2s)! = (2t)!22s(t +!)s (t + l)s , 

one is led to 
(mlexp( - (Jx2

) In) 
1 (n! )-I( {J)(n-m)/2 

= (n - m)/2)! -;;;! - 2 
X (_l_)(n -m + 1)/2 

1+{J 

( 
n-m+1 2{J) 

XF - m, 2 ; n - m + 1; 1 + (J . 
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(39) 

(40) 

It is interesting to note that due to the particular relationship 
existing between the arguments band c the hypergeometric 
function can admit quadratic transformations. In particular, 
if we make use of the transformation 

F(a,b;2b;z) 

= (1 _~) - a F(!!...- ~ + !!...-. b + ~. r ) 
2 2' 2 2' 2' (2 - Z)2 ' 

one readily gets 

(mlexp( - (Jx2
) In) 

= (n _ ~)/2i ;!! r I( _ ~yn- m)/2 

x(_I_)(n+m+ 1)/2 

1+{J 

X F( _ m ~ _ m. n - m + l' (J 2) 
2' 2 2' 2 ' , 

which, after using the identity 

( _ m) = ( _ l)a ~ m!! , 
2 a 2a (m - 2a)!! 

explicitly becomes 

(mlexp( - (Jx2
) In) 

= ( _ !!...)(n - m)/2( mIn! )112 
2 (1 + (J) n + m + I 

[m12] ({J )2a 1 

X a~o 2 a!(m - 2a)!(n - m)/2 + al! 

(41) 

(42) 

(43) 

(44) 

An obvious advantage of the above relation with respect to 
its equivalent, Eq. (38), is that it only needs half the number 
of terms in the evaluation of the corresponding matrix ele
ments, which constitutes an important improvement in con
nection with computational calculations. Moreover, the ap
proach addressed here should be appreciated when 
compared to the Fourier transform method proposed by 
Wilcox; our formula simply requires identification of the 
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Nth derivative of the corresponding function evaluated at 
x = O. We therefore avoid additional complications that 
very often arise in integration-technique-based methods. 

IV. CONCLUDING REMARKS 

An algebraic formulation has been presented that re
sorts to Cauchy's integral theorem combined with the BCH 
series expansion for noncommuting variables, specialized to 
the case [A,B] = c = const, which allows us to derive an 
expression viewed as a partial generalization of the binomial 
theorem. Straightforward applications of the new formula 
were carried out to evaluate algebraically matrix elements of 
power and more general functions in the one-dimensional 
harmonic oscillator representation. The consistency of the 
results thus obtained is put forward in light of the various 
expressions that have been derived in the literature through 
different techniques as well as the advantages underlying our 
formulation when compared to those methods. The present 
algebraic procedure can additionally be extended to the cal
culation of two-center HO integrals. The treatment of more 
general cases can gradually be incorporated into our math
ematical framework, which would allow the appropriate 
handling of operators that obey more complex commutation 
rules. 
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Using the algebraic second quantization formalism, the general recurrence relations for some 
two-center harmonic oscillator integrals are obtained. The various known special cases for one
center integrals are evident in the formalism. Generating functions for these integrals are 
obtained and most of them are solved to find explicit expressions for polynomial, exponential, 
and Gaussian operator integrals. For these cases, all the generating integrals needed for 
utilizing the recurrence relations are also calculated in their simplest forms. 

I. INTRODUCTION 

Since the linear harmonic oscillator problem is a classi
cal problem in quantum mechanics, everything seems to be 
known about it. In fact, the energy levels and the corre
sponding wave functions are explicitly known and therefore, 
in principle, we can calculate the matrix elements of any 
function of x though the calculations may not be straightfor
ward generally. For example, even to verify the orthonorma
lity properties of the wave functions involves a lot of calcula
tions. In order to evaluate a large number of integrals, the 
use of explicit expressions usually becomes cumbersome. 
The knowledge of recurrence relations for such matrix ele
ments has thus an advantage of its own. 

Recently Morales et al. \-3 have used various methods to 
derive recurrence relations for the two-center harmonic inte
grals G (m I f( a E' 01 ) In) E' (The notation will be explained 
in the next section.) In particular, in Ref. 1, they have uti
lized some hypervirial theorems to obtain these recurrence 
relations. They have also obtained recurrence relations for 
the cases where 

f(aE, al) = 1, x\ e- Px, e-PX' 

and evaluated some generating integrals that are needed to 
utilize the recurrence relations. In this paper, we use purely 
algebraic methods to obtain the general recurrence relations 
and their special cases. We believe that our derivations are 
simple and straightforward and can be followed compara
tively more easily. We have also calculated all the generating 
integrals that are needed for the special cases discussed in the 
paper. In addition, we have obtained generating functions 
for the matrix elements 

G (mlxk In) E' G (mle -PXln) E' G (mle -PX'ln) E' 

and using these generating functions, evaluated explicitly 
the matrix elements mentioned before. The special known 
cases of one-center harmonic-oscillator integrals where the 
two oscillators have the same masses and frequencies are 
evident in our results. 

II. NOTATIONS 

We follow closely the notation used in Ref. 1 in order to 
facilitate easy comparison. 

Let us consider two harmonic oscillators with masses 

fi-E and fi-G and the corresponding frequencies (J)E and (J)G' 
Here G and E refer to the ground (G () and excited () E) 

states. The corresponding creation and annihilation opera
tors are given by 01 and aE for operations on) E and by aG 

and at for operations on G (. Their operations on these ket 
and bra states are given in the well-known relations 

aEln)E=[nln-l)E' 

o1ln)E =rn+1ln + 1)E' 

(mlaG = ~m + I G(m + 11, 
(mlat = JrnG(m - 11· 

(la) 

(lb) 

(2a) 

(2b) 

We assume that the two oscillators are displaced by a 
length I with respect to each other, i.e., 

(3) 

wherexG (xE ) is the average position of the oscillator repre
sented by G(E). 

The operators aE, a1. aG, at are given in terms of x, I, 
andpby 

(4) 

Thus 

x = X E = (aElj2)(aE + 01) 

= (aE /3 /,fi)(aG + at - ,fir). (5) 

and 

(1 + /3 2)aG = ,[2/32r + (1 - /3 2)at + 2/3aE• (6a) 

(1 + /3 2)01 = - ,[2/3r - (1- /32)aE + 2/3at. (6b) 

where we have defined the quantities 

aE = ~"i/fi-E(J)E' /3 = ~fi-E(J)E/fi-G(J)G' r = ~fi-G(J)G/fz/. 
(7) 

Note that 

x + 1= (aG/,fi) (aG + at) (8) 
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as expected, where 

aG = ~fzlJ.lG(J)G' (9) 

In the sequel, we shall also use another quantity 7J defined by 

7J = 1 + /3 2 + 2ai (J2p, (10) 

where the parameter p appears in the matrix elements 

G(mle-PXln)E and G(mle-px'ln)E' 

Note also that we have not added a caret on the operators x, 
p, aE, at, aG, a~ as in Ref. 1. The text makes the situation 
clear. 

Since 

(11) 

using expansions of IE = l(aE,at) in powers of aE,at for 
any functionlE , we have 

(12a) 

and 

(12b) 

We shall often be concerned with the symmetry (called 
S in the sequel) 

E++G, m++n, /3++1//3, 

r++ - /3r, aE++aE /3 = aG, 1++ -I. 

III. DERIVATION OF THE GENERAL RECURRENCE 
RELATIONS FOR o(ml 'Eln)E 

Note that we have defined 

IE =/(aE,at)· 

We have 

G(mIIEln)E = (1/rn)G(mIIEatln -1)E 
using (la). But 

IEat = at IE - [at'/E] 

= -1-2 [ - -f2/3r - (1 - /3 2)aE + 2/3a~ ]IE 
1+/3 

alE +-
aaE 

[using Eqs. (6b) and (12b)] 

(13) 

(14) 

= 1:/32 [ - ,fi/3r + 2/3a~] IE - ~ ~ :: [aE'/E] 

1 -/32 alE 
- ---IEaE +--

1+/32 aaE 

1 [ Pi 2/3 t ] 1-/3
2

1" = 2 --v2/3r+ aG ----2JEaE 
1+/3 1+/3 

alE 1 -/3 2 alE +-----
aaE 1 + /3 2 aat 

[using Eq. (12b)]. 
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Now we can obtain the recurrence relation using Eqs. 
(1) and (2) to arrive at 

(
2)112 /3r G(mIIEln)E = - - --2 G(miIEln -1)E 
n 1+/3 

(
n - 1)112 1 _fJ2 

- -- ---2 G(mIIEln-2)E 
n 1 +fJ 

(
m)I/2 2/3 + - --2 G(m -lllEln -1)E 
n 1 +/3 

+ _1 (m I alE In - 1) 
rn G aaE E 

1 1 - fJ 2 ( I alE I ) 
- rn1+/3 2G m aa1 n-1 E' 

for m>O, n> 1. (15) 

Similarly starting from 

G(mIIEln)E = (11/iii) G(m - 1IadEln)E, 

we use Eq. (6a) to write 

aG IE = [1/( 1 + fJ2)] [ -f2/3 2r + (1 - /3 2) a~ + 2fJaE ]IE' 

wherein 

from Eq. (12a). 
These manipulations finally result in 

+ - --G(m-11IEln-1)E ( 
n )112 2/3 
m 1 + /3 2 

+----- m-1 -- n 1 2/3 ( I ajG I ) 
/iii 1 + fJ2 G aa1 E' 

for m> 1, n>O. (16) 

The above equations (15) and (16) are the right-hand 
and the left-hand general recurrence relations given in Eqs. 
(2.12) and (2.24) in Ref. 1. Note that our procedure is sim
ple and straightforward. This remark can be appreciated if 
one examines the manipulations and the use of virial type 
theorems in Morales et al. I 

The recurrence relations given in Eqs. (15) and (16) 
above are useful in increasing the values of nand m, respec
tively. Except for the terms involving the derivatives 
alElaaE, alElaat of IE , the two recursion relations go into 
one another under the symmetry S defined in Eq. (13) and 
complex conjugation provided lis a Hermitian operator. 

In the sequel, we shall be concerned with the special 
cases where 

IE =/(aE,at) =IE(x) 

and then 
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alE alE a E diE 
=--=--

aaE a4 .J2 dx 

using Eq. (5). The recurrence relations (15) and (16) thus 
become 

(
2)112 /3y 

G(mIIEln)E = - - --2 G(miIEln -1)E 
n 1+/3 

(
n - 1)112 1 -/3 2 

- -- ---2 G(miIEln - 2)E 
n 1 +/3 

(
m)1I2 2/3 + - -- G(m - lllEln - I)E 
n 1+/3 2 

(2)112 /32 (ldlEI ) + - a E ---2 m - n - 1 , 
n 1+/3G dx E 

( 15') 

(
2)112 /3 2y 

G(mIIEln)E = - --2 G(m - l1IEln)E 
m 1+/3 

(
m-l)1I21-/3 2 

+ -- --2 G(m- 21IEln)E 
m 1+/3 

( 
n )112 2/3 + - -- G(m - lllEln -1)E 
m 1 + /3 2 

( 2)112 /3 ( I diE I ) + - a E ---2 m - 1 - n .' 
m 1+/3G dx E 

( 16') 

These recurrence relations do go over into one another 
under the symmetry S and complex conjugation. 

IV. RECURRENCE RELATIONS AND THEIR SOLUTIONS 
FOR THE EXPONENTIAL MATRIX ELEMENTS 

Taking 

I" ( ) _ - px diE _ - px JE X -e ,-- -pe , 
dx 

thus Eqs. 05) and (16) take the form 

G (mle - PXl n ) E 

_ (2)1I2/3(y+aE /3P) ( I -pxl 1) 
--- G me n- E 

n 1 + /3 2 

(
n - 1)112 1 - /3 2 

- -- ---G(mle- PXln-2)E 
n 1 + /3 2 

+ - -- G(m -lle - px ln -1)E (
m)1I2 2/3 
n 1 + /3 2 

(7) 

for m>O, n> 1, 

and 

G(mle-PXln) E 

= (~)112 /3(/3y - a E p) G (m _ lie - PXjn) E 

m 1 + /3 2 

(
m - 1 )112 1-/3 2 

+ -- --2 G(m - 2Ie- PX ln)E 
m 1+/3 

( 
n )112 2/3 + - --2G(m - lle- px ln - I)E 
m 1+/3 

for m> 1, n>O. 

(18) 

(19) 

As remarked earlier, these recursion relations go over 
into one another under the symmetry S. 

To obtain the generating function for the matrix ele
ments G(mle-PXln)E we define 

Em.n (p) = G(mle-PXln) E/~m!n! (20) 

and the generating function 
00 

E(p; y,z) = I Em.n (p )ymzn. (21) 
m,n=O 

Replacing m by (m + 1), n by n + 2, in Eq. (18) and 

multiplying by ~n + 2/~(m + l)!(n + 1 )!, we obtain 

(n+2)Em + l ,n+2(P) 

= _ f2/3(y+a E/3p) E ( ) 
"II£- 1 +/32 m+l,n+1 P 

1-/3 2 2/3 
- 1 +/3 2 Em+ I.n (p) + 1 +/32 Em.n+ I (p). (22) 

We multiply the terms in the above equation by ymzn and 
sum over m and n from 0 to 00 to obtain the differential 
equation 

aE a; (p;y,z) 

= _ [.J2/3(y+aE /3p) 
1 + /3 2 

1-/3 2 2/3] + 1 +/32 Z - 1 +/32 Y E(p;y,z), (23) 

wherein the "boundary terms" cancel out when we compare 
coefficients of various powers of y or z and use the recurrence 
relation ( 18) for special values of m and n. 

The above differential equation can be solved immedi
ately to give 

[ 
- 0-/32)zZ+4/3YZ- 2.J2/3(y+aE/3p)z] 

E(p;y,z) = E(p;Y,O)exp 2 • 
20 +/3 ) 

(24) 

To obtain E(p;y,O) we use the left-hand recurrence rela
tion [Eq. (19)] which is validlor n=O and note that 

00 

E(p;y,O) = I Em.o (p )ym 
m=O 

to obtain the differential equation 
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I 
~E(' 0) = [.J2/3(/3y-aEP) 1-/3

2 
]E(' 0) 

ay p;y, 1 + /3 2 + 1 + /3 2 Y p;y, 

(25) 

with the solution 
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E(p;y,O) 

[
(1 - {J2)r + 2.J2f3(f3y - aEP)Y] 

= E(p;O,O)exp 2 ' 
2(1 + f3 ) 

(26) 

wherein 

(27) 

is the generator matrix element to be calculated. We call it 
E(p) and to calculate it, we differentiate E(p) with respect 
to the parameter p to write 

dEep) = _ G(Ole-PXxIO)E = _ a E G(Ole-PXIOE' 
dp {2 

(28) 

since aEIO)E = 0, atIO)E = 10E' and x = (aE/{2)(aE 
+ at). But the recurrence relation (18) for m = 0, n = 1 

implies 

G(Ole- PX ll)E = -{2 f3(y+a E f3p) G(Ole-PXIO)E' 
1 + f32 

(29) 

Thus 

dEep) a E f3 
--;jp = 1 + f32 (y + a E f3p)E(p) , (30) 

which gives the solution 

E(p;y,z) = .f G(mle-PXln)E ymz" 
m,n=O ~m!n! 

=(~)1/2 
1 +p 2 

(31) 

Finally we require the overlap integral G (010) E' This is the 
only one we have to evaluate using integration (nonalge
braic) techniques. Indeed, from the ground-state normalized 
wave function for the linear harmonic oscillator, 

./. ( ) _ ( 2) 1/4 - (1/2) (rlai,) 
'I'E x - 1TaE e , 

./. ( ) _ ( 2) 1/4 - (1/2) [(x + 1)'la~l 
'I'G X - 1TaG e , 

we find 

(32) 

(33) 

X exp ----- dx f'" ( 1 x
2 

1 (x + 1)2) 
-'" 2 ai 2 a~ 

= (~)1/2ex (_ ~ f3 2r ) 
1 +f3 2 P 2 1 +p2 (34) 

on using the definitions in Eqs. (7) and (9). Note that when 
we consider the single harmonic-oscillator integrals G = E, 
P = 1 and y = 0 and G (010) E = 1 as expected. Also this ex
plicit answer has the symmetry S. We shall require the above 
expression for G (010) E in the next section also. 

Combining Eqs. (24), (26), (31), and (34), we finally 
arrive at 

[
(1- f32)(y2 -r) + 4Pyz + 2{2P{(Py - aEP)y - (y + a E Pp)z} + p2(aip2 - r) + 2aE pyp] 

Xexp --------------------------~---=~--~--~~----~---=--~~--~~~ 
2(1 +p 2 ) • 

(35) 
Except for the factor exp(aE pyp/l + P2), the above generating function remains invariant under the transformation 

P++lIP, 

Y++- yp, 

y++z (this corresponds to m++n in S), 

aE++YG = a E p. 

Under this transformation 

exp(aE PYP )--+exp( _ a E P3yp ) = exp(aE pyp -IP) 
l+p 2 l+p 2 l+p 2 

as expected since e - px --+ e - p(x + I) = e - px X e - Ip. In fact, had we used a symmetrical operator 

e - (l/2)p(XE + XG) = e - p(x + (1/2)1), 

we would have obtained a completely symmetrical expression for the generating function. 

Finally we expand E(p; y,z) in powers ofy andz and pick up the coefficient ofymz"/~m!n! to obtain G (mle-PXln) E' This 
results in 

( I -pxl ) _ ( , ,~)1/2 [p
2
(aip2 - r) + 2aEPYp ] 

G men E - m.n. 1 + p2 exp 2(1 + p 2) 

(1 - P2)y, + y,(py _ a EP)m-2Y , - y,(y + aEPp)n -2y, - y, 
X----------------------------------------

YI!Y2!y3!(m - 2YI - Y3)! (n - 2Y2 - Y3)! 
(36) 
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As mentioned earlier, this expression has also the required symmetry S except for the factor exp [ a EPyp/1 + P 2] . Again both 
YI and Y2 summations could be replaced by a Laguerre polynomial for each, but the actual expressions in each case depend 
upon whether m - Y3,n - Y3 are even or odd. Thus our answer will not be very elegant and not any more useful then Eq. (36) 
above. In place of this, we replace the r3 summation by a Laguerre polynomial using the definition4 

L:;'(x) = ± r(n +a+ 1) (_x)m 
m~O m!(n - m)!r(m + a + 1) 

= ± r(n+a+ 1) (_x)n-m 
m~O m!(n - m)!r(n - m + a + 1) 

given in Eq. (8.970( 1»), p. 1037 in Ref. 5. Thus we arrive at 

( I -pxl ) = ( , ,~)1/2 [p2(a~p2 - r) + 2aEPrp] 
G men E m.n. 1 +p 2 exp 2(1 +p2) 

The range of summations in Eq. (36) is not indicated. In 
general, it is dictated by the non-negativity of the arguments 
of the factorials present and will be omitted whenever this 
rule applies. In Eq. (37), 0<rl<[nI2], 0<r2<[m/2], 
which ensures that the argument of (n - 2r2)! is non-nega
tive and the lower index m - 2r I of the Laguerre polynomial 
is a non-negative integer which is required for it to be a poly
nomial. In such a situation also, the range of summation 
variables will be omitted. 

For the single harmonic oscillator, the equations corre
sponding to Eqs. (35)-(37) can be obtained by taking 
P = 1, r = 0 writing a for a E and omitting the SUbscripts G 
and E from the states in the matrix elements. Thus we have 

~ (mle-PXln) ymzn 
E(p;y,z) = £.. 

m.n~O ~m!n! 

=exp [yz- (al{2)p(y+z) + !a2p2]. (35') 

Again 

(mle-PXln) 

( 
ap)m+ n 

=~m!n! - {2 

X exp - a 2p2 --( 1 ) (2)Y 
4 I a 2p2 y!(m - r)!(n - r)! 

= (:!y12( _ ~) -m+n 

xexp(! a2p2)L~-m( _ a~2). 

(36') 

(37') 

A symmetrical recursion relation can be obtained from Eqs. 
( 18) and (19) by taking /3 = 1, r = 0 and eliminating the 
term (m - lle- px ln - 1). This results in 

(m - n) (mle-PXln) = ap[ ~ (n12) (mle-PXln - 1) 

-~(mI2)(m-lle-PXln)] 
(38) 

with the generator 
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(Ole-PXIO) = exp(! a 2p2) (39) 

from Eq. (31) since (010) = 1. 
The above Eq. (37') has recently been derived by Mor

ales et al. using hypervirial type of results and parametric 
differentiation.6 Also Eqs. (38) and (39) appear as Eqs. 
(3.21) and (3.22) in Ref. 1 and elsewhere. 

v. RECURRENCE RELATIONS FOR THE MATRIX 
ELEMEMTS G (mix kin) E 

We take 

IE = Xk+ 1= (aEI{i)(aE + a1)k+ I 

which gives 

alE = alE = (k + 1) a E Xk 
aaE aa1 {2' 

(40) 

(41 ) 

Thus the right-hand recurrence relation Eq. (15) be-
comes 

(42) 

Ifwe wish to have a recurrence relation that involves the 
matrix elements of Xk only (and not of Xk + I and Xk as in the 
above relation), we simply have to replace 

Xk+1 by xk·x= (aEI{2)xk(aE +a1) (43) 

and operate by a E + a 1 on the ket vectors. Then we find 
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k (2)112 {3r k {32(2k+1)-2n+3 k 
G(mlx In)E= - - --2 G(mlx In-1)E+ G(mlx In-2)E 

n 1+{3 (1+{32)~n(n-1) 

(
2(n-2»)I12 {3r (I kl 3) 1-{32(n-2)(n-3»)1I2 ( I kl 4) - --G mx n- E - -- . G mx n- E 
n(n-l) 1+{32 1+{32 n(n-1) 

(
m)1I2 {3 (m(n 2) )112 {3 + 2 - --2 G(m -llxkln -l)E + 2 - -- G(m - 11xk ln - 3)E' 
n 1+{3 n(n-1) 1+{32 

(44) 

This right-hand recurrence relation is valid for m;;;'O, n;;;.2, whereas the one in Eq. (42) is valid for m;;;,O, n;;;. 1. Both can be used 
to increase n. Note that Eq. (44) requires two generating matrix elements, namely, G (Olxk 10) E' G (Olxk 11) E' Similarmanipu
lations on the bra vectors and simplifications result in the left-hand recurrence relation from Eq. (16), 

( 
n )112 {3 ( 2n )112 {3r + 2 - --2 G(m -llxkln -1)E - 2 --2 G(m - 21xkln -1)E 
m 1 +{3 m(m-1) 1 +{3 

(
n(m-2»)I12 {3 k 

+2 --2G(m-3Ix In-1)E' 
m(m-l) 1+{3 

(45) 

which is valid for m;;;.2, n;;;.O. 
We define a generating function 

00 (mlxk In) X(k;y,z) = L G E ymzn. 
m.n=O ~m!n! 

(46) 

From the definition of E(p;y,z) in Eqs. (20) and (21), X(k;y,z) = (-l)k!Xcoefficient ofpk in the generating function 
E(p;y,z) , which is given in Eq. (35) explicitly. The manipulations required to arrive at the answer should by now be familiar. 
In order to express the answer in terms of a Laguerre polynomial, we have to distinguish the two cases k = even and k = odd. 
We shall also require the use of the duplication formula7 

r(2z) = (22z - II.j1T)r(z)r(z+ 1) 

for the gamma function. We finally obtain 

X k· z = (-.3L)II2(~)!(2a~{32)(\12)kL - 112 ( _ 
( ;y, ) 1 +{32 2 1 +{32 (1I2)k 

(y + {3z - rl!i)2) 
1 + {32 

[
(1 - {32)(y2 -~) + 4{3yz + 2!i{3r({3y - z) - {32f] 

Xexp 
2(1 + {32) , 

for k even, and 
X(k;y,z) 

= ___ -=- !_E_ EP ( _ '2( +{3z»)LII2 _ (y+{3z- (11,,2)r) 2{3 (k 1) a {3 (2a2 
2 )(\/2)(k_1) (n 2) 

1+{32 2 1+{32 1+{32 r ,,~y (\12)(k-l) 1+{32 

Xex [(1 - {32)(y -~) + 4{3yz + 2!i{3r({3y - z) - {32f ] 
p 2(1 +{32) , 

(47) 

(48) 

(49) 

for kodd. 
Since the recurrence relations in Eqs. (44) and (45) are 

valid for m;;;'O, n;;;.2 and m;;;.2, n;;;'O, respectively, to use 
these, we require the matrix elements G (Olxk 10) E' 
G (Olxk 11) E' and G (llxk 10) E both for k = even and odd in
tegers. The matrix elements G(Olxk 10) E can be easily ob
tained from the functionE(p) = G(Ole-PXIO) E given expli-

citly in Eq. (31) by taking ( - 1 )kk! times the coefficient of 
pk in E({3). Thus we obtain 

k (k) (2a~{32)(\/2)k G(Olx 10)E = G(OIO)E - ! 
2 1 +{32 

XL - 112 ( f) (50) (\12)k - 2(1 +{32) , 
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for k even, and 

G(O/xk/O) E 

_ _ (k_l),(2a~{32)(l/2)(k-1) 
- G{OIO)E . 2 

2 1 +{3 

X a E{3y L 112 (- r ) (51) 
1+{32 (l/2)(k-l) 2(1+{32)' 

for k add. 
Again using recurrence relations of the type given in Eq. 

( 42) taking m = 0, n = 1 or directly Irom 

i.e., 

(52) 

and we arrive at, using the expressions in Eqs. (50) and 
(51 ), 

for k even, and 

{lL- 1I2 (_ r ) (4 
X aE (l/2)(k+ 1) 2(1 + {32)' 5) 

for kodd. 
Similarly we have 

( 
k) (2a~{3 2)(1I2)k 

- - (010) -,--
- G E 2 . 1 + {32 

'2 [ 1 L 112 ( Y<) Xv ... y 1 + {32 (1I2)k - 2(1 + {32) 

for k even, and 
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VI. RECURRENCE RELATIONS AND THEIR SOLUTIONS 
FOR THE GAUSSIAN MATRIX ELEMENTS 
G (mle-p"'ln) E 

The recurrence relations for the Gaussian matrix ele
ments G (mle -PX'ln) E can be obtained as for the exponential 
matrix elements from the general recurrence relations by 
using 

IE = e- Px' 

for which 

alE _ alE _ 2 - px' t 
----t-- -aEpe (aE+aE)· (57) 
aaE aaE 
Thus the right-hand recurrence relation takes the form 

G (mle -PX'ln) E 

(
2 )112 {3y , 

= - -;; -:;J G (mle- PX In - 1) E 

(
n_l)1I2 ",-2{32 ( I -px'i 2) 

--- G me n- E 

n '" 

(
m)1I2 2{3 x' + -;; -:;JG{m-l le- P In-1)E' (58) 

which is valid for m>O, n> 1, and where '" = 1 + {32 
+ 2a~ {32p. For the left-hand recurrence relations, we have 
similarly 

alE 2 a Fi2 t -px' --= -aEPp (-v ... y+aG +aG)e , aal 
which results in 

G (mle -PX'ln) E 

__ (m2 )112 {3 2y( 1 : 2a~p) ---.-,-- G(m -lle- PX'ln)E 

( 
m - 1 )112", - 2 , 

- ---;;;- -",- G(m - 2le- Px In) E 

(
n )112 2{3 x' 

+ m -:;JG(m-l1e- p In-l)E' 

which is valid for m> 1, n>O. 
To obtain the generating function, we define 

(59) 

(60) 

(61) 

Then the right-hand recurrence relation Eq. (58) leads to 
the differential equation 

a 
- G(p;y,z) az 

= [_ -./2{3y _ '" - 2{32 Z + 2{3 Y] G(p;y,z) (62) 

'" '" '" with the solution 

G(p; y,z) = G(p; y,O) 

xexp [ - -./2{3y z _ '" - 2{32 r + 2{3 yz] , 

'" 2", '" (63) 
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where 

~ G(mle-PX'IO)E 
G(p; y,O) = ~ yn 

m =0 /iiif 
(64) 

and a differential equation for it is obtained from the left
hand recurrence relation Eq. (60) by taking n = 0. This dif
ferential equation is 

~G(' 0)=({if3
2
Y(I+2aip ) _7]-2 )G(' 0) 

a p,y, y p,y, , 
~ 7] 7] 

(65) 

which gives 

G(p;y,O) = G(p;O,O) 

[ 
{if32y(1 + 2aip) 7] - 2 2] 

Xexp y---y , 
7] 27] 

(66) 

where 

G(p;O,O) = G (Ole - PX'IO) E (67) 

is the generating integral for these Gaussian matrix ele
ments. To compute it, we call it G(p) and we have 

dG(p) = 
dp 

2 

a E (01 -PX'( t )210) --G e aE+aE E 
2 

since 

aEIO)E = ° 
= - (ai/{i) [G(Ole-PX'IO)E 

+ {i(0Ie- PX'12) E]' (68) 
Now we use repeatedly the right-hand recurrence relation in 
Eq. (58) to evaluate G(0Ie- px'12)E in terms of 
G (Ole - px'IO) E' This finally gives the differential equation 

dG(p) = _ ai f32[~ + f] G(p), (69) 
dp 7] 7]2 

with the solution 

G(p) = (C 17]1/2)e(l/2)(1"lrl> (70) 

on noting that 7] = 1 + f32 + 2ai f32p. To obtain C, put 
p = 0, which gives 

C = ff+7![Z e- (1/2)1"/1 +P'G (010) E' (71) 

Thus 
G(p) = G (Ole - PX'IO) E 

(72) 

(73) 

on substituting for G (010) E from Eq. (34). Combining Eqs. 
(63), (66), and (73) we finally arrive at 

Finally on computing the coefficient of ymzn in the above, we find 

( I -px'i ) _ ( ,,2f3)112 [ _ f32f(1 + 2ai P)] 
G men E - m.n. exp 

7] 27] 

(
1'1 _ 2)Y'(1'1 _ 2{32)y,aT/ - 2Y,,/I- m + 2y, - 2y, 

X L ( - 1) n - m + y, + y, ...:...!',_--'----.:...!',_--'---'-----=-I-' __ ...!., ____ _ 
y"y, 7]n + y, - y'YI!Y2!(n - 2Y2)! 

X 
2(n + m)/2 - 2y, - 2Y,L n - m + 2y, - 2y, (f32f(1 + 2ai P») 

m-2y, ' 
7] 

(75) 

which for the single harmonic oscillator becomes 

_ ' ~ n!m! (1 )(n - m)12 (a2p/2V 
(m Ie px In) - - - a 2p " -----''-''---'-----

- (1+a2p)(1I2)(n+m+1) 2 7y!(n-m)/2-y)!(m-2y)! 
(76) 

when n - m = even and is ° otherwise. 31. Morales, 1. Zopez-Bonilla, and A. Palma, 1. Math. Phys. 28, 1032 

An expression equivalent to the one in Eq. (76) was 
obtained by Morales et al. in Ref. 3 and appears as Eq. (3.10) 
in that reference. The equivalence requires a quadratic trans
formation of the hypergeometric functions. 

'I. Morales, L. Sandoval, and A. Palma, 1. Math. Phys. 27, 2966 (1986). 
21. Morales, A. Palma, and M. Berrondo, Int. 1. Chern. S18, 57 (1985). 
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(1987). 
'Note that the definition of Laguerre polynomials is not standardized. We 
are using the one in Ref. 5. 

51. M. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Prod
ucts (Academic, New York, 1965). 

"See Eq. (2.15) in Ref. 3. 
7See Eq. (8.335 (1») in Ref. 5. 
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A natural generalization to the Rodrigues formula for the Hermite polynomials leads to the 
definition of sets of polynomials. Under certain constraints they are used to explain the 
existence of closed-form solutions to the Schrodinger equation for symmetric anharmonic 
potential wells and to obtain further closed-form solutions. 

I. INTRODUCTION 

The anharmonic oscillator has been of interest in quan~ 
tum mechanics for many years. In particular, in the study of 
molecular spectra of simple models such as ammonia and 
hydrogen-bonded solids, the potential is modeled as a dou
ble-minimum well. I Generally it is not possible to solve the 
Schrodinger equation exactly and resort must be made to 
numerical approaches that have attracted a vast literature. 2 

In a series of papers3 exact (in the sense of closed-form) 
solutions for certain anharmonic oscillators were found by 
ad hoc methods. These ad hoc methods have been system
atized for various anharmonic systems in both one4 and 
more than one dimension.5 These exact solutions exhibit two 
features. The first is that only a limited number (often only 
one) of wave functions is obtained and the second is that 
these exist only for certain potentials within a class of pot en
tials. For example,4(a) the Schrodinger equation 

¢" (x) + (A - c:v(x) )¢(x) = 0, (1.1 ) 

with XE( - 00,00) and ¢( ± 00) = 0, where 

w(x) = (ax2 + b)2X2 - kax2, 

has exact solutions only if 

k = 2(2M + E) + 3, 

where M is an integer and E = 0 or 1. The wave functions 
obtained are for the first M + 1 even (E = 0) or odd (E = 1) 
states. 

Although only a limited number of wave functions and 
energy levels are obtained, they do provide a method for 
checking the accuracy and suitability of numerical algo
rithms and this must be regarded as the sole practical reason 
for this investigation. However, the ad hoc method does not 
explain how it is that these exact solutions arise. It is the 
purpose of this paper to provide an explanation of how they 
arise. This explanation is based on the well-accepted phys
ical concept of the annihilation operator. The vehicle used is 
the symmetric anharmonic potential of highest degree 

4n + 2, n an integer, as this, in the case n = I, has been 
seen4

(a) to provide the richest results. 

II. ANNIHILATION OPERATORS 

In the case of the harmonic oscillator with SchrOdinger 
equation 

(2.1) 

it is well known that the operators a = 2 - 1/2 (d I dx + x) and 
at = 2- 1

/
2

( - d Idx + x) act as annihilation and creation 
operators on the wave function, i.e., 

In particular, the ground state is found from a¢o = O. In 
terms of coordinates this is 

2- 1/2 (! +x)¢o=O (2.3 ) 

so that 

¢o(x) = Noe- (1I2lX', (2.4) 

where No is the normalization constant. It is instructive to 
rewrite (2.3) as 

(~d~ +1)¢o=0{:}(d(~2) + ~)¢o=O, (2.5) 

or, on setting x2 = u, 

(~+~)", =0 du 2 'f'O 
(2.6) 

and for a general harmonic oscillator potential (2.6) would 
be written as 

(~ + ~c:v) ¢o = O. 
du 2 

(2.7) 

One can recognize that (2.7) is a special case of the more 
general definition of an annihilation operator 

406 J. Math. Phys. 30 (2), February 1989 0022-2488/89/020406-07$02.50 @ 1989 American Institute of PhySics 406 



                                                                                                                                    

(~ + v (u) ) 1/10 = 0, (2.8) 

which yields the ground state wave function 

1/1o(u) = No exp{ - fUV(S)dS} . (2.9) 

For (2.9) to be physically meaningful the argument of the 
exponential would have to be such that 

L'" exp{ - 2Ref V(S)dS}dU<00. (2.10) 

Also, for 1/10 to be the ground state v (u) cannot be of the form 
such that 

exp { - fV(S)dS} =p(u)exp{ -z(u)}, (2.11 ) 

where p(u) has zeros in UE(O, 00 ). 
In the notation of (2.8), the creation operator would 

have the form - d Idu + v(u), but this would be an incor
rect form for the harmonic oscillator as it stands and would 
just regenerate 1/1o(u). However, for other v(u), different 
functions are generated and it is this factor that we exploit in 
searching for closed-form expressions for the wave functions 
of polynomial anharmonic oscillators. To make our consid
erations more precise, in the next section we consider the 
even eigenstates for potentials associated with the ground 
state wave function 

(2.12) 

III. EVEN EIGENSTATES FOR w(x)=(ax2+b)2x2-kax2 

The potential associated with 1/1o(x) as given by (2.12) 
is 

V(x) = !{(ax2 + b)2X2 
- 3ax2

}. 

In this section we take w(x) to be given by 

w(x) = (ax2 + b)2X2 - kax2
• (3.1 ) 

Analogous to the definition of Hermite polynomials, we de
fine a set of polynomials/" (x) by means of the Rodrigues
like formula 

/" (x) = _1_ e(1!2)ax~ + bx' ( _ ~ ~)" e - (1/2)ax' - bx'. 

2"n! x dx 
(3.2) 

These polynomials span the set of even functions over 
( - 00,00), but in general are not orthogonal with respect to 
the weight function exp [ - !ax4 

- bx2
]. However, they 

have the following recurrence relations: 

..1.+ (2 - k)b (k - 5)a 

(k - 3).1 ..1.+ (6-k)b (k - 9)a 

(k - 7).2 A+(1O-k)b 

(n + 1 )In + I = (ax2 + b)/" - aln _ I , 

I;, = 2x(ax2 + b)/" - 2x(n + 1)/,,+ I 

= 2ax/',_I' 

and have the general form 

[n/21 (_ a) j(ax2 + b)n-2j 
~(x)= I . , 

j=O (n-2j)!j121 

(3.3 ) 

(3.4 ) 

(3.5) 

where, as usual, [nI2] means the integer part ofnl2. Thein 
also satisfy the second-order differential-difference equation 

I;: - 2(ax2 + b)xl;, - 4nax2/,; = 2aln _ l • (3.6) 

If we define a set of functions {V'" n = 0,1, ... } such that 

y" =/" exp[ _!ax4 _!b 2
], (3.7) 

which, just as {/,,, n = 0, I, ... }, constitutes a set of linearly 
independent functions, from (3.6) we find that 

y~ = [(ax2 + b)2X2 - (4n + 3)ax2 - b ]y" + 2ay,,_ I' 
(3.8) 

As our Schr6dinger equation we take 

1/1" + [A - (ax2 + b)2X2 + kax2
] 1/1 = 0, (3.9) 

which, since the potential is even, has odd and even wave 
functions, and we assume an expansion for the even wave 
functions in terms of the y" functions, viz., 

00 

1/1= I C"y". ( 3.10) 
11=0 

We substitute (3.10) into (3.9) to obtain 
00 

I Cn {[A-b+(k-4n-3)ax2 ]y,,+2aY,,_I}=0. 
,,=0 

From the recurrence relation (3.3), 

(ax2 + b)y" = (n + l)y,,+ I + aY,,_I' 

We substitute this into (3.11) to obtain 

'" I C,,{(k-4n-3)(n+1)YI1+I 
n=O 

+ [A + (4n + 2 - k)b ]Yn 

+ (k - 4n - 1 )ay,,_ I} = 0. 

(3.11 ) 

This leads to the recurrence relation for the coefficients CIf: 

(k-4n+ l)nCn _ 1 + [..1.+ (4n+2-k)b]C" 

+(k-4n-5)aCn + 1 =0, (3.12) 

when n = 0,1, .... Equation (3.12) may be written as an infi
nite tridiagonal matrix equation 

Co 
C I 

(k - 13)a C2 =0. (3.13) 

(k-ll).3 ..1.+ (14 - k)b (k - 17)b C3 . . . 

We observe that, if the lower diagonal term in the 
(M + 2)th, i.e., n = M + 1, row of this matrix is zero, the 

407 J. Math. Phys., Vol. 30, No.2, February 1989 

. . . . . . 

determinant of the infinite matrix factors into the product of 
the determinent of an (M + 1) X (M + 1) matrix and that 
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of the remaining terms and the eigenvector can be taken to be 
(CO,C1, ... ,C M'O,O, ... ) T. The infinite eigenvalue problem is re
duced to a finite one. We obtain (M + 1) eigenvalues and 
(M + 1) eigenvectors. The value of k for which this occurs is 
k = 4M + 3. For this value of k the product of the (i + l,j) 
and (i, j + 1) elements of the matrix is either zero or positive 
so that the matrix can be symmetrized. Hence, as one would 
expect, the eigenvalues are real. Furthermore the eigenvec
tors are orthogonal and so we obtain (M + 1) independent 
wave functions. This explains the result obtained by 
Leach4

(a) that for this value of k one obtains the first 
(M + 1) even eigenvalues and wave functions for the poten

Itial given in (3.1). 

IV. ODDEIGENSTATES FOR w(x)=(a.x2+b)z.x2-ka.x2 

The polynomials In defined by (3.2) cover the set of 
even functions on ( - 00, 00 ). It is not readily apparent how 
to define a covering set for the odd functions. However, the 
results of the previous section provide a clue. The value of k 
for which exact results were obtained is positive and so the 
potential is a double well or a triple well for which there is a 
tendency for the lower eigenvalues to be grouped in pairs or 
triples (the latter only if the three minima are comparable). 
This indicates that the square of the wave function for an odd 
eigenstate will be similar to that of the square of that for an 
even state [see Ref. 2(f) for computed comparisons]. 
(Strictly speaking it should be mod squared, but we are deal
ing with real wave functions. ) 

We define a complete set of polynomials covering odd 
functions as 

A + (2 - k)b (k - 3)a 

(k-5).1 A+(6-k)b (k - 7)a 

(k - 9).2 A+ (lO-k)b 

gIl = x/" 

= ~ e(1/2)ax' + bx' (_ .l~)"e- (1/2)ax'- bx', (4.1) 
2~! x ~ 

with the properties 

(n + 1 )gl1+ 1 = (ax2 + b)g" - agl1 _ I' (4.2) 

xg;, = [2x 2 (ax 2 + b) + 1 ]g" - 2x2 (n + 1 )gl1+ 1 

= g" + 2ax2g,,_ I' (4.3) 

and 

g;;=2x(ax2 +b)g;, - [(4n+2)ax2 +2b]g" +6ag,,_I' 
(4.4 ) 

Ifwe let 

z" = gil exp[ -!ax4 -!bx2
]. (4.5) 

where the set offunctions {ZIl' n = 0,1 , ... } constitutes a lin
early independent set, 

z;; = [(ax2 + b)2X2 
- (4n + 5)ax2 - 3b ]ZI1 + 6az" _ I' 

(4.6) 

To determine the odd wave functions of the Schrodinger 
equation (1.1) with w(x) as in (3.1), we make the expan
sion 

= 
1/1= I dl1 z l1 • (4.7) 

11=0 

Proceeding in the same fashion as in Sec. III we find that the 
coefficients dll satisfy the general recurrence relation 

(k-4n-l)ndl1 _ 1 + [A+ (4n+2-k)b]d" 

+ (k-4n-3)adl1 + 1 =0, ( 4.8) 

which leads to the infinite matrix equation 

do 
d l 

(k - l1)a d2 =0. (4.9) 

(k - 13).3 A + (14 - k)b (k - 15)a d3 . . . 

As in the case of the even wave functions, the determinant of 
this infinite matrix may be factored into the product of two 
determinants if k = 4M + 5. As in the even case we obtain 
M + 1 eigenvalues and M + 1 orthogonal eigenvectors of 
the form (do,dl, ... ,dM,O,O, ... ) T. If we rewrite k as 
k = 2(2M + 1) + 3, we see that we have recovered the odd 
case results obtained by Leach.4

(a) 

V. THE GENERAL CASE FOR SYMMETRIC 
ANHARMONIC POTENTIALS 

The function 

[ ~ a j 2"] l/1o(X) = No exp - ~ ---:-x I , 

;= 1 21 
(5.1) 

is the ground state solution of the Schrodinger equation 
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{ (

M - 1 )2 M - 1 } 
1/1"- ;~o a;+l x2; x

2
_ ;~o (2i+ 1)a;+l x2; 1/1=0, 

(5.2) 

i.e., the ground state eigenvalue is a 1 and the scaled potential 
is 

w(x) = (~~Ol a;+ \X2;YX2 
- ~tl\ (2i + 1 )a;+ \X2i. (5.3) 

As in Sec. III we define a set of polynomials /" (x) according 
to 

1 [ M a; 2'] In (X) = -n- exp L --:- x I 

2 n! ;= 1 I 

[ 
1 d]n [ M a; 2'] X - - - exp - L --:- x I • 

x dx ;=1 I 
(5.4) 
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For M>3 these polynomials do not cover all even functions. 
However, they do have the recurrence relations 

M-I M-I(i) 
(n + l)fn + 1 = L (- 1) j L . ° i + 1 X2i - 2111 - j' 

j~O i~j J 
(5.5) 

M-I 

f~ = 2x L 0i+ IX2111 - 2x(n + 1)/,,+ 1 

i=O 

(5.6) 

Let 

[ 
~ °i 2.] Yn =fn exp - £.J ---;-X I • 

j= 1 21 
(5.7) 

Then Yn satisfies the nonhomogeneous second-order differ
ential equation 

j 2i - 2j M-I M-I ('

J -2 j~1 i~j (-1) J °i+IX YIl-j 

M-2 M-I 

- 4(n + 1) L L 
j~ 1 i~j+ 1 

x ( - 1) j( ~ JOi+ Ix2i-2jYIl_j. (5.8) 

The Schrodinger equation to be considered is 

1/;" + {A - (~~Ol 0i+ Ix2yx2 + ~~II kiX2i}1/; = O. (5.9) 

We expand 1/; as 

= 
1/;= L CIlYIl (5.10) 

n=O 

and substitute this and (5.8) into (5.9) to obtain 

00 {[ M-l ] n~o Cn A - 01 - i~l [((4n + 2)i + I)Oi+ 1 - ki ]X2i Yn 

From the recurrence relation (5.5) we may write 

M- 2 
2M - 2 (+ 1) ~ 2. 0MX YIl= n YIl+I- £.J O.+IXYIl 

i=O 

M-I M-I (i) j 2i - 2j - L L (-1) .0.+IX YIl-j· 
j~l i=j J 

(5.12) 

When (5.12) is substituted into (5.11), we have 
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nto CII [{A - 01 - ~~12 [((4n + 2)i + 1)0.+ 1 - k.]X
2i

}Yn 

- [(4n + 2)(M - 1) + 1 - k:~ 1 ] {(n + I)Yn+ 1 

M-2 M-l ( i ) ] 
X L L (- 1) j. 1 OJ+ lx2i-2jYn_j = o. 

j~l i~j+l J+ 
(5.13 ) 

The "recurrence relation" (the reason for the" "is appar
ent immediately below) for the coefficients CII is 

[ 
kM I] - (4n-2)(M-1)+1- o~ nCII _ 1 

+[A+[(4n+2)(M-1)- k:~1 ]01 

+ I (4n+2)(M-l-i)-~ 0i+1 M-2{[ k ] 
,~I aM 

- k i }X2'] CII 

+ ~~ll~~jl (-I)j{(M-1)[4(n+j)+2] 

(5.14 ) 

In contrast to the case M = 2, when M> 3, it is not possible to 
remove all of the powers of x using the recurrence relation 
(5.5). We must further separate the terms in (5.14) by coef
ficients of different powers of x to obtain a set of recurrence 
relations which must all be satisfied simultaneously. They 
are 

[ 
kM 1] - (4n-2)(M-l)+I- O~ nCn_ 1 

+ {A + [ (4n + 2)( M - 1) _ k: ~ 1 ] ° I} CII 

M-I{ k } 
+ j~1 [4(n+j) +2](M-1) -1- :~I 

(5.15 ) 

from the coefficient of XO and 
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. (i + J)] -4(n+J +1)J+1 a;+HICIl+j=O, (5.16 ) 

where i = 1,2, ... ,M - 2, from the other terms. 
The change from the case M = 2 to M;;.3 is quite clear. 

For M = 2 there was just one eigenvalue problem to be 
solved. For M;;.3 there are M - 2 sets oflinear equations for 
the coefficients. For M> 3 we would not expect the solution 
of one set to be the solution of the other set (s). Indeed, for 
general values of the coefficients k and a we would not expect 
any nontrivial solution. However, in the spirit of finding 
closed-form solutions we could set all but a number of the 
expansion coefficients equal to zero. For Eqs. (5.16) to yield 
a nontrivial solution constraints must be imposed on the co
efficients k; and a;. Assuming that Eqs. (5.16) can be satis
fied, Eqs. (5.15) provide a further set of constraints since the 
coefficients are now no longer independent. Let us consider 
thecaseM= 3forwhich Eqs. (5.15) and (5.16) are 

. . . . . . . . . . . A - 33a l 26a2 - 18a3 . 
32(N - 3) A - 25a l 18a2 - lOa3 

24(N - 2) A - 17a l lOa2 

0 16(N - 1) A -9a l 
8N 

in which C N _ j is expressible in terms of C N through (5.19). 
The last of (5.20) using (5.19) gives 

A = al - 8N(N + 2)a3/a2• 

The next requires a 1 to be expressible in terms of N, a2 , and 
a3• The next requires a2 to be expressed in terms of Nand a3 

and the one after that gives a3 in terms of N. (The expres
sions are very messy and are not given here for general N.) 
For n > 3 the additional constraints would not be expected to 
be satisfied. In fact the situation is even worse than that due 
to the appearance of the ratio a3/a2 • For N = 3 the fourth 
and third of (5.20) give 

respectively. Using these in the second and first of (5.20) we 
obtain the inconsistent results that 
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- ( 8n - 3 - ~:) nCIl _ 1 + [A + ( 8n + 4 - ~:)a I] CII 

+ ± [8(n+J)+3-k2](-1)jaj+lcll+j=0, 
j= 1 a3 

(5.17 ) 

[ (4n + 2 - ~:) a2 - k I] CII 

- (12n + 14 - 2a~2) a3CIl + 1 = O. (5.18 ) 

If the expansion is to terminate with CN' setting n = N + 1 
in (5.17) and then n = N in (5.18) we find that 

k2 = (8N + 5)a3, kl = - (4N + 3)a2, 

and (5.17) and (5.18) now become 

8(N + 1- n)nCn _ 1 + [A - (8(N - n) + l)adCn 

+ [8(N - n) - 6]a2Cn + 1 - [8(N - n) - 14] 

Xa 3Cn + 2 = 0, (5.17') 

(N - n)a2Cn = (4N - 3n - l)a3Cn + l' 

From (5.18') it is evident that 

(5.18') 

CN _ j = [IT (N + 3k - 1)] (a3 )j ~~, J= I,N. 
k= 1 a2 J. 

(5.19) 

Equations (5.17') now consist of N + 1 constraints if Cn is 
to be nonzero. The bottom part of the matrix equation is 

0 
CN _ 4 

CN _ 3 

- 2a3 
CN _ 2 

=0, (5.20) 

2a2 CN _ 1 

A-al CN 

We conclude that it is only possible to obtain a closed-form 
solution when M = 3 only if N<2. 

From the considerations of the M = 3 case for which 
(5.16) provided just one constraint we would not expect to 
find much for M;;.4. However, we are able to obtain some 
general results as we shall see below. If in (5.15) we put 
n = N + 1 and in (5.16) we set n = N and require that Cn 

= 0 for n;;.N + 1, we find that 

k M _ 1 = [(4N + 2)(M - 1) + l]aM , 
(5.21 ) 

k; = [(4N+2)i+ 1]a;+I' i= 1,M-2. 

With these values for the k;, i = I,M - 1, substituted back 
into (5.15) and (5.16) we set i=M-'-2 and i=M-3 
(valid since m;;.4) and n = N - 1 and n = N - 2 (on the 
assumption that N;;.2) to obtain the following relations: 

(M-2,N-l): CN _ 1 =!(M-l) 

X [N(M - 2) + M - l](a M /a M _ 1 )CN , (5.22) 
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(M-3,N-1): CN_ I =!(M-2) 

X [N(M - 3) + M - 2](aM_ l laM_ Z )CN' (5.23) 

(M-2,N-2): CN_ Z =!(M-1) 

X [N(M - 2) + 2M -l](aMlaM_ 1 )CN_I' (5.24) 

(M-3,N-2): 16aM_ 2CN_ 1 -2(M-2) 

X[N(M-3) +2M-1]aM_ I CN_ 1 

+ !(M - l)(M - 2)[2N(M - 3) + 2M - 3] 

xaMCN = 0. (5.25) 

In (5.25) we use (5.23) and (5.24) to express CN _ 2 in 
terms of CN and (5.22) to express CN_ I in terms of CN' 
After a certain amount of elementary algebra (5.25) reduces 
to 

-~(M-1)(M-2)aMCN(N+ l)M=O, 

from which it follows that N = - 1! We conclude that, for 
M>4, N may.at most take the values ° and 1. 

In the case N = 0, (5.16) vanishes identically and we 
have from (5.21) that the coefficients k; are 

kM_ 1 = (2M - 1)aM, k; = - (2i + 1)a;+ p 

i= 1,M-2. 

Thus (5.15) gives 

{A. + [2M - 2 - (2M - 1) ]aJCo = 0, 

i.e., A. = a I for all M. 
There are no constraints on the coefficients a;. In the 

caseN= 1, (5.15) reduces to the two equations 

[A. - (4M - 3)adCo + 2azCI = 0, 

4(M - l)Co + (A. - al)C I = 0, 
(5.26 ) 

and (5.16) to the M - 2 equations 

4(M - 1 - i)a;+ I Co - (i + l)(2i + 1)a;+2CI = 0. 
(5.27) 

For (5.27) to have a nontrivial solution the coefficients a; 
must satisfy the relations 

2 aM_I 4 aM_ 2 ---------=-------
(M - l)(2M - 3) aM (M - 2)(2M - 5) aM_ I 

="'= 2(M-3) a3 

15 a4 

2(M - 2) az 
4 a3 

so that, once a M and aM _ I are specified, aM _ 2 through a2 

are also specified. (Note that aM _ I cannot be zero.) From 
(5.26) we find 
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(M - 1)(2M - 3)aM 
a l = -

A.= 

+ (M - 1)2(2M - 3)om 

(M - 1)(2M - 3)(4M - 3)OM 

2a M _ 1 

aZaM _ 1 
+ 2 (M - 1) (2M - 3)OM 
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Finally the coefficients k; are given by 

kM_ 1 = (6M - 5)aM, k; = - (6i + 1)a;+ l' 

i= 1,M- 2. 

We conclude that for M>4 all Schrodinger equations of the 
form (5.9) with the symmetric potential it contains have a 
ground state solution Yo provided the coefficients k; take 
specific values. The coefficients a; (i < M) may take any real 
value and aM any positive value. For a solution of the form 
Co Yo + CI YI all of the o;'s and k;'s are specified in terms of 
a M and aM _ I and cannot be zero. In this case the wave 
function is 

{
(M-1)(2M-3)aM ~ 2;-2} 

¢= CI + £... a;x 
2aM _ 1 ;~I 

[ 
~ a; 2] Xexp - £... --:-x I • 

;~ I 21 

If a M _ I > 0, the even polynomial has all coefficients positive 
and so has no real zeros and the wave function represents the 
ground state. If OM _ I < 0, the polynomial can have an even 
number of zeros (since there is at least one positive root for 
xZ) and so represents an even excited state. 

In contrast to the case M = 2 in which the polynomials 
!" and gn covered the even and odd functions, respectively, 
when M>3 the polynomials!" do not even cover the even 
functions. To provide such a cover one could contemplate 
introducing additional sets of even polynomials defined by 

h ~ = x21n' i = I,M - 2. 

Likewise the odd wave functions could be covered by the sets 
of polynomials g:, defined by 

g~ = x 2
; - I!", i = I,M - 1. 

We shall not discuss this idea any further to avoid largely 
repetitious material. However, we do point out that, in the 
case the h~, polynomials when M = 3, the recurrence rela
tions obtained when the expansion (5.10) (with h~, replac
ingfn) is substituted into the Schrodinger equation (5.9) 
containf's as well as h 's and so lead to additional constraints 
on the expansion coefficients. 

VI. DISCUSSION 

We have seen how it is possible to explain the existence 
of a number (generically one for nonsextic potentials) of 
closed-form eigenstates for symmetric potentials via the 
mechanism of polynomials defined by a generalized Rodri
gues formula. Apart from the intrinsic interest in obtaining 
closed-form solutions to the Schrodinger equation, the exact 
eigenvalues so found provide a check on numerical algo
rithms for the determination of eigenvalues for such prob
lems. One such algorithm is to expand the wave function on, 
say, a harmonic oscillator basis. One could imagine doing 
the same using the functions defined by (3.7) and (4.5). One 
obtains a tridiagonal matrix for the sextic potential. How
ever, numerical experiments have indicated that the rate of 
convergence is extremely poor and does not bear comparison 
with the more standard methods such as those presented by 
Hautot and Magnus.Z(d) 
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As a final remark we point out that the generalized 
Rodrigues formula (5.4) can be generalized even further. 
We can define a set of polynomials by 

1 [M a;x2(K+;)(m+ I) ] 

In = [2(m + 1) )"n! exp ;~I (K + i)(m + 1) 

( 
1 d )n 

X - x2m+ 1 dx 

[ 

M a;x2(K + ;)(m + \) ] 
Xexp - L ' 

;~I (K+i)(m+ 1) 
(6.1 ) 

where m and K are positive integers. However, these suffer 
from the same defect as the polynomials defined in (5.4) in 
that, in addition to the eigenvalue equations, one obtains 
subsidiary constraints. In general one would expect to obtain 
only one eigenvalue for each potential for which the con
straints are satisfied. 
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On the power-series construction of SchrOdinger bound states. 
II. The effective Hill determinants 
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For a class of potentials, the radial differential Schrodinger equation for wave functions !/J(r) 
of bound states may often be replaced by an equivalent matrix equation for coefficients Pn in 
an associated power-series ansatz. In Paper I [J. Math. Phys. 29, 1433 (1988)], a rigorous 
foundation of such a transition (sometimes called the Hill-determinant method) was 
presented. Now, it will be shown that and how the Feshbach-Lowdin projection-operator idea 
may help one to reduce the underlying infinite-dimensional diagonalization to a mere finite
dimensional eigenvalue problem. 

I. INTRODUCTION 

In the preceding paper (I), I we have considered the 
Schrodinger bound-state problem 

[ _ :; + /U; 1) + V(r) ]!/J(r) =E!/J(r) , 

rf;ELz(O,oo), /=0,1, ... , (1.1) 

with a class of potentials equivalent, up to a change of vari
ables, to the polynomials 

Zq+ I 

V(r) = L anrn, aZq+l=az>O. ( 1.2) 
n=l 

C 
-Bo 0 

C(I) AI -BI 0 
Q~ Q<'" ~ .~. 

0 D(q) D(q-I) 

[cf. Eqs. (5.3)-(5.5) in IJ. 
In the literature,3-16 the whole approach is usually 

called the method of Hill determinants. It is based on the 
ansatz 

00 

!/J(r) = exp( - g(r)) L Pn rn + 1+ 1, ( 1.5) 
n=O 

with some (polynomial) g(r). An insertion of (1.5) in (1.1) 
leads immediately to an explicit form of matrix elements in 
Eq. (1.3). Vice versa, each numerical solution of the trun
cated Eq. (1.3) has been proposed3

--6 to convert Eq. (1.5) 
into an approximate wave function, which becomes exact in 
the N -+ 00 limit. 

Recently, the above Hill-determinant (HD) method 
has been criticized7 and shown to have a restricted valid
ity,8-13 which, essentially, depends on our choice of g(r). In 
I, the latter point has been clarified for all the potentials 
(1.2). We proposed a use of polynomials 

g(r) = __ a_ rq + z+ ± ~rj 
2q + 2 j = 1 2j + 2 ' 

a> 0, aZ 
= aZq + 1 , ( 1.6) 

In essence, we have proved an equivalence of the differential 
equation ( 1.1) (with the standard boundary conditionsz) to 
an algorithm based on an infinite-dimensional limiting tran
sition in the (N + 1 )-dimensional matrix equation 

(1.3 ) 

with a "quasi-Hamiltonian" matrix Qpossessing 2q + 2 dia
gonals and Hessenberg structure, 

~.) (1.4) 

DO) ct;) AN 

which reflect the correct WKB r-+ 00 asymptotics of !/J(r). 
All the possible failures (cf., e.g., their q = 1 examples and 
analysis in Refs. 8-13) were eliminated by means of the sim
ple restriction 

azq l2a = Yq> - /3q , (1.7) 

which has to be added to ( 1.6). 
In the resulting well-founded form, the HD technique is 

of interest as a possible new type of resummation of the di
vergent perturbation series.4 The recent increase of interest 
in it also reflects its simplicity. Indeed, mere 2q + 2 diago
nals in Q replace the 4q + 3 nonzero diagonals of the Hamil
tonian when represented as a matrix in an ordinary harmon
ic oscillator basis. 1 1 

Numerically, the latter variational diagonalization con
verges extremely quickly. Thus some authors also empha
size an improvement of efficiency of the purely numerical 
HD algorithms. IO,IZ,14 The latter effort proved successful: 
The extreme simplicity of the matrix elements ( 1.4) enables 
one·to reduce the infinite-dimensional (exact) HD secular 
equation 
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det(Q- E) = 0 ( 1.8) 

to a mere transcendental equation 

liFo = 0, ( 1.9) 

where Fn denotes a certain "extended" analytic continued 
fraction6 (and coincides with the ordinary continued frac
tion in the simple example of Ref. 4). This arrangement 
makes full use of the specific Hessenberg structure of Q and 
simplifies significantly the numerical infinite-dimensional 
limiting transition N ..... 00. 

Geometrically, the asymptotically dominant compo
nents of Fn , n ~ 1, may be identified with the so-called fixed 
points (FP's) of the underlying continued-fractional map
pings.6 Thus our algebra proceeds one step further and we 
can replace the recurrently defined quantities F n , n~ 1, by 
certain FP expansions in roots of algebraic equations of de
gree q + 1 (see Ref. 6). 

The first numerical test of the above FP asymptotic ex
pansion idea has already been performed in Ref. 14, for the 
potential V(r) = r + g,-4 and with the first- and second-or
der FP corrections taken into account. The convergence still 
remains comparatively slow. Fortunately, an incorporation 
of the higher-order corrections makes the combined FP-HD 
algorithm fully competitive with the other methods. On a 
few examples, this was demonstrated numerically by Tater 
and co-workers. 10.15 

An unpleasant shortcoming of the rather universal FP 
technique lies in a tedious algebra pertaining to the deriva
tion of the explicit FP corrections. In a way, these complica
tions stem from the "too geometric" character ofthe original 

L= 

o o 

o 
o 

X(q) 
n 

I 

The new matrix elements can be computed, from definition 
(2.1 ), by recurrences. Their general form may be found else
where l4

: For the present purposes, we restrict our attention. 
to the first nontrivial example with q = 1 and, abbreviating 

Gn = C~I) + BnFn+ I D (1), n>O, 

write the definitions 

y~l) = Gn, X~l) = D(1), Zn = I/Fn , 

and recurrences 

(2.4 ) 

Fn = lI(An -E+BnFn+1Gn+1), n=O,I, .... 
(2.5) 

For D (1) = 0, the latter ECF rule defines simply the ordinary 
continued fractions. 4 

B. The LOwdin-Feshbach projection operators in the 
HD non~Hermitlan case 

Let us assume that the N ..... 00 problem of convergence 
has been settled6 and fix some large dimension N < 00. Next, 
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algorithms. In the present paper based on a close analogy 
between the Hermitian and non-Hermitian cases, we recall 
an experience gained in the former case 17 and describe a sim
plified construction of the FP expansions. 

The core of our contribution is formulated in Sec. II. In 
place of the N = 00 eigenvalue condition (1.8), we propose 
use of the finite-dimensional rigorous formula 

det(Qeff - E) = O. (1.10) 

This will complement and complete the results of Refs. 1 and 
6. In Sec. III, we change our point of view, reinterpret Eq. 
(1.3) as a difference equation, and derive a new formula for 
the unknown matrix elements of (tlf. Finally, an illustration 
of technicalities is provided by Sec. IV where both the alge
braic and numerical aspects of our eigenvalue condition 
( 1.10) are discussed for the q = 1 example. Section V is a 
summary. 

II. THE FINITE-DIMENSIONAL "EFFECTIVE" HILL 
DETERMINANTS 

A. The extended continued fractions (ECF) 

In the spirit of Ref. 6, we may postulate that 

Q-E=U'L, (2.1) 

where the matrix U has only two nonzero diagonals, 

Unn '=I, Unn +1 = -BnFn+l' n>O, (2.2) 

while L is a lower triangular matrix with 2q + 1 diagonals, in 
general: 

(2.3 ) 

I 
for reasons that will become obvious immediately, let us also 
introduce a pair of projectors p and q = 1 - P such that 

Po 

A {;:) pz= . = 

N 

PM , 

o 

0 
(2.6) 0 

0 

qz= PM+l , M>O, M<N. 

PM+2 

PN 
Then, Eq. (1.3) may be divided by the regular operator U 
from the left, giving Lz = 0, i.e., 
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Lpz= -Lqz. (2.7) 

Next, we use the fact that PLq = PLpq = 0 (identically) 
and, applyingpUp on both sides ofEq. (2.7), we get 

(Qeff _ E)pz = 0, 
(2.8) 

Qeff _ E = pUP'PLP . 
This may be interpreted as a Feshbach or L6wdin model
space equation which defines the first M + 1 components of 
the exact wave function coefficients z. 

In the N ..... 00 limit, Eq. (2.8) remains valid in the same 
form, although its derivation must be performed more care
fully since the division by U is not permitted anymore.6

,10 

Fortunately, we may understand simply its first M rows as 
equivalent to the explicit determinantal definitions of Pn's 
since Q '::n = Qmn, for all n < M, 

Pn+ 1= (pc/BoBI" 'Bn)det(Q(n) - E), 

n = O,I, ... ,M - 1 . (2.9) 

Then, only the remaining (last) row ofEq. (2.8) [cf. also 
Eq. (2.3)], 

q q 

ZMPM+ I yc,;;PM-I+ I Xc,;;PM_q_I=O, 
1= I 1=1 

(2.10) 

has the ECF coefficients that contain all the relevant infor
mation about the missing part of the full matrix Q. Their 
recurrent evaluation is therefore equivalent to a return to the 
original Eq. (1.3) with N = 00.

14 

In essence, our present main purpose lies just in a non
ECF specification of these coefficients. After achieving this 
purpose [cf. Eq. (3.15) below], we shall be able to treat Eq. 
(2.10) as a transcendental equation that specifies the bind
ing energies numerically. 

III. THE DIFFERENCE-EQUATION CONSTRUCTION OF 
Qeff 

A. The boundary conditions 

As shown in Ref. 6, the potentials ( 1.2) with the "super
confining property" 

lim [V(r) -a2q+lr4q+2]/rq= + 00 (3.1) 
,- 00 

enable us to choose the parameters P k in ( 1.6) in such a way 
that all the coefficients D( j) in Q vanish. In the general case, 
let us now introduce an integer tE [O,q] such that D(t) # 0 
while D(I+I) =D(t+2) ='" =D(q) =0. Then, we may 
write each row of our infinite-dimensional matrix equation 
(1.3) as a difference equation for some function hn , 

(C~O)=An-E), (3.2) 

and put hn = Pn only after an incorporation of the corre
sponding boundary conditions. 

In general, Eq. (3.2) has a complete set of q + t + 1 
independent solutions. For example, we may specify 
hn = h ~k), k = 1,2, ... ,q + t + 1, by the set of independent 
initial values 
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h~:_j =0, j= 1,2, ... ,q+t, (3.3) 

with some positive integersMk #Mn fork #n,and write the 
general solution of (3.2) as a (q + t)-parametric linear su
perposition 

q+I+1 
h = ~ a h(k) 

n ~ k n (3.4) 
k=1 

with an arbitrary normalization. An explicit determinantal 
representation of the separate components h ~k) may be de
rived in full analogy with Eq. (2.9). 

According to I, the natural q + t boundary conditions at 
the origin, 

h_1 = 0, h_2 = O, ... ,h _q_ 1 = 0, (3.5) 

simply reflect the regularity of '/f!( r) at r ..... O. They must be 
complemented by the physical normalization requirement 
or boundary condition of the asymptotic HD form I 

h N + I = 0, N ..... 00 • (3.6) 

B. The reverse Hili-determinant method 

There is asymmetry between (3.5) and (3.6)-wemay 
restrict (3.4) by q + t conditions (3.5) or by the single re
quirement (3.6), and obtain a unique "regular" solution or 
q + t "Jost" solutions, respectively. In the former case, an 
addition of the asymptotical requirement (3.6) and an avail
ability of the determinantal definition (2.9) lead immediate
ly to the Hill-determinant algorithm. Also, let us study the 
latter combination of "Jost" solutions with the boundary 
conditions (3.5). 

In the first step, we recall I and replace the complete 
initializations (3.3) and set of solutions h ~k) by the other 
complete set of solutions h ~x,kJ specified by the q + t + 1 
independent n ~ 1 asymptotics 

h ~d.kJ;:::: I (aln)n/(q+ I) I exp[21Tknil(q + 1)] , 

n ~ 1, k = 1,2, ... ,q + 1 , (3.7a) 

and 

h ~s.kJ;:::: I (bln)n/I lexp(21Tknilt), 

b = D (1)/4a, n~ 1, k = 1,2, ... ,t. (3.7b) 

The superscripts d and s mean "dominant" and "subdomi
nant" since 

(aln)n/(q+ 1) I(b In)n/I = exp n( r In n + 8) , 

r = (q + 1 - t)lt(q + 1) > 0, 

8= (lna)/(q+ 1) - (lnb)lt, 
(3.8) 

increases very quickly with the increasing n. An explicit der
ivation of the asymptotics (3.7) is easy: we insert the lead
ing-order form of coefficients 

Bn = 4n2 + O(n), C~j) = 4Pj+ In + 0(1), 

D(k) = 0(1) 
(3.9) 

into (3.2) and arrive at the two possible leading-order forms 
of this equation, 

4n2hn + I - 4anhn _ q + corrections = 0 

and 
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4nahn_ q -D(t)hn_ q_ t + corrections =0, (3.1Ob) 

with the simple solutions (3.7a) and (3.7b), respectively 
(I). 

In the second step, we may incorporate the second-or
der corrections in (3.10) and find out that the asymptotics of 
hn [Eq. (3.4)] are absolutely dominated by a single compo
nent h ~d,q+ 11. In accordance with the physical boundary 
condition (3,6), these asymptotics have to change sign at the 
physical energy E and some large n = N'~ 1. Vice versa, the 
general "Jost" solution h JJost) of (3.2) [compatible with 
(3,6)] may be characterized simply by an absence of the 
dominant component h J:,q + 11, 

q t 
h (Jost) - "" P h [d,k1 + "" P h [s,k1 N - L.J k N L.J k+q N . (3.11 ) 

k= I k= I 

In a simplified notation, let us write 
q+t 

h (Jost) - "" J P N - L.J Nk k 
k=1 

and define J Nk by Eq. (3.7) in the limit N - 00. After an 
incorporation of a few corrections in (3.10), we also may 
obtain an asymptotic series and define J Nk for N~No» I 
with a sufficient precision (see below). Then, we recall Eq. 
(3.2) with indices n=No+q+t-l, n=No+q+t 
- 2, ... ,n = q + t, and use it as a recurrent definition of J mk 

beyond the asymptotic region, at m = No - I,No - 2, ... ,0, 
respectively. 

Of course, the remaining q + t rows of Eq. (3.2) [to
gether with the boundary conditions (3.5)] represent sim
ply a (q + t)-dimensional matrix equation 

q+t-I [q+t ] 
m~o I~O QklJlm - EJkm Pm = 0, 

k=O,I, ... ,q+t-l. (3.12) 

Up to an arbitrary normalization, it fixes the physical ener
gies and coefficients pin (3.11 )-we may put Pn = h ~Jost) in 
( 1.5). 

c. The general matching conditions 

An optimal approximate representation of the wave 
functions Pn or "'(r) (1.5) is combined from the n»l 
asymptotics Pn = h ~Jost) (3.11) and n = O( 1 ) determinants 
(Pn = h ~regular) [Eq. (2.9)], i.e., 

h ~regular) = J nOPo 

with the single normalization parameter Po}. In the numeri
cal practice, the particular boundary-condition matchings 
(3.11) + (3.5) [i.e., (3.12)] or (2.9) + (3.6) [i.e., (1.8)] 
may be then replaced also by a more flexible condition 
h (regular) = h (Jost) 

nj n j ' 

q+t 
JM+i.OPO= L JM+i,kPk' i=1,2, ... ,q+t+ 1, (3.13) 

k=1 

of the "determinant = expansion" type with M> q + t. 
The necessary dimension of determinants or precision 

of the expansions may be lowered by a transition to the alter
native form of (3.13 ), 
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C=m~q-t QmJnO -EJMo 8mM }o 

+ :t: [n]~ I QmnJnk - EJmk (l - 8mM ) ]Pk = 0, 

m=M,M+ 1, ... ,M+q+t. (3.14) 

This may be understood as a generalization of (3.12). Now, 
an analogous generalization has to be found for the Hill
determinant prescription (1.8). We shall interpret the "ef
fective-matrix" SchrOdinger equation (2.8) also as a match
ing condition. 

In the first step, let us recall the ECF construction of the 
corresponding "effective" relation (2.10), and notice that its 
ECF matrix elements Q ~m must be independent of the pa
rametersAo,A 1, ... ,Aq + t _ I . In the present recurrent scheme, 
we have JnO = J nO (Ao,A 1, ... ,An _ I ) and Jnk 
=Jnk(An+q+t,An+q+t+I'''') so that Pk 
= Pk (Ao,AI, .. ·,Aq+ t- I) after a complete matching (3.14), 

with any k~ 1. As a result, the matrix elements of Q ~m with 
M> q + t must be also independent of our particular choice 
of the coefficientsPk in the "Jost" solution (3.11) and there
fore, its insertion in (2.10) should be valid for all the asymp
totic components h ~x,k1 separately, 

q t 

ZMJMk + L Yi;')JM- mk + L Xi;')JM_q_m,k =0, 
m=I m=l 

k = 1,2, ... ,q + t. (3.15) 

This is our main conclusion-we may reinterpret (3.15) as a 
set of q + t linear homogeneous algebraic equations that de
fine the matrix elements of Q ~m as functions of the known 
(asymptotic-series) matrix elements Jnk , k~ 1. 

IV. A SIMPLE EXAMPLE 

The change of variables in (1.1), 

"'_ronst
"" r-rl/p

, 1 +!- (l + !)/p, 

P = 1,2,3,4, (4.1) 

enables us to consider the class of potentials V = Vp (r), 

VI (r) = air + a2r
4 + a3f> , 

V2(r) = !aolr + 2a2r + 4a3r , 
(4.2) 

V4(r) = ~aol~/2 + !al/r + !a2/r
I/2 , 

as the same eigenvalue problem (1.1) with the energies 
E=Ep, 

EI = - ao, E2 = - ai' E3 = - a2, E4 = - a3 , 
(4.3) 

respectively. Thus we may restrict our attention to P = 1, 
q = 1 and, inserting the ansatz (1.5) in (1.1) ({31 = {3, 
Y I = y), obtain the matrix equation (1. 3) or difference 
equation (3.2) with the explicit coefficients 

Bn = (2n + 2)(2n + 21 + 3), 

An = C ~O) - ao = (4n + 21 + 3)f3 , 

Cn = C~I) = (4n + 21 + l)a + a l _{32, n = 0,1, ... , 

D(1)=D=2(y-{3)a, y=a2/2a> -f3. (4.4) 
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From this difference Schrodinger equation, we may return 
to the various physical situations (4.2) via the transforma
tion (1.5) and (4.1). 

A. The asymptotically subdominant solution of the 
difference SchrOdlnger equation 

Let us complement the explicit coefficients (4.4) by the 
change of variables 

hn = ({3 - r)/2tlPnln!, n>O, 

and use the notation 

(4.5) 

lfn = lPn + I -lPn' ipn = lfn + I -lfn . (4.6) 

We obtain the Schrodinger equation (3.2) in the form 

lfn - I = (lin) [allPn + a2lfn + a 3ipn 

+ [lI(n + 1) ](a4lPn + I + a 5lfn + I )] , 

where 

4ala = f - al - (21 + 5)a, 

4a2a = 2r(r - {3), 4a3a = (r - {3)2 , 

4a4a= [(/+~)r+aol2](r-{3), 

4a5a= (/+~)(r-{3)2. 

Then, another ansatz 

(4.7) 

(4.8) 

(4.9) 

simplifies the separate differences (4.6 )-we may put 

Z= I-al 

and get (4.7) in the final form 

(k+ l)ck+ 1 -llkCk -VkCk_ 1 =0, 

Ilk = (k - a l )a2 - a 4 , 

Vk = (k-al-l)(ala3-ka3+a5)' 
(4.10) 

C_ I = 0, k = 0,1, .... 

Its algebraic determinantal solution is straightforward, 

-1 0 0 

VI III -1 0 

Ck+ 1 = 
Co de 0 2V2 112 -1 

(k + I)! 
0 0 kVk Ilk 

(4.11 ) 

For large k, we have an estimate 

ck :::::( ± (r - {3)/2'~ - k la)k:::::k k12, k> 1, 

which does not contradict the convergence of the ansatz 
(4.9). Hence we may construct the subdominant solution 
h ~s,IJ = h ~sJ with an arbitrary precision in principle. 

B. The pair of the asymptotically dominant solutions 

Let us put a = a 2 and not specify the sign of the new 
parameter a yet. Then, according to I, the alternative ansatz 

(4.12) 
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converts the Schrodinger equation (3.2) with q = p = 1 into 
the relation (5.8) of!, 

[2 sinh~V + Sn + Rn (exp V - I) ]lPn = 0, 

d 
V= -2-, Sn = TnAnCn_I/Bn_I' 

dn 

Rn =DTn, 

n =0,1, ... , 

(4.13 ) 

where the exponentials exp (mI2) V are infinite Taylor series 
representing the shift of indices, 

00 m
k 

d
k (mv) 

lPn + m = L -k' -d k lPn = exp - -2 lPn 
k=O . n 

and an ansatz has to be used again, 
M 

lPn = L bk5k + O(5M+ I) , 
k=O 

5k =exp(GE-I)EF +\ G= ({3+r)/2a, 

F= (f - {32)/4a, 

E=lI.Jn, n>l. 

(4.14) 

(4.15 ) 

Its leading-order coefficients are taken from I, and its gen
eral form is dictated by the simple rule for differentiation, 

vm5k = (&3 !r 5k 

m 
( 4.16) 

= L (- G)m-
j
WJ:;:)5k+m+j, 

j=O 

W6,1,1 = 1, WLI,1 = k + F, 

Wi;:' + \) = Wi;:') + (F + k + m + j - I) WJ~'t,k' 

j = O,I, ... ,m + 1. 

Obviously, the structure of Eq. (4.13) is much more 
complicated than the structure of its "subdominantly 
smooth" counterpart (4.7). Fortunately, the coefficients in 
( 4.13) may be represented by the Barnes formula 13 

r(z+a) _ ..a-b [~ -m (_l)m+1 {B () --'-----'- - ~ exp L.- z m + I a 
r(z+b) m=1 m(m+1) 

-Bm+db)}+o(z-m-I)], (4.17) 

where 

B2 (x) = x 2 -,fX + i, 
B3 (x) = x 3 

- 3x2/2 + x12, 

are the so-called Bernoulli polynomials. As a consequence, 
an n> I asymptotic form of our Eq. (4.13) may again be 
interpreted as an equation with the power-series coefficients 

Tn =to£+tl~+ ... , Sn =So£+ ... , 

to=1I4a3, so=GI '" 

and schematica1 structure (n or E dependence, & « 1 ) 
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(4.18 ) 

where, obviously, each coefficient eM + I must be equal to 
zero separately. 

In general, the algebraic manipulations represented by 
Eq. (4.18) are combined from the evaluation of the power 
series (4.14), the action (4.16), and insertions of (4.17). 
They are complicated but straightforward; at M = 0, we ob
tain an identity due to our choice of G = So, at M = 1, we 
obtain an identity as well, due to our specification of the 
second free parameter F = GDto in (4.15). Finally, it is easy 
to show that the M> 2 items of ( 4.18) do not contain b M and 
may be written in the form 

M-2 

(M - !)bM _ I = I b l I (- Sk,Ok,OOk,O + ... ), 
1=0 k,k,k, 

k l,k2,k3 >0, 2kl + k2 + k3 + 1= M. 
( 4.19) 

This defines the sequence of the unknown coefficients in our 
I 

(Ao-E) -Bo 0 
CI (AI-E) -BI o 

ansatz (4.15) in a recurrent way similar to the definition 
( 4.1 0) of the subdominant solutions. 

In the present case, our choice of the sign of a in (4.12) 
is ambiguous. In accord with I, we have to choose both signs 
when constructing the general solution. For the elimination 
of the unphysical asymptotic component we used not chang
ing signs, i.e., with a>O in (4.12) (see I for more details) 
and must guarantee its asymptotic dominance [represented 
by the exponential exp G IEin (4.15), i.e., obviously, just by 
the condition ( 1.7) ]. Vice versa, the expansions h ~dl needed 
in the Jost solution (3.11) will be given by the present formu
las with the negative a < O. 

c. The matrix elements of the effective Hamiltonian Q8" 

Our basic finite-dimensional and exact form of the 
Schrodinger equation (2.8) has to be solved numerically, of 
course. In the present example, it takes the form 

o 
o 

=0. (4.20) 
o 
o 

D 

o 
CN_ I (AN_I -E) -BN_ I 

D YN ZN 

The pair of the unknown matrix elements (normalized by 
the choice of X~) = D (I) = D) Y~) ( = YN) and ZN is de
fined by Eq. (3.15), 

Dh ~~2 + YNh ~~ 1+ ZNh ~l = 0, 
(4.21 ) 

Dh~~2 + YNh~~1 +ZNh~l =0, 

with the asymptotic series representations (4.9) and (4.15) 
of the Jost components h ~sl and h ~dl, respectively. 

In the N~ 1 asymptotic region, we may interpret (4.21 ) 
as an estimate 

(
YN) = (o( lI..[N) 
ZN O(lIN) 

O( liN) ) - 1(0(1») 
0(1IN 2

) 0(1) 

( 
O(N) ) 

= 0(N3/2 ) , (4.22) 

compatible with the ECF results. 16 This estimate enables us 
to arrange the explicit solution of ( 4.21) in the form 

Y
N 

= R(s,2) - R(d,2) , 
R(s,!) - R(d,!) 

h [xl 
R (x i) = ~ d' 1 2 , h J:l ' x = s,' I = , , 

ZN = R(s,2)R(d,!) - R(d,2)R(s,l) 
R(s,l) -R(d,!) 

(4.23) 

This is our final formula and has the following features. 
(a) A.fteran insertion of the expansions ofh ~sl andh ~dl 

as derived in the preceding text, this formula is valid for all 
N>2 in principle. 

(b) In practice, we shall use the truncated expansions of 
h ~xl, assuming that the value of the subscript n is sufficiently 
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large, n ~ 1. Then, all the second terms in the numerators and 
denominators in Eq. (4.23) become mere corrections of 
0(1 IN 112). In the numerator of YN , this correction is even 
smaller [ O( liN) ]. 

(c) The Pade-type structure ofEq. (4.23) is suitable for 
computations even for the intermediate (not too large) val
ues of the subscript N. Vice versa, a power-series rearrange
ment ofEq. (4.23) could make the N dependence of Y Nand 
ZN less complicated in the non-numerical considerations. 
For this purpose, we also recommend formula (2.5), which 
defines both Y Nand Z N as functions of a quantity Fn , n > N. 
In this context, we also recall the results of Ref. 16 where an 
expansion of the asymptotic series type 

K 
B F = W ~ 0 N -m/2 

N-I N 'IH ~ m 
m=O 

has been obtained, with the coefficients 

00 = 1IJ{i, 01 = - ({3 + y)14o , 

(4.24) 

O2 = (1I16aJ{i)[ (4/- 2)a + ({3 + y)2 + 4y - 40 1 ] , 

(4.25) 

etc. (generated on the computer in REDUCE). 

For illustrative purposes, we may recall once more the 
tests of Tater, 10 who employed the simplest nontrivial exam
ple of Ref. 4 and demonstrated the efficiency of the ECF-FP 
concept as well as an extension of validity of the eigenvalue 
condition (1.9) numerically. His conclusions were based on 
the expansions of the power-series type (4.24), but only in
significant deviations appear after a transition to the Pade
type "effective" matrix elements (4.23) in the correspond
ing secular equation (2.8) or (2.10) in the simple q = 1 
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example. Thus we may omit the tables of energies here, 
reemphasizing once more that equations of the type (4.23) 
[and (3.15) in general] seem to represent the only feasible 
non-numerical definition of ([If for the more complicated 
(q> 1) potentials. 

V.SUMMARY 

In paper I, the Hill-determinant zeros were shown to 
coincide with energies in the infinite-dimensional limit only. 
Now, our main result is the identification of these binding 
energies with zeros of a finite, [(M + 1) X (M + 1)]
dimensional effective Hill determinant Y 
= det(([1f (E) - E). 

This paper remains based on the power series ansatz ofI, 
where an algebraic (determinantal) solvability of the result
ing difference Schrodinger equation was employed. Here, we 
solve it iteratively in the n ~ 1 asymptotic domain. This has 
the following advantages. 

(i) In the limit n -+ co, our difference equation degener
ates into a two-term recurrence. Hence, for any potential, it 
becomes exactly solvable in terms of the gamma functions. 
This contrasts with the (q + t + 2)-term recurrent charac
ter of the n = O( 1) Hill determinants. 

(ii) A transition to large but finite indices n < co does 
not violate the leading-order two-term structure of the equa
tion. A systematic and explicit algebraic evaluation of cor
rections remains a linear problem to all orders. 

(iii) Even in the zeroth-order approximation, we obtain 
a significant improvement of the Hill-determinant algorithm 
(cr., e.g., the numerical tests of the particular examples in 
Refs. 6 and 10). In the present formalism, the reasons are 
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obvious-we have chosen a better matching point for the 
"regular" and "Jost" solutions. 

(iv) The implicit Pade-approximation-Iike structure of 
our basic formulas [( 3.15) or, in an explicit example, 
(4.23) ] seems promising for an a priori control of precision 
at large M.( co . 

(v) In contrast to the geometric (fixed-point) analysis 
of convergence (related to the ECF definition of ~ and 
given in detail in Refs. 6 and 16), our present definitions 
[containing complex roots (3.7), etc.] seem more likely to 
clarify the origin and elimination of oscillations as observed 
in Ref. 14. 
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The energy-dependent trace-class time-delay operator associated with the transit time of a 
scattering system through a finite space region ~~R2 is used to define a local (~-dependent) 
version of the Krein spectral shift function. If the region ~ is a disk of radius r, it is proved that 
as r-- 00 the local spectral shift function converges, for almost all energies, to the original 
spectral shift function of Krein. This result continues to be valid for systems exhibiting zero
energy resonance behavior. 

I. INTRODUCTION 

Consider the quantum-mechanical scattering in two di
mensions of a single spinless particle from a potential V( x). 

For this system we study representations of the Krein spec
tral shift function. 1 Let {Ho,H} be the pair offree and inter
acting self-adjoint Hamiltonians that define the scattering 
system. The free Hamiltonian is the self-adjoint extension in 
L 2(R2) of the negative Laplacian. The spectrum 
u(Ho) = [0,(0) associated with Ho is absolutely contin
uous. Take Ro(z) to be the resolvent operator for Ho defined 
for complex energies z that lie within the resolvent setp(Ho) 
[R(z), H, andp(H), respectively]. We recall the following 
basic result. 1-5 

Theorem 1.1: If {H,Ho} is such that [R(zl) - Ro(zl) ] 
is trace class for some value zIEp(H) np(Ho), then there 
exists a real-valued measurable function t on R unique al
most everywhere up to an additive constant satisfying 

(a) t(A) (1 +A2)-ld I(R); (1.1) 

(b) Tr[R(z) - Ro(z)] = Joo t(A)d(~), 
-00 A z 

zEp(H) np(Ho); (1.2) 

(c) if SeA) denotes an element of the Ho direct product 
representation of the S matrix, then for almost all AEU(Ho) 

det S(A) = e - 21Ti';(A). (1.3) 

Clearly the spectral shift function t(A) of Krein is a 
form of generalized phase shift that remains meaningful 
even when the scattering potential Vex) is not rotationally 
invariant. Many of the main features of a scattering system 
are determined by the knowledge of t(A). For example, the 
function t plays a key role in the sum rules (Levinson's theo
rems) that relate the bound states of H to the scattering 
continuum. 

A second universal quantity in scattering theory is the 
time delay6.7 associated with a given finite coordinate space 
region ~ ~ R2. The transit-time difference between the exact 
and free evolving systems through the region ~ leads to the 
definition8 ofa family of trace-class operators l'y (A) acting 
on L 2(,0.), AEU(Ho), where n is the unit circle in R2. De
note by tr the trace on L 2 (n). It has been previously suggest
ed9 that one could define a local spectral shift function 
t y (A) by the formula 

ty (A) = - e(A) rA 

dA' tr l'y (A ') 
21T Jo 

- L r dx l,pi (x) 12. 
A,<A Jy (1.4 ) 

Here the functions ,pi are the unit-normalized L 2 (R2) eigen
functions of H having eigenvalue A. i' The symbol e (A) is the 
right continuous form of the Heaviside step function, equal 
to 1 for non-negative arguments and zero otherwise. It is 
appropriate to call t ~ (A) the local spectral shift function, 
since it satisfies9

•
10 (for all ~ with finite Lebesgue measure) a 

resolvent trace identity analogous to (1.2), i.e., 

Tr Py [R(z) - Ro(z) ]Py = Joo t~ (A)d (~), 
-00 A z 

zEp(H)np(Ho), (1.5) 

wherePy is the projector on L 2(R2) that is defined by multi
plication with the characteristic function X ~ (x). 

The basic goal of this paper is to characterize in a rigor
ous manner the way in which the local Krein function t ~ (A) 
converges to the global Krein function t(A) as ~ __ R2. This 
problem has a connection with understanding the manner in 
which 1'~ (A) converges to the global time-delay operator 
defined by 

l'(A) = _ist(k2)~s(k2), k2=A>0, (1.6) 
dk 

as ~ __ R2. In Eq. (1.6) the symbol t denotes the adjoint. 
Results for this latter limit have been established8

-
15 either in 

a distributional sense or in a weak sense for certain smooth 
functions on L 2. For the limiting problem involving the local 
and global Krein functions, simpler results emerge. Suppose 
~ is a disk of radius r; then we shall prove for a class of 
potentials having algebraic decay for large argument that t ~ 
converges to t pointwise almost everywhere on ( - 00,(0) 

asr--oo. 
In Sec. II we state the known results for two-dimension

al scattering in a form suitable for the investigation of the 
local and glObal Krein functions. Section III provides a rep
resentation of S(A) in terms of the real-axis limiting value of 
Tr[R (z) - Ro(z)]. The large-distance behavior of the scat-
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tering wave function 16 is used in Sec. IV to obtain an asymp
totic relation between 7(,1) and 7 ~ (A). Finally, Sec. Vestab
lishes the convergence of 5~ (A) to 5(,1)· 

II. SCATTERING IN TWO DIMENSIONS 

We briefly summarize basic facts about scattering theo
ry that are required in what is to follow. First, let us intro
duce some useful notation. Throughout the paper we employ 
the convention that fz2 = 2m = 1. The symbols &J, &J 2' and 
&J 1 will represent, respectively, the Banach spaces of bound
ed, Hilbert-Schmidt, and trace-class operators on the L 2 

spaces of interest in this problem-either L 2 (R2) or L 2 (n). 
The inner product (.,.) on L 2(R2) is taken to be antilinear 
in the left argument. We denote by Y(R2) the Schwartz 
space of rapidly decreasing functions in R2; R + will be the set 
of positive reals. The complex energy variable takes values in 
the canonically cut plane IT = C'\R+. Finally, IT+ denotes 
the closure of IT that maintains the distinction between the 
two possible boundary values along the positive real axis and 
omits the origin. 

The potential V: R2 --+ R is assumed to be a measurable 
function that is a member of the following class. Let the 
parameters be g > 0 and E>O. 

Definition: The function V is said to be in the class 
.Q{ (g,E) if (i) VEL ~oc (R2) nL~': E(R2), and (ii) for each V 
there exists some 0 < Xo < 00 such that 

sup (1 + Ixl g
) lV(x) I = C(xo,g) < 00. 

Ixl>xo 

Condition (i) restricts the severity of the local singulari
ties V may have within the ball S(xo) = {xER2; Ixl<xo}, 
whereas (ii) characterizes the decay of the potential for 
large Ixl. The potential class has the following ordering 
property: if g2>gl and E2>E1, then .Q{(g2,E2) ~ .Q{(gl,EI )· 

The class .Q{ is easily related to standard families of po
tentials for which scattering theory is fully developed. For 
example, g> 1 implies .Q{ (g,E) ~L 2(R2) nL 2+ E(R2). Re
call that if the potential VEL 2(R2), then the associated oper
ator V [defined by maximal mUltiplicaiton with V(x)] isHo 
bounded. Thereby the perturbed Laplacian ( - .:l + V) de
fined on CO' (R2) has a unique self-adjoint extension 17 H. In 
addition, ifg> 1, then Vis in the class of short-ranged poten
tials studied by Agmon,18 who shows that for these poten
tials H has no singular continuous spectrum and that H has a 
finite number of negative eigenvalues, each with finite multi
plicity. Increasing the value of g we see that g> 2 leads to 
.Q{(g,0)~L2(R2)nLI(R2), and g>n+2, n>O, implies 
that (1 + Ixn V(x) is L I(R2) nL 2(R2). For example, if 
g> 2 [thereby ensuring that (1 + Ixl) V(x)EL 2(R2)], then 
it is known 19 that H has no embedded eigenvalues. Our most 
detailed results for the large I x I asymptotic expansions of the 
scattering wave functions will require g > 8. If V is replaced 
by ,10 V, where ,10 is a real coupling constant, then, for certain 
values of ,10' H may have bound states and/or resonances at 
zero energy. 20 In this paper this possibility is taken explicitly 
into account. 

Setting Z = k 2, 1m k> 0, k # 0, the free resolvent 
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Ro(k 2) = (Ho-k2)-1 

has a Carleman kerneJ21 

(2.1 ) 

Ro(k 2;x,y) = (i/4)H~/)(k Ix - yl>, x#y, (2.2) 

where H61)(Z) is the Hankel function of the first kind and 
order zero. 

Introducing the factorization scheme 

v(x) = I V(x) 1112, u(x) = v(x)sgn V(x) (2.3a) 

allows one to define a symmetrized free resolvent 

A(z) = uRo(z)v, zEIT+. (2.3b) 

Specifically, A (z) is the integral operator determined by the 
kernel u(x)Ro(z;x,y)v(y). Ifg> 2, the operator is Hilbert
Schmidt for all ZEIT +. The exceptional set associated with A 
is defined as 

~={k2>0: A(k 2 +iO)I/J= -I/J, 

forsome 1/JEL2(R2), k>O}. 

The set ~ is a closed subset of [0,00 ) with Lebesgue measure 
zero containing the singular continuous spectrum and the 
positive spectrum of H. Let R ~ (z) denote the derivative of 
the free resolvent with respect to z. If g > 3, then 

A '(z) = uR ~ (z)v (2.3c) 

is &J 2 valued for all ZEIT +. These observations are an imme
diate consequence of the following estimates, valid for all 
z = k 2, 1m k>O, k #0: 

IIA(k2)11~<clk I-I 11V11~/3' (2.4) 

IIA '(k2)11~<lk 1-4[C'IIVII~ 

+C"lkl(f dx(1 + IXI)IV(X)I)T (2.5) 

where c, c', and c" are constants independent of k. 
The utility of the operators A (k 2) and A ' (k 2) is that 

they have well-defined &J 2 boundary values as 1m k --+ O. For 
this reason the limiting absorption principle is particularly 
easy to apply in this circumstance. For g> 2 we can define 
the family of transition operators by 

T(k 2) = (1 +A(k 2»)-I, 

Imk>O, k2E!:~Uup(H)U{0}. (2.6) 

The full resolvent is 

R(k 2) = (H_k2)-I, Imk>O, k 2E!:Up (H), (2.7) 

and satisfies the second resolvent equation 

R(k 2) =Ro(k 2) -Ro(k2)vT(k2)uRo(k2), 

1m k>O, k 2E!:Up (H). (2.8) 

Note that for VEL I (R2), thenRo(k 2)vanduRo(k 2) areHil
bert-Schmidt for all 1m k> O. 

In a similar fashion one defines a symmetrized pair of 
wave functions ct>± (kro)EL 2(R2), k>O, roEn, as the solu
tion of the inhomogeneous equation 

ct>+ (kro) = ct>o+ (kro) - A (k 2 + iO) tct>+ (kro), 

ct>- (kro) = ct>o- (kro) - A (k 2 + iO)ct>- (kro), 

Bolle. Danneels. and Osborn 

(2.9a) 

(2.9b) 
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for all k # 0, k 2Eta-p (H), where the 4> o± (kro,') are defined by 

4>0+ (kro,x) = v(x)eikoo'x, <1>0- (kro,x) = u(x)eik.,.x. 

(2.lOa) 

In terms of the transition operators, one obtains 4> ± from 
<1>6' by 

4>+ (kro) = T(k 2 + iO)<I>o+ (kro), 

4>-(kro) = T(k 2 + iO)<I>o- (kro). 
(2.lOb) 

The functions 4> ± (kro) are closely related to the incom
ing and outgoing solutions 'I' ± (kro,x) of the Lippmann
Schwinger equation 

'I'± (kro,x) = 'l'o(kro,x) - J dy Ro(k 2 ± iO;x,y) 

X V(y)'I'± (kro,y), (2.11a) 

where '1'0 (kro,x) = eik.,.x and k> O. The solutions 
'I' ± (kro,x) of (2.11a) may be recovered from 4> ± (kro) by 

'1'+ (kro,x) =u(x)-I4>-(kro,x), XESUpp(U), (2.11b) 

etc. For VE.JiI (g,O), g> 1, the functions 'I' ± are the general
ized eigenfunctions of H, which behave like plane waves as 
Ixl-+ 00. Specifically, for VE.JiI (g,O), g> 1, the 'I' ± (kro,x) 
are continuous functions ofx with distributional derivatives 
D~'I'±(kro,x) that are Lfoc(R2) for multi-indices lal<2. 
For fixed x and k > 0, the 'I' ± (kro,x) belong to L 2 ( n) and 
are continuous [in the L 2(n) norm] as (x,k) varies 
throughout R2X (0,00) [cf. Ref. IS, Theorem 5.1, part 
(ii)] . 

Scattering theory for such a system can be developed 
along standard lines. We require the following basic results. 

Theorem 2.1: Let VE.JiI (g,O), g > 2. Then the wave oper
ators n ± associated with the Hamiltonian pair {Ho,H} exist 
and are complete. The scattering operator S is unitary and 
commutes with H o, and in the Ho direct integral representa
tion the corresponding on-shell operator s(k) is given by 

(s(k)¢)(ro) = ¢(ro) + (21T) -1/2eiTr/4k 112 

X L dro' f(k;ro,ro')¢(ro' ), (2.12) 

for k> 0, ¢EL 2(n). The function! R+ XnXn-+c is the 
on-shell scattering amplitude determined by the following 
equivalent expressions (k > 0): 

f( k;ro,ro' ) 

= - eiTr/4 (S1Tk)-1/2(<I>o+ (kro),4>-(kro' ») 

= - eiTr/4 (S1Tk)-1/2(<I>+(kro),<I>o- (kro'») 

(2.13a) 

(2.13b) 

= e - 3iTr/4( S1Tk) -1/2(<1>0+ (kro), T(k 2 - iO)<I>o- (kro' »). 
(2.13c) 

Finally, the operator [s(k) - 1] is trace class on L 2(n) for 
k>O. 

Proof" If g> 1, then the existence and completeness of 
the wave operators, together with the unitarity of the scatter
ing operator, are proved by Agmon in Ref. IS, Secs. 5 and 7. 
The formulas (2.13a )-( 2.13c) for the scattering amplitude 
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and S matrix s(k) are standard and follow if g> 2 (Ref. IS 
and Ref. 22, Chap. XI.S). Finally, the trace-class character 
of s( k) - 1 follows from formulas (2.12) and (2.13c). The 
detailed verification that s(k) - 1 is in (!lJ 1 is based on a 
simple modification of the argument found in Ref. 23, 
Lemma 1. 0 

Theorem 2.2: Let VE.JiI(g,O), g>3. For k>O, then 
(l + Ixl)1/24>±(kro,x) is strongly continuous in L2(R;) 
with respect to k for all roEn, and furthermoref(k,ro,ro' ) is 
continuously differentiable with respect to k for all 
ro,ro'En X n. In particular, s('): R+ -+ (!lJ I(L 2( n») is con
tinuously differentiable in the trace norm. In addition, for 
k> 0, s'(k) is trace class on L 2(n) and s'(k): 
L 2(n) -+L 2(n) is an integral operator with a Hilbert
Schmidt kernal given by 

(s'(k)¢)(ro) 

= L dro' :k [(21T) -1/2eiTr/4k 1/2f(k,ro,ro') ]¢(ro'), 

(2.14 ) 

for <PEL 2(n). 
Proof" A statement parallel to Theorem 2.2 for scatter

ing in R3 is found in Ref. 23, Lemma 1. Adjusting this deriva
tion of Ref. 23 from R3 to R2 gives the result above. 0 

Finally we recount the finite-region time-delay formal
ism for our system. For a class of smooth but dense states 
¢EL 2 (R2) and each measurable sen: ~ R2 having finite mea
sure, the difference in transit times of the exact and free sys
tem through region ~ is defined as8

•
10

•
13 

6.T f (¢) = f: 00 dt [IIPl;e-iH'n± ¢11 2 -IIPl;e-
iH

"'¢11 2]. 

(2.15 ) 

The time-dependent functions e - iH'n ± ¢ and e - iH",¢ are 
the exact and free evolving states that converge in the L 2 

norm to each other as t -+ ± 00. The value of 6. T f (¢) is 
independent of the choice ±. 

The well-known result of Ref. 8 (Theorem 2) constructs 
the Ho direct product representation associated with 
6. T f (¢). The representations (2.16) and (2.17) below are 
proved in Refs. 10 and 14. 

Theorem 2.3: Let ~ be a measurable subset of R2 with 
finite Lebesgue measure. Then for the scattering system 
{Ho,H} defined by VE.JiI (3,0) there exists a unique measur
able family Tf (k) of trace-class operators in L 2(n), i.e., 
T f ( . ): (0,00 ) -+ (!lJ I (L 2 (n»), interpreted as the energy-shell 
time-delay operator, such that 6.T f (¢) can be written 

6.T f (¢) = 100 

dk L dro( Uo¢)(k,ro)*(Tf (k) Uo¢)(k,ro) , 

¢Ei»o, (2.16) 

where i»o = {¢EY(R2): supp(¢) is compact} with ¢ the 
Fourier transform of ¢, and where Uo is the following iso
morphism, defining the direct product decomposition of Ho: 

{
L 2(R2) -+L 2( (0,00 );L 2 (n»), 

Uo: 
g(x)-+(U~)(kro) = kg(kro), k>O, roEn. 
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Furthermore, the kernel of r I (k) is given by 

rf (k,ro,ro') = L dx['I'± (kro,x)*'1'± (kro',x) 

- 'I' o( kro,x) *'1' o( kro' ,x) ]. (2.17) 

III. REPRESENTATIONS OF THE SPECTRAL SHIFT 
FUNCTION 

In this section we develop two representations of the 
spectral shift function s(A.) in terms of the positive energy 
z = A. ± ;0, A. > 0, boundary values of Tr[R (z) - Ro(z) ]. 

The first representation is a consequence of Cauchy's residue 
theorem for meromorphic functions applied to Tr[R(z) 

- Ro(z)]. The second is the result of combining the first 
representation with the known form of Levinson's 
theorem24-26 in ]R2. 

It is useful to introduce a family of operators related to 
T(z). If the decay parameter in d is g> 3, then define T: 
II+-@2 by 

T(z)=:A(z)T(z). (3.1) 

Since (1 +A(Z»)-I is a bounded operator, (3.1) and (2.6) 
give us 

T(z) = l-A(z)T(z) = 1 - T(z), 

T(z) = 1 - T(z). 

(3.2) 

(3.3 ) 

The next two lemmas characterize the analytic behavior 
in z of our system and its boundary-value behavior as 
z-A. ±;o, A. > O. 

Lemma 3.1: Let VEd(g,O), g> 3; then the following 
statements hold true. 

(a) A('): II+ _@2(L 2(]R2»)is 11'112 continuous. 
(b) For zEII + there exist finite constants C I' C2 indepen

dent of XE]R2 such that 

lI]Ro(z;x,·)u(·)II~ <c,IIVIII + (c2/1zl 112) 11V1I2' (3.4) 

(c) T('): II+ ,\up(H)_@2(L 2(]R2») is 11'112 contin
uous. 

(d) [R(-) -Ro(')]: II,\up (H)_@I(L 2(]R2») de
fines a @ 1 meromorphic function on II, with simple poles at 
ZEUp (H). Furthermore, 

R(z) - Ro(z) = - [Ro(z)v] [uRo(z)] 

+ Ro(z)vT(z)uRo(z), zEII,\up(H). 
(3.5 ) 

(e) For all ZEII, 

-II Tr[Ro(z)v] [uRo(Z)] = -- dx V(x). 
41TZ 

(3.6) 

Proof: (a) This follows from the Hilbert-Schmidt norm 
formula, 

IIA(zl) -A(z2)11~ = I f dxdy lV(x) I lV(y) I IRo(zl;x,y) 

- R O(Z2;X,y) 12, (3.7) 

the uniform estimate (Ref. 27, pp. 962-963) for the Hankel 
function, 
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(3.8) 

for all aEC'\ {O} with 1m a>O, and the resolvent formula 
(2.2). 

(b) This assertion claims that Ro(z;x,·)u(·): ]R2_C is 
an L 2 (R2) function. The definition of the L 2 norm and the 
free resolvent kernel expression (2.2) gives us 

IIRo(z;x,· )u(") II~ = _1_ I dy lV(y) IIH 61) (v'zlx _ yi> 12. 
16 

(3.9) 

Bound (3.4) results as a consequence of dividing the integral 

(3.9) into two regions where v'zlx - yl ~ 1. For the region 

with v'zlx - yl > 1 use bound (3.8) for H61). In the region 

v'zlx - yl < 1 we use an alternative bound, namely, 

IH 61) (v'zlx - yl) 1 < c lIn Iv'zlx - yl 1 I [Ref. 27, Eq. 
8.444(1) ]. 

(c) This statement is a consequence of the @ 2 continu
ity of A (z), formula (3.1), and the identity 

T(zl) - T(Z2) = T(z2){I- [A(Z2) -A(ZI)]T(Z2)}-1 

X [A(Z2) -A(zl) ]T(Z2)' (3.10) 

On the right side of (3.10) the first, second, and fourth oper
ators are bounded as z 1 - Z2' while the factor A (z I) - A (Z2) 
vanishes in the 11'112 norm by virtue of (a). 

(d) Both R(') and Ro(-) are @ holomorphic onp(H) 

and p(Ho), respectively. Since Ro(z)v, uRo(z) are in f!lj 2 
while T(z) is bounded for zEII'\up (H), Eq. (2.8) shows 
that the resolvent difference is trace class. In addition, Eq. 
(3.5) results from (2.8) and (3.3). 

(e) Since Ro(z)v and uRo(z) are in f!lj 2 with 
L 2(]R2X]R2) kernels, [Ro(z)v] [uRo(z)] is trace class, and 
the trace may be evaluated by the usual diagonal integral 
formula (Ref. 17, p. 524) and well-known properties of 
H61)· 0 

Lemma 3.2: Let VEd(g,O), g> 3; then the following 
assertions are true. 

(a) uR b (. )v: II+ -@2(L 2(]R2») is 11'112 continuous. 
(b) Tr[R(') - R o(')]: II+ ,\up(H) -Cis continuous. 

Furthermore, the boundary value ofTr[R(') - R o(')] on 
]R+ can be represented by (A. > 0) 

B ± (A.) = Tr T(A. ± ;0) [uR b (A. ± ;O)v] 

+ _1_ r dx V(x). 
41T1t JR' 

(3.11 ) 

Proof: (a) Follows from the application of the Hilbert
Schmidt norm formula for operators with L 2(]R2XR2) ker
nels. In formula (3.7) replaceRo( ";x,y) withR b (";x,y). The 
@2continuityofuR b (z)v is a consequence of the pointwise 
continuity of the kernel R b (z;x,y) and an application of the 
dominated convergence theorem. 

(b) Let zEII '\up (H) and take the trace of the operators 
in Eq. (3.5). After employing the cyclic property of the trace 
one has 

Tr[R (z) - Ro(z)] = - Tr[Ro(z)v][uRo(z)] 

+ Tr T(z)uR b (z)v. 
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In (3.12) we have used the identity R b (z) = R ~ (z). State
ment (e) of Lemma 3.1 shows the first term on the right of 
(3.12) to be continuous for zETI+. The second term on the 
right of (3.12) is the trace ofthe product oftwo f!JJ 2-contin
uous operators. 0 

The following two lemmas describe, respectively, the 
Izl- 00 and the Izl-O behavior of the system {Bo,B}. 

Lemma 3.3: Let VE..Gt'(g,O), g> 3; then the following 
remarks hold true. 

(a) There are constants Ao> 0, c < 00, such that 

liB ±(A)II<cA -I, AE[Ao,oo). (3.13) 

(b) For positive integers n, 

1 d Tr A(z)nuR b (z)v = --- Tr A(z)n+ I, zETI+. 
n + 1 dz 

(3.14 ) 

(c) Suppose C(r) denotes the circular contour in TI+ 
with center z = 0 and radius r > 0, which starts at r + iO 
and ends at r - iO. Then 

lim r dzTr1'(z)uRb(z)v=O. (3.15) 
r-ooJC(r) 

Proof (a) The large A decay estimate (3.13) follows 
from expression (3.11) for B ± (A) plus the fact that 
111'(.1 ± iO) liz decays like A -1/4 and that lIuR b (A ± iO)vlI2 
decays like A -3/4 [cf. Eq. (2.5)]. 

(b) The differential identity (3.14) results from the fact 
that A ( . ): TI + _ f!JJ 2(L 2 (R2») is continuously differentiable 
in the 1I'11z norm with derivative uRb(z)vEf!JJ2(L

2(R2»). 
Applying the chain rule for derivatives to An + 1 (z) (n;;d) 

gives (3.14). 
(c) Consider (3.15). The operator identity (3.3) for 

T(z) and the definition (3.1) for 1'(z) implies that 

1'(z) =A(z) -A(Z)2T(z). (3.16) 

Thus the integrand of (3.15) may be written 

Tr 1'(z)uR b (z)v = Tr A(z)uR b (z)v 

- Tr A (z)2T(z)uR b (z)v. (3.17) 

Note that T(z) is uniformly bounded in "+ for largez since 
estimate (2.4) says that IIA(z)11 < 1 for all Izl >c2IJVII!/3' 
We may therefore conclude that the rightmost term in 
(3.17) is O( Izl-5/4) and so gives a vanishing contribution to 
the C(r) contour integration as r - 00. In view of (3.14), 
the remaining term from (3.17) can be written as an exact 
differential. The integral of this term is proportional to 
[Tr A(r + iO)2 - Tr A(r - iO)2]. As r - 00, the preced
ing function in the square bracket vanishes as r- I

/
2. 0 

The following lemma gives us an analytic characteriza
tion of the small-energy behavior of our system, taking into 
account the possible occurrence of zero-energy states of the 
Hamiltonian. Under suitable restrictions on the potential 
one can describe these states by introducing the function ifJo 
as the solution of 20.25.26 
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AoQMooQifJo = - ifJo, ifJoEL 2 (R2
), 

Q= I-P, P= (V,U)-I(V,')U, 
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(3.18 ) 

where .10 is the coupling constant, and Moo is a f!JJ 2(L 2 (R2») 
operator for all 1m k,>O obtained from uRo(z)v by first sub
tracting out the logarithmic singularity at z = 0 and then 
taking z = O. Its kernel reads 

Moo(x,y) = ( - l/217")U(X)v(y)ln Ix - yl, x#y. 

The function ifJo can be related to the solution25.26 '1'0 of the 
zero-energy Schrodinger equation, viz., 

tPo(x) = - (v,u)-'Ao(v,MooifJO) 

- (217")- IAof dy[lnlx - yl]v(Y)ifJo(Y)' 

(3.19a) 

u(x)tPo(x) = - ifJo(x). (3.19b) 

Looking essentially at the large Ixl behavior of the wave 
functions tPo(x) in (3.19a) one then finds the following pos
sibilities. 

Case I: Equation (3.18) has no solutions or, equivalent
ly, there exists no zero-energy state '1'0' 

Case II: Equation (3.18) has N<.3 solutions ifJo satisfy
ing ifJoEL 2 (R2), 'I' oflL 2 (R2), so that they are all zero-energy 
resonances. A further distinction has to be made according 
to exactly what terms survive in the large Ixl limit of 
(3.19a). Roughly speaking, the following characterization 
emerges: 

(a) s-wave type zero-energy resonance: N = 1; 
(b) p-wave type zero-energy resonances: N<.2; 
(c) combination of (a) and (b): 2<.N<.3. 
Case III: Equation (3.18) has N solutions ifJo, N finite, 

satisfying ifJoEL 2(R2), 'l'oEL 2(R2), so that they are all zero
energy bound states. 

Case IV: Admixtures of cases II and III. 
Then one can show that the following lemma is true (for 

more details refer to Ref. 26). 
Lemma 3.4: Let VE..Gt' (g,O), g> 4. If the zero-energy 

behavior is not of case I or II(a), assumeg> 10. Then for all 
Izl < 1] for some 1] > 0 and zETI +, 

ITr[R(z) -Ro(z)] +Dlzl<cl(lzlllnzl), (3.20) 

11m Tr[R(A + i€) - Ro(A + i€)] I 
<c'[d(A 2 + e)], €>O, 

where c and c' are finite constants and D is given by 

DI = 0, DII(a) = 0, DII(b) = N, 

DII(e) = (N - 1), Dill = N, 

D IV is a combination of D II and Dill. 

(3.21 ) 

(3.22) 

Proposition 3.5: Let V satisfy the hypothesis of Lemma 
3.4. Suppose Aj is a negative eigenvalue of B with multiplic
ity n j '> 1. The eigenvalues will be indexed by magnitude, 
Aj+ 1 <Aj. Set .10 = o and no = D (of Lemma 3.4). Then the 
Krein function is (almost everywhere) 

_ 8(.1) t, dA'ImB+(A') +const. (3.23) 
1T Jo 
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Proof" Define three integration paths in 11. Choose 
r> linf up (H) I and lAd> E> <5 > O. Paths CI (E,<5) and 
C2 (r,<5) are segments of circular paths about z = O. The 
path CI has radius E and C2 has radius r. For both CI and C2 

the portions of the circle in the right half-plane with 
11m zl < <5 are absent. Path C3 (E,r,<5) consists of two straight 
lines parallel to the real axis with imaginary part ± i<5 such 
that CI + C2 + C3 are joined into a closed contour. All the 
poles ofTr[R(z) - Ro(z)] fall inside the interior of the re
gion defined by the contour CI + C2 + C3 • The residue 
theorem asserts 

~ i dz' Tr[R(z'~ - Ro(z')] 
2rrl c, + c, + c, Z - Z 

= Tr[R(z) - Ro(z)] 

+ ~ Res Tr[T(Z~~ ~:o(Z')] IZ'~Ai 

n· 
= Tr[R(z) - Ro(z)] - I --' -, 

;;>1 A;-Z 
(3.24 ) 

for Z¥A;. 
The right side of (3.24) is independent of <5, E, and r. In 

Eq. (3.24) we shall take the limits <5-+0, then E-+O, and 
finally r-+oo. Because Tr[R(z') -Ro(z')] is uniformly 
continuous on the compact sets [!E, r] X [Oi, ± i), it follows 
that the C3 integral can be evaluated on the real interval 
[E,n. Specifically using (3.6), (3.11), (3.12), the Schwartz 
reflection property for Tr[R(z') - Ro(z')]' and the bound 
(3.21) one finds 

1· l' 1 i d ' Tr[R(z') - Ro(z')] 1m 1m - Z -..!.....--'--...:....---=--'-..:. 
E-O Ii-O 2rri c,(E,r,li) Z' - Z 

=J.. (dA' ImB+(A') . 
rr Jo A' - z 

(3.25 ) 

Next observe that (3.12), (3.6), estimate (2.5), and the 
fact that IIT(z) 112 = O( Izl-1/4) imply that for large Izl one 
has Tr[R(z') -Ro(z')) =O(lz'I-I). Thus as r-+oo the 
C2(r,0) contribution on the left of (3.24) vanishes. Also, 
since 1m B +(A') = O(A '-I), the upper limit in (3.25) is 
absolutely convergent as r -+ 00. Finally, take the E -+0 limit 
oftheCI(E,O) term in (3.24). Using the bound (3.20) one 
finds without difficulty 

lim i dz' Tr[R(z') - Ro(z')] = _ D _ no (3.26) 
E_O C,(E,O) Z' - Z Z z 

Altogether we have shown 

n· 
= Tr[R(z) - Ro(z)] - I --' -. 

;;>0 A;-Z 
(3.27) 

The i = 0 term in the sum accounts for any zero-energy reso
nant behavior. In the subsequent theorem on Levinson's sum 
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rule it is shown that the r -+ 00 limit of sf dA ' 1m B + (A ') 
exists and is finite. Thus an integration by parts of the left
hand side of (3.27) gives 

- ~ Loo [LA dA ' 1m B + (A ') ] d L ~ J . 
(3.28 ) 

Continue by writing the summation in (3.27) as 

n; Joo ( 1 ) - I--= In;O(A-A;)d -- . 
;;>0 A; - z - 00 ;;>0 A - z 

Putting together the last three equations gives us 

Tr[R(z) - Ro(z)] 

Joo [ O(A) 
= - In;O(A-A;) ---

- 00 ;;>0 rr 

(3.29) 

( 3.30) 

Representation (3.30) has the same integral form for 
Tr[R(z) -Ro(z)] as does the Krein function result (1.2). 
Using the uniqueness property (up to a constant) of the 
Krein function we conclude that (3.23) is valid. 0 

In the remainder of this section, we shall employ the 2-D 
Levinson's theorem in order to obtain from (3.23) a second 
representation of the Krein function s. This second repre
sentation is essential in the study of the convergence problem 
that relates the local and global Krein functions to each oth
er. 

Theorem 3.6: Let V satisfy the hypothesis of Lemma 3.4. 
Let n T = ~;;>In; be the total number of independent nega
tive-energy eigenfunctions of H. Then 1m B + ( . ): 
(0,00) -+R has an improper Riemann integral on the half 
axis (0,00), which obeys 

Loo - dA 2 1m B + (A) 

= - 2rrnT - 2rrD - J.. r dx V(x). 
2 JR' 

(3.31) 

The value of the constant D is that found in Lemma 3.4. 
Proof" The proof of (3.31) is well known24.26 and so we 

shall just make a few remarks. The proof is based on the 
meromorphy of Tr[R (z) - Ro(z)] in the cut plane 11 to
gether with knowledge of the small and large z behavior of 
this function. One starts the derivation with the function 

F(z) =Tr[R(z) - Ro(z)] + - - -- dx V(x), D 1 f 
z 4rrz 

(3.32) 

and, by applying Cauchy's theorem on the same closed con
tour CI(E,<5) + C2(r,<5) + C3 (E,r,<5) utilized in Proposi
tion 3.5, maintains the order in which the limits <5-+0, E-+O, 
r -+ 00 are taken. The uniform continuity of Tr[R(z) 
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- Ro(z)] on [~€,r] X [0, ± i] is used to evaluate the 8~0 
limitofC3• The€~Olimit ofCI + C3 is, by virtue of Lemma 
3.4, found to be 

lim _1_ f dzF(z) 
E~O+ 21Ti JC,(E,O) + C,(E,r,O) 

1 i r 

1 f =- dAlmB+(A) +- dx Vex). 
1T 0 41T 

( 3.33a) 

The large contour term C2 is evaluated by using (3.12) 
and (3.15). It is found that 

lim _1_ f dz F(z) = D. (3.33b) 
r~oo 21Ti Jc,(r,o) 

Results (3.33) suffice to show that ImB+(') has an im
properintegralon (0,00) and that identity (3.31) is obeyed. 
Note that the asymptotic estimate (3.13) is not strong 
enough to show that 1m B + ( . ) is absolutely integrable at 00 . 

We remark that as long as one guarantees the absence of 
positive eigenvalues and of the singular continuous spectrum 
of H, Levinson's theorem (3.31) can be derived under the 
weaker conditions VEL 413(R2) and (1 + Ix\) V(x)EL I(R2) 
Crespo (l + Ixl2+05)V(x)EL I(R2)] in case I Crespo case 
II (a) ]. In the other cases one needs in addition the stronger 
decay requirement (l + Ixl8+05)V(x)EL I(R2), 0>0. This 
latter restriction on V is obeyed if g > 10. For more details 
refer to Ref. 26. 0 

Theorem 3.7: Let Vbe as in Lemma 3.4. Then for almost 
all A > 0, 

+ _1_ f dx Vex) + const. 
41T JR' 

(3.34) 

Proof: Equation (3.34) results from adding identity 
(3.31) to representation (3.23). 0 

Corollary 3.8: Let V be as in Lemma 3.4. Then for all 
A>O, 

2ImB+(A) = -i~trlns(A). 
dA 

(3.35 ) 

Proof: Representation (3.34) asserts that seA) is con
tinuously differentiable for A > ° and that 

dS(A) = _ ~ 1m B + (A). 
dA 1T 

(3.36) 

If one takes the logarithm of ( 1.3) and then the A derivative 
of the resultant identity, it is found that 

- 21Ti dS(A) = ~ In det seA) = ~ trln S(A). (3.37) 
dA dA dA 

Taken together these two equations give (3.35). Since both 
1m B + (A) and (d IdA) trIn S(A) are continuous functions, 
identity (3.35) holds for all A > 0. 0 

IV. TIME-DELAY ASYMPTOTICS 

In this section we discuss the limit as !.~R2 of the trace 
of the energy-shell time-delay operator tr T t (k), defined by 
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Theorem 2.3. In particular, taking!. to be a disk of radius 
r = I x I, we will use representation (2.17) for the kernel of 
the time-delay operator to obtain this limit. So we first have 
to study the asymptotic behavior as r~ 00 of the wave func
tions \IIo(kro,x), \11+ (kro,x). For fixed values of k and x it is 
helpful to interpret \IIo(k·,x) and \11+ (k·,x) as distributions. 
Let !!))' be the space of distributions dual to C 00 (0). The 
continuous linear functional defined by an element dE!!)) I we 
denote as (d,F), FEC 00 (0). Both \IIo(k-,x) and \II + (k·,x) 
are in !!)) '. We note that our treatment is a generalization of 
Buslaev's methods 16 to two dimensions and to the more gen
eral class of potentials satisfying d(g,€). 

To determine the wave function asymptotics in two di
mensions we prove the following results. 

Lemma 4. I: The following asymptotic expansion for 
Ro(k 2 + iO;x,y) is valid as Ixl- 00, Iyl/lxl < 1, k> 0: 

Ro(k 2 + iO;x,y) 

_ i eik Ixl ~ 1 1 
- (41T1/2) n~o n! (2ik Ixl)n+ 112 

XBn (A",,)e - ik","Y + R ~ + 1 (k 2;x,y), (4.1) 

where 

IR ~+ 1 (k 2;x,y)1 

< C(N)k -1/2Ixl-1/2(1 + k Iyl )N+ 1 (lylN+ I/lx/), 
(4.2) 

with C(N) a constant independent ofx,y. The term Bn (A"" ) 
denotes the differential operator 

Bn+ 1 (A",,) = (A",. + (n + !)2)Bn (A",,), 

Bo(A",,) = 1, ro' = x/lxl, 

1 J2 
A ,=--, 8E[0,21T]. 

'" Ixl2 ae2 

(4.3) 

Proof: Starting from Eq. (2.2) for the free resolvent ker
nel and using known expansion properties of the Hankel 
function (Ref. 27, p. 962) we have 

Ro(k 2 + iO;x,y) 

( 
i )112 eiklxl eiklxll(lx-YI-lxl)/lxIJ 

= s; k 1/21xll/2 [Ix - ylllxl] 1/2 

X [N ( - 1)n r(n + P ( Ixl )n 
n~o (2ik Ixl)n n! r( - n +!) Ix - yl 

(_l)N+I rcN+~) 
+ a l -------------

(2iklxl)N+1 (N+ I)!r( -N-!) 

( 
Ixl )N+ 1] X , al<I, N>O. 

Ix-yl 
( 4.4) 

Expanding all Ix - yl/lxl factors for Ixl- 00, Iyl/lxl < 1, 
up to order N, we arrive at 
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( 
i )112 eiklxl N 1 an (k 2.oo'.y) 

= g; k 1/21xll/2 n~o n! (2ik Ixl )n 

+ R ~+ 1 (k 2;x.y). (4.5) 

where R ~ + 1 (k z;x.y) satisfies the bound (4.2) and the 
an (k 2;OO'.y) are some n-dependent coefficients. The latter 
can be calculated by using the fact that Ro (k 2 + iO;x.y) sat
isfies the Schrodinger equation in the distributional sense. 
viz .• 

(4.6) 

Substituting the expansion (4.5) into Eq. (4.6) and equating 
common powers of Ixl. we find the recursion relation 

an + dk 2;OO'.y) = (fl. .... + (n + ~)2)an (k 2;OO'.y). 
(4.7) 

This immediately leads to the result (4.1) with Bn + 1 (fl. .... ) 
defined by (4.3). 0 

Next we want the asymptotic behavior of'l'o(koo.x) as 
I x 1-- 00 • For that purpose we recall the following result from 
the theory of asymptotic expansion of oscillatory integrals 
(Ref. 28. Theorem 2.1). 

Theorem 4.2: Let gEC 2(N+ 1)(0). N;;.O. and let 
hEC 00 (0) be real valued with a finite number of critical 
points tl •... ,tJEO [Le .• h'(tj) =0. h"(tj)#O. h'(t)#O. 
t #tpj = 1 - J). The oscillatory integral 

I(A.) = L eiAh(t) g(t)dt (4.8) 

has the Nth -order A. > 00 asymptotic expansion 

J 

I(A.) = L 1) (A.) +RN+1(A.). (4.9a) 
j= 1 

N 

I
j 
(A.) = /Ah(lj ) L a

nJ 
(g.h)A. - n - 112, (4.9b) 

n=O 

where the expansion coefficients are given by 

Vj = sgn h II ( tj ), 

hj (t) = 2Ih(t) - h(tj) 11/2(t - tj) -I. (4.9c) 
a .( h) = r(n + 1/2) /1Tvpn+ 1)/4 (!!...)2n 

nJ g, (2n)! dt 

X [hj(t) - 2n-lg(t>] 1,= I
j

' 

If A. > 1, there is a constant C(N + 1) < 00 such that the re
mainder term has the estimate 

(4.10) 

Lemma 4.3: For each integer N;;.O and fixed k,oo. 
'l'o(koo,lxl'): O-C has the k lxi- 00, k> O. 
ii),2(N + Il-valued asymptotic expansion 
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'I' o(koo.lxloo') 

2 1/2 ~ 1 1 
= 1T n~o n! (2ik Ixl)n + 1/2 

X [ eik IxlBn (fl. ... , )<5( 00' - (0) 

+ i( - 1) ne - ik IxlBn (fl. ... , )8(00' + (0)] 

+ R ~+ 1 (k.lxl,oo,oo'). (4.11a) 

The term Bn (fl. .... ) is the derivative operator defined by 
( 4. 3 ). and the remainder term R ~ + 1 is a distribution in 
iiJ'2(N+ I) with respect to the variable OO'EO, which satisfies 
the estimate 

(R ~+ 1 (k,lxl.oo,· ),F) 

< C(N + l)(k Ix!) - N- 3/211F1Ic2(N+ "(!l) , 

for some finite constant C(N + 1). 
Proof" We know that 

'l'o(koo,lxloo') = eiklxl ... · ... ·. 

For FEC 2 (N + I) ( 0) define the functional 

(4.11b) 

(4.12) 

('I'o(koo,lxl),F) = L eiklxlcoSBF(O)dO=I(klxl)· (4.13) 

We apply Theorem 4.2 to calculate the behavior of I(k Ixl) 
as k I x I- 00 • Putting h = cos 0, g = F, it is evident that there 
are two isolated stationary points, namely, 0 1 = 0 and 
Oz = 1T. All the conditions of Theorem 4.2 are satisfied, and 
we obtain from Eqs. (4.9) 

2 N 
I(k Ix!) = L L exp(ik Ixlcos OJ)(k Ixl) - n - 112 

j=ln=O 

(4.14 ) 

whereR N + 1 (k Ix!) satisfies estimate (4.10) with A. = k Ixl. 
The precise form of the coefficients a nJ can be calculated 
from (4. 9c). However, we prefer to use the more convenient 
method of Lemma 4,1 based on the fact that '1'0 (koo,x) also 
is a solution of the free Schrodinger equation 

( - fl.x - k 2 )'I'o(koo.x) = O. (4.15) 

It is clear from (4. 9c) that in our case the expressions for the 
coefficients anJ will only involve the function F and its de
rivatives at the points 01 = 0 (00 = 00') [resp. O2 = 1T 

(00 = - 00') ). This allows us to extract from (4.14) the fol
lowing iiJ ,2( N + Il -valued asymptotic expansion for 
'l'o(koo, Ixl·): 

'I' o( koo, Ix I 00') 

= 2(1T)1/2 ~ 1 
n~O n! (2ik Ixl) n + 112 

X [e ik Ix1an (00')8(00' - (0) 

+ ie - ik Ix1bn (00')8(00' + (0)] 

+ R ~+ 1 (k,lxl,oo,oo'), ( 4.16) 

where we have made explicit some numerical factors [in 
analogy with (4.1») and where the derivative operators 
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an (ro'), b n (ro') still have to be determined. Substituting this 
expansion (4.16) in (4.15) and equating the common pow
ers of Ixl we find that an (ro') = bn (ro') = Bn (fl..,,). Esti
mate (4.10) becomes the bound (4.11 b). 

The structure of expansion (4.11) may be somewhat 
unexpected. Although 'l'o(kro,lxl' )EC 00 (0) the coeffi
cients and remainder terms on the right side of ( 4.11 ) are all 
distributions. However, this is the price we must pay if we 
seek an expansion of the plane wave '1'0 in powers of I x 1- I. 

The expansion (4.11) has an obvious symmetry as ro++ro'. 
The differential operators in Bn (fl.",,) have only even-order 
derivatives. For this reason 

( 4.17) 

Identity (4.17) means that expansion (4.11a) can be restat
ed as distribution valued in the variable ro for a fixed param
eter ro'. 

In order to obtain a complete characterization of the 
large Ixl behavior of the wave function '1'+ (kro,x) we exam
ine the large Ixl form of the scattering contribution to 
'I' + (kro,x). Define 'l's+ by 

'1'+ (kro,x) = 'l'o(kro,x) + '1',+ (kro,x). (4.18) 

Lemma 4.4: Let VE..a1' (g,O), g> 6. The function 
'l's+ (k,X)EC(R3" {a} XR3) has the Ixl .... 00 asymptotic ex
pansion 

1 eik Ixl 
'1',+ (kro,x) = '" I Bn (fl."" )j(k;ro,ro') 

. /;::0 Ixl l z(2ik Ixl)n 

+R~(kro,x), (4.19a) 

where C(k) < 00 is an (ro,x)-independent constant such 
that 

IR ~ (kro,x) I < C(k) Ixl- 5/Z. (4.19b) 

Let m>O be an integer. If g> max(6,m + 4), then (for 
each k,x) thefunctions '1',+ (kro,x), Bn (fl."" )j(k;ro,ro') , and 
R ~ (kro,x) are cm(o",). 

Proof The point of departure is the integral representa
tion of '1',+ that follows from (2.11a) and (4.18), k>O: 

'l's+ (kro,x) = - i, dy Ro(k Z + iO;x,y) 

X V(y)'I'+ (kro,y). ( 4.20a) 

Expansion (4.19a) has its origin in the free resolvent expan
sion (4.1). In order to use (4.1) it is necessary to divide the 
'1',+ integral into two parts. Let 0 < r < 1 and define 

I{Is+ (kro,x) = I{I < (kro,x) + '1'> (kro,x), (4.20b) 

where 

I{I < (kro,x) 

= _ f dyRo(kz+iO;x,y)V(y)I{I+(kro,y). 
)Iyl <rlxl 

(4.20c) 

The term 'I' > involves the integration over region I y I> rl x I· 
The complementary restriction Iyl < rlxl means that the ex
pansion (4.1) is valid. Inserting (4.1) into the I{I < integral 
gives 
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I{I < (kro,x) 
eik Ixl 1 1 

= -i (41T)1/2 n~o(2iklxl)n+1/2 

X f dy Bn (fl.",,)e - ik""·YV(y)l{I+ (kro,y) 
)IYI <rlxl 

- f dy R f(k 2;x,y) V(y)I{I+(kro,y). (4.21) 
)IYI <rlxl 

In order to proceed with the analysis of (4.21) it is help
ful to note that I{I+ (kro,x) has an x-independent bound. 
From (2.11a) we have 

II{I+ (kro,x) I 

< Il{Io(kro,x) I 

+ Ii, dy Ro(k 2 + iO;x,y) V(y)I{I+(kro,y) I 
<1 + IIRo(k2 + iO;x,o)u(o) liz 

X Iiv(o)I{I+(kro,(o))llz 

<C(I{I+). 

(4.22a) 

(4.22b) 

(4.22c) 

The estimate (4.22b) follows by interpreting the integral in 
(4.22a) as an inner product and then using Lemma 3.1 (b) 
and (2.11 b) to bound the norm of the right element. The left 
element of the inner product is bounded by (3.4), which is x 
independent. 

First we bound the integral in (4.21) that involves the 
remainder term R f. Inserting the estimate ( 4.2) and 
(4.22c) shows that this term has the bound 

Now enlarge the domain of integration in (4.23a) byextend
ing it to R2. If g > 6, this integral is finite. This shows that the 
R f integral term is O( Ixl-5/2). 

N ext examine the two leading integrals in (4.21). These 
two integrals would construct j( k;ro,ro') and B 1 (fl."" ) 
xj(k;ro,ro') if the domain of integration were R2 [cf. 
(2.11 b) and (2.13a) ] . Modify these two integrals by extend
ing the integration domain from Iyl < rlxl to RZ. Since 
Bn (fl."" )e-ik",'·y = 0 ( 1 + k Iyl) nJ, it is easy to see that the 
contribution from the extended portion of the integral with 
Iyl >rlxl is O( Ix l-5/2 ). 

Finally, consider I{I > (kro,x). This integral must be 
shown to be O(lxl-5/2). Again subdivide the domain into 
two regions with 

and 

Dz = {yER2: Iyl>rlxl, k Ix - yl<l}. 

In region DI the estimate (3.8) shows that IRo(k2 
+ iO;x,y) I < c. Thus 
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1'I'>,D,I<cC('I'+) r dylV(y)l, 
Jlyl>rlxl 

(4.23b) 

1'1' > ,D, I < .C,5~!I'I'I:;2 r dy ly15/21 V(y) I, 
r x Jlyl>rlxl 

where in the second inequality we have used Iyly-I > Ixl. 
The integral in (4.23b), after extension to R2, is finiteifg> 6. 
In the case of the integral over region D2 use the resolvent 
bound (3.8), the estimate (4.22c), and the Schwarz inequal
ity to show 

U I )112 
1'1' >,D, I < cC('I' + ) dy ---

klx-YI<1 klx-yl 

x(i dy I V(y) 12)112 (4.23c) 
lyl>rlxl 

In the rightmost integral replace I V(y) 12 by (lyl/ylxl)5 
X I V( y) 12 and proceed as in the previous estimate of 'I' > ,D, • 

Taken together the estimates (4.23a), (4.23b), and (4.23c), 
in combination with (4.20b) and (4.2Oc), establish (4.19a). 

Now consider the ro-smoothness properties of functions 
entering Eqs. (4.19). To get an idea of the origin of the rela
tionship between ro smoothness and the large Ixl decay of 
Vex) we first examine a simple L 2 argument. Note that 
<1>0- (kro) is m times continuously differentiable in L 2(R2) if 
g> 2m + 2. The bounded operator T( k 2 + iO) maps 
<1>0- (kro) into <1>- (kro) via (2. lOb ). Since T(k 2 + iO) is in
dependent of ro, we have that <I>-(kro) is also m times 
strongly continuously differentiable. Using Eqs. (2.11) 
write '1',+ (kro,x) as the inner product 

'1',+ (kro,x) = - (Ro(k 2 + iO;x,o)v(o),<I>+(kro,o»). (4.24) 

This implies that if g> 2m + 2, then '1'/ (kro,X)ECm(,O",). 
The result quoted in Lemma 4.4 is better than this for m > 2. 
The improved statement of the lemma results if the symmet
ric operator A (k 2) is replaced by an asymmetric one defined 
by the kernel 

I Vex) IlIqRo(k 2 + iO;x,y) I V(y) Ills, 

where q-l + S-I = 1. By choosing s = m + 2 and following 
an argument similar to the one involving (4.24) we obtain 
'l's+ (kro,X)Ecm(ll",) if g> max(6,m + 2). The scattering 
amplitude function Bl (a",. )/(k,ro,ro') has two additional ro' 
derivatives and so requiresg> max(6,m + 4) in order to be 
cm(ll",). The ro smoothness of the error term is a conse
quence of equality ( 4.19a) and the fact that both 
'1',+ (k,ro,x) and Bn (a",. )/(k,ro,ro') (n = 0,1) are 
cm(ll",). 0 

By combining the results of Lemma 4.3 and Lemma 4.4 
one obtains a distributional-valued large Ixl asymptotic ex
pansion of 'I' + (kro,x) in terms of the scattering matrix. 

Proposition 4.5: Let VE..of(g,O), g>6. For each k>O, 
roEll, the wave function 'I'+(kro,lxl o ): ll",. -C has the 
k lxi- 00 §'4-valued asymptotic expansion 

I eik Ixl 
= 21Tl/2 '" B (a . )s(k,ro,ro') 

n~O (2ik Ixi)n+ \12 n '" 
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\ .( 1) n - ik Ixl 
+21TI/2'" I - e B (a .)8(ro+ro') 

n~O ( 2ik lxl)n+1/2 n '" 

+R+(kro,x), (4.25) 

where the remainder R + (kro, I x 10 
) E!iJ,4. If F( ro') is any test 

function in C 4(ll",.), then there is an F,lxl,ro-independent 
constant C + < 00 such that 

(R +(kro,lxlo),F)..;;C+(k Ixi)-5/211F1Ic4(0)' (4.26) 

The results of Lemmas 4.3 and 4.4 also allow us to study 
the limit oftr ri' (k) as ~_R2. We start from Eq. (2.17) on 
the diagonal ro = ro', viz., 

ri' (k,ro,ro) = L dx[I'I'+(kro,xW -1'I'o(kro,xW]· 

(4.27) 

We will omit the sUbscript + in the following. Using the 
Schrodinger equation we obtain 

i dxl'I' (kro,x) 12 

= - r dX['I'*(kro,x)ax ~ 'I'(kro,x) 
J~ ak 

- ( a~ 2 'I' (kro,x) )a x '1'* (kro,X) ] 

1 ... [ - a = - dS~o 'I'*(kro,x)Vx --2 'I'(kro,x) 
s... ak 

-+ a ] - (V x '1'* (kro,x) ) --2 'I' ( kro,x) 
ak 

(4.28) 

by Green's theorem, where S~ is the surface of the region~. 
Take this region to be a disk with radius r. Then (4.28) 
becomes 

- r r dro'['I'*(kro,rro') ~~ 'I'(kro,rro') In ar ak 

- (%r '1'* (kro,rro') )( a~ 2 'I'(kro,rro'»)] 

such that [cf. (4.27)] 

trr,(k) =_r_ r drodro'{[(~'I'*(kro,rro'») 
2k Jnxn ar 

a 
X -'I' (kro,rro') - '1'* (kro,rro') 

ak 

X ~ ~ 'I'(kro,rro')] - ['I'~'I'0]}, 
ar ak 

(4.29) 

(4.30) 

where the notation ['I'~'I'0] is obvious. This expression is 
not in an optimal form for the purposes of our subsequent 
calculations in the sense that, if we want to insert the asymp
totic expansions for '1'0 (Lemma 4.3) and 'I' (Proposition 
4.5) obtained before, we would have to multiply two distri
butions. 
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In order to avoid this difficulty we rewrite (4.30) and 
replace '1'+ ['1'] by'l's+ ['i's] by using Eq. (4.18). With this 
modification (4.30) becomes 

tr 'Tr(k) = _r_ r dro dro'{(!.- 'I'~(kro,rro'») 
2k Jnxn ar 

a 
X- 'l'o(kro,rro') 

ak 

az 
- 'I'~(kro,rro') -- 'l'o(kro,rro') 

arak 

+ (!.- 'l't(kro,rro'»)~ 'I'~(kro,rro') 
ar ak 

az 
- 'l't (kro,rro') -- 'l's (kro,rro') 

arak 

+ (!.- '1'* (kro,rro'») ~ 'l's (kro,rro') 
ar ak 

- '1': (kro,rro') ~ 'l's (kro,rro')}' 
arak 

(4.31 ) 

Formula (4.31) is an appropriate representation for the 
investigation of the r- IX) asymptotics oftr 'Tr(k). We may 
employ both asymptotic expansions (4.11a) and (4.19a) in 
the study of the right side of (4.31). This is because only one 
of these two asymptotic expansions is distributional valued. 
In order to have appropriate smoothness and controlling es
timates for the calculation of (4.31) we need to supplement 
Lemma 4.4 by showing that a /a Ixl and a /ak derivatives of 
( 4.19a) are also valid asymptotic expansions. For integers n I 
and nz define the partial derivative 

(4.32) 

Lemma 4.6: Let VEd' (g,€), g> 6, € > O. Suppose 
O<n l <l, 0<n2 <1, andO< y< 1. If Ixl > y-I(XO + 1), k> 0, 
then D(nl>n2)'I's+ (kro,lxlro')EC(fi", Xfi",,) has the 
k lxi- IX) asymptotic expansion 

(4.33) 

where, for some C(nl,nz,k) < IX), 

ID(nl,nz)R ~ (kro,x) 1< C(n l ,n2,k) Ixl- 5/2 + n,. (4.34) 

For the integer m >0 let g> max (6,m + 4); then for 
each fixed k>O, x, the function D(nl,nz)'I's+ (kro,x), and 
the associated remainder are C m (fi", ). The coefficient func
tions for the terms in (4.33) that are multipliers of Ixl- i/2 for 
i> ~ - n l are also Cm(fi.,). 

Proof (sketch): The pattern of the proof follows that of 
Lemma 4.4 for each of the three cases (nl>n2) = (0,1), 
(1,0), and (1,1). A new feature not present in the Lemma 
4.4 analysis causes one to require€> O. Ifwe take the a /a Ixl 
derivative of ( 4.20a), then the validity of the formal identity 

430 J. Math. Phys., Vol. 30, No.2, February 1989 

~ r dyRo(k 2+z'0;x,y)V(y)'I'+(kro,y) 
a Ixl JR' 

= r dY[~Ro(kZ+iO;X,Y)]V(Y)'I'+(kro,y) 
JR' alxl 

(4.35) 

must be demonstrated. Here interchanging the derivative 
and integral order requires care in view of the x = y singular
ity of the resolvent kernel. Titchmarsh (Ref. 29, Theorem 
22.11 ) shows (4.35) to be correct if 
V(y)'I'+ (kro,y)EL rae (R2), p> 2. Given the representation 
of (a /a Ixl )'1',+ (kro,x) in terms of the integral on the right 
of (4.35), the lxi- IX) expansion is derived by the method of 
Lemma 4.4. 0 

The r -+ IX) behavior of the local time delay T r (k 2) is 
characterized by the following theorem. 

Theorem 4.7: Let VEd'(g,€), g> 8, €>O. Then the fol
lowing asymptotic expansion is valid for 'Tr (k) as r- IX), 

k>O,r>ro=y-l(xo+ 1): 

e
i1T14 

1 i -2ikr * + 1/2 -:;n. dro[e 'f (k,ro, - ro) 
4(217) k n 

-eZik'f(k,ro,-ro)] +RT(k,r). (4.36a) 

The error term R Tis C ( (0, IX) ) X (r 0' IX) ) ) and has the bound 

IR T(k,r) I <cr-Ik -3/Z, (4.36b) 

where c is a k,r-independent constant. 
Proo!, The expansion (4.36a) is a consequence ofinsert

ing expansions (4.11a), (4.19a), and (4.33) into formula 
(4.31). The expansion (4.11a) is interpreted as a distribu
tion in the variable ro. The condition g> 8 ensures that the 
expressions in (4.19a) and (4.33) (coefficientfunctions and 
remainder terms) are C 4 (fi",). These expressions form the 
required test functions for the .@'4-valued expansion 
(4.11a) with N = 1. Multiplying the six products in (4.31) 
gives terms proportional to r, ,P, and O(r-I), The terms 
linear in r add up to zero because of the unitarity property of 
S(k2) expressed in terms off(k;ro,ro') , The second term on 
the right of (4.36a) involving backward scattering contribu
tions arises from the n = 0 contribution 8(ro' + ro) of ex
pansion (4.11a). The error term estimate (4.36b) isaconse
quence of (4.11b). 0 

The study of the 5" I. (A.) convergence problem in the next 
section requires the following estimate for the scattering am
plitude term in (4.36a). 

Lemma 4.8: Let VEd' (g,O), g > 6. Then there is a ko > 0 
such that for k> ko, 

I k !12 In dro [e - 2ik'f* (k,ro, - ro) 

- eZik'f( k,ro, - ro) ] I < k ~ /2 ' 

with the constant c independent of r. 

( 4.37) 

Proo!' LetI(k) denote the quantity on the left of (4.37), 
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Writefin terms of representation (2.13c) and express T(k 2) 

[via (3.2)] as 1 - A (k 2) T(k 2). The estimate (2.4) permits 
thechoiceofako> Osuch that for all k> ko, IIA (k 2) Ib < 1/2. 
Representation (2.6) of T(k 2) implies that II T(k 2) 112 < 2, 
k> ko. Thus IIA (k 2) T(k 2) 112 < C( V)k -1/2, k> ko. In this 
way one obtains 

I(k) < :21l droe2ik' J dx v(x)e-2ikWxl 

+C(V)11V1l 1k- 5
/
2

• (4.38) 

The remaining x integral is the Born term contribution to 
f( k;ro,ro'). Interchanging the order of integration in the dou
ble integral one thereby finds 

I(k) < 2:k 2 1 J dx V(x)Jo(2k Ixl) 1 

+ C( V) IIVII Ik -5/2. (4.39) 

Using the detailed decay bounds (Ref. 27, pp. 961-963) for 
the Bessel function, which assert that Jo(2k Ixl) will de
crease as (k I x I ) - 1/2 for large argument, allows one to verify 
estimate (4.37). 0 

V. CONVERGENCE OF LOCAL AND GLOBAL 
SPECTRAL SHIFT FUNCTIONS 

In order to facilitate the study of the convergence prob
lem for the Krein functions s~ (A) and seA) it is helpful to 
obtain a representation of s~ (A) that is similar in form to 
that of Theorem 3.7 for S(A). First, recall the sum rule30 that 
tr 'T ~ (A) satisfies. For scattering systems with VeJaf (3,0) 
and for every measurable subset ~ ~ R2 having finite Lebes
gue measure, I ~ I < 00, one has the identity 

f" -dA tr 'T~ (A) 

= -21TL ( dx l¢i(X)12_~ ( dx Vex), (S.l) 
i;;01)~ 2 )~ 

where the sum over i takes into account the multiplicity of 
the eigenvalues. Proceed by adding this equation to the de
finition (1.4) of s~ (A). One finds immediately the following 
theorem. 

Theorem 5.1: Let VeJaf (3,0); then for each ~ ~ R2 with 
I~I < 00, 

1 i"'-S~(A)=- dA'tr'T~(A') 
21T ,! 

+ _1_ ( dx Vex), A >0. 
41T )~ 

(S.2) 

Equations (3.34) and (S.2) allow a simple comparison. 
Set the constant in (3.34) equal to zero. Utilizing (3.3S), 
subtract (3.34) and (S.2) to give [cf. (1.6)] 
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+ _1_ r dx Vex). 
41T )R2,~ 
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(S.3 ) 

Now we let ~ be the closed disk of radius r and center x = 0, 
and furthermore we write s~ as 5,' Since VeL I(R2), the 
rightmost term in (S.3) vanishes as r-- 00. So it remains to 
evaluate the dA ' integral in (S.3). Inserting the asymptotic 
identity (4.36a) gives us 

= - 2kdk --- dro e
il1

"14 i'" {I i 
4(21T) 1/2 .[X k 3 / 2 n 

X [e - 2ikJ * (k,ro, - ro) - e2ikJ( k,ro, - ro) ] 

+ R T(k,r)}. (S.4) 

The estimate (4. 36b) for R T (k,r) shows that this func

tion is LIon the interval (..p:, 00 ) with respect to the mea
sure k dk. Thus, in view of the r- I dependence of the esti
mate (4.36b), the remainder term contribution R T(k,r) to 
(S.4) vanishes as r-- 00. Finally, consider the term involving 
the scattering amplitudesfandf*. We know from Lemma 
4.8 that the function of k in the dk integral is L 1 (..p:, 00). 

An application of the Riemann-Lebesgue lemma implies 
that this term vanishes as r-- 00. 

For A <0, both S,(A) and seA) are piecewise constant 
with jumps at A = Ai' Since l¢i(XW is L I(R2), it trivially 
follows that s,(A) -s(A) as r- 00, A ¥=A i • The value of 
s(A) at the jump, however, is not uniquely determined. 

Summarizing the conclusions above, we have demon
strated the following theorem. 

Theorem 5.2: Let VeJaf(g,€), g>8, €>O, and let 
{Ho,H} have the zero-energy behavior described in Lemma 
3.4. Let S(A) be the spectral shift function in Theorem 3.7 
with const = 0; then for AE!:Up (H) and all A > 0, 

lim s,(A) = seA). (S.S) 
r-", 

It is worthwhile to make several remarks about the basic 
result stated in (S.S). 

( 1) Our detailed derivation has been carried out for the 
case of two-dimensional scattering. However, the method 
we have used is quite general in nature and will work in other 
dimensions than two. 

(2) The pointwise convergence of S,(A) to seA) re
quires that the free constant in the specification of s(A) [cf. 
(3.34), (3.23)] be set equal to zero. From (3.23) we see that 
this means that seA) = ° if A dnf up (H). This is a com
monly chosen normalization convention for S(A). 

(3) In a certain sense S(A) is closely related to the dif
ference of the spectral projetors [E,! - E~] for the self
adjoint operators Hand H o, respectively. However, 
[E,! - E~ ] is in general not a trace-class operator. Never
theless, for potentials in class Jaf (3,0) it is easy to show that 
[ P, (E,! - E ~ )P,] is trace class for all A < 00 and r < 00. 

Here P, is again the projection operator given by multipli
cation in L 2 (R2) by the characteristic function of the disk 
with radius r. Further, it is known9 that the local spectral 
shift function obeys the spectral property 
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(5.6) 

In terms of this language Theorem 5.2 asserts that 

S(A) = - lim Tr Pr (EA - E~ )Pr • (5.7) 
r-«> 

This means that the spectral shift function S(A) is a type of 
improper trace of [EA - E~ ]. 

(4) The pointwise convergence result (5.5) for the spec
tral shift functions Sr (A) and S(A) is not shared by the local 
and global time-delay functions tr 1" r (k) and tr 1"( k). In the 
identity (4.36a) relating tT 1"r (k) and tr 1"(k), the remainder 
term R T(k,r) does vanish as r-- 00, for all k>O; however, the 
term withJ· andJoscillates as r-- 00 and so has no pointwise 
limit. The improved limiting behavior of Sr (A) and S(A) is a 
consequence of the dA ' integration linking tr 1"r (A) to Sr (A) 
[cf., e.g., (5.2)]. 

(5) In the circumstances where zero-energy resonances 
are present there is a marked contrast between the behavior 
of Sl. (A) and seA) in the neighborhood of A = O. Suppose 
the system exhibits the zero-energy resonant behavior of 
case II with D> O. In this case bound states of the system all 
have negative energy. Let A > 0 be smaller than the absolute 
value of the smallest eigenvalue of H. Proposition (3.5) im
plies 

S(A)-S(-A)= -D-.! f"dA'ImB+(A'). 
'IT Jo 

(5.8) 

Thus as A -- 0 one finds that 

5(0 + ) - 5(0 - ) = - D. (5.9) 

In contrast, consider Sl. (A). From the definition (1.4) 
we get 

For every l: of finite measure the function tr 1" l. ( . ): R -- R is 
Lebesgue integrable8

•
30 with respect to dA on the finite inter

val [0,1]. Taking the limit A --0 gives 

Sl.(O+) -Sl.(O-) =0. (5.11) 

So the local spectral shift function 5 l. (A) never displays the 
jump in value at A = 0 that is present in the global spectral 
shift function seA) when D :;60. 
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Shear-free normal cosmological models are the perfect fluid solutions of Einstein's equations in 
which rotation and shear vanish, and which are not static [they were all found by A. Barnes, 
Gen. Relativ. Gravit. 4, 105 (1973)]. They are either spherically, plane, or hyperbolically 
symmetric. Their symmetries are discussed in various coordinate systems and related to the 
conformal group of the three-dimensional flat space. A coordinate representation is introduced 
which unites all three cases into a single two-parameter family. The limiting transitions to the 
Friedman-Lemaitre-Robertson-Walker (FLRW) models and to the Schwarzschild-de Sitter
like solutions are presented. 

I. WHAT ARE THE SHEAR-FREE NORMAL 
COSMOLOGICAL MODELS AND WHY ARE THEY 
INTERESTING? 

All the perfect fluid solutions of Einstein's equations in 
which rotation and shear vanish were found by Barnes. I 
Some of them are static and thus of no interest in cosmology. 
One of the nonstatic solutions is conformally flat; it was 
found earlier by Stephani2 and studied by this author else
where.3,4 The remaining solutions of Barnes, which are of 
Petrov type D and nonstatic, qualify as inhomogeneous 
models of the Universe and will be called here "the Barnes 
cosmological models." 

There are three classes of them: spherically, plane, and 
hyperbolically symmetric [the first class was in fact discov
ered by Kustaanheimo and Qvist5 (KQ) in 1948 and reob
tained a few times more,6-9 also the plane symmetric model 
was later rediscovered9]. Because they have three-dimen
sional symmetry groups acting on two-dimensional space
like orbits, all structures in them have one spatial dimension. 
This is too simple to describe the three-dimensional struc
tures observed in the real Universe, but may be the first step 
in the right direction. As argued by this author,10-12 in the 
plane symmetric Barnes model it seems possible to set up 
initial conditions in such a way that the matter density is a 
periodic function of the (invariant) spatial distance. It 
would then be an example of a model with a discrete symme
try group,13 combining large scale homogeneity with small 
scale inhomogeneity.14 This is all the more attractive be
cause, as will be shown further in this paper, all the classical 
Friedman-Lemaitre-Robertson-Walker _ (FLR W) cosmo
logical models are contained in the Barnes models in the 
limiting case of spatially homogeneous matter distribution. 
Hence the Barnes models represent an inhomogeneous per
turbation (within the exact theory) superimposed on the 
FLRW background, and are capable of reproducing the 
classical cosmological results in the limit. 

Since they are too simple for cosmological purposes, 
further generalizations are needed. A study of geometrical 
properties of the Barnes models may thus be useful. In this 
paper, a convenient representation of the three Barnes's 
classes (Sec. III) is used in which each class is generated by 
the same differential equation. Symmetry groups of the three 
classes (Sec. V) are investigated, and special subcases 

possessing four-dimensional groups are revealed (Sec. VI, 
all but one of them are vacuum solutions with A). Since the 
symmetries of the models are closely related to the confor
mal group of the three-dimensional Euclidean space, an ac
count of properties of this group is given (Sec. IV). A new 
coordinate representation is introduced (Sec. VII) which 
unites the three classes into a single two-parameter family in 
which anyone model can be continuously deformed into any 
other. Symmetries of the three models in these coordinates 
are presented in Sec. VIII. Finally, it is shown in Sec. IX how 
the FLR W models result as limiting cases of the Barnes 
models. 

In order to make this paper self-contained, an account of 
Barnes's original results is given in Sec. II. 

The readers should be aware that apart from the Barnes 
models, other generalizations of the FLR W models are also 
found in the literature. Most important are the geodesic and 
shearing perfect fluid models of Szafron 15 which generalize 
those ofSzekeres 16 and Lemaitre,I7-20 and the Petrov type N 
perfect fluid models of Oleson. 2 

I Many more papers were 
published, but most of them deal with special cases of those 
mentioned here and sometimes they duplicate each other. A 
detailed survey displaying the interdependences between the 
various models is being prepared by this author. Readers 
wishing to contribute to the list are welcome to do so. 

II. THE MODELS AS OBTAINED BY BARNES 

Of the several solutions found by Barnes we shall con
sider here only those which have the expansion scalar and 
the W ey I tensor both nonzero. In the table of Ref. 1 they are 
contained in the lines IBE and lIE, but those from IBE are 
special cases of the latter and need not be considered sepa
rately. The metric in those solutions [changed to signature 
( + - - - )] is 

dr= Y-2(t,r)[(~)2 dt 2- dr
2 

_d(}2_f2«(})d¢2] , 
30 r2 

(2.1) 

where 0(t) (the expansion scalar) is an arbitrary function, 
Y(t,r) is given by the equation 

(2.2) 
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b(r) is another arbitrary function, K = + 1, 0, or - 1, and 

{

sin 8, for K = + 1, 
/(8) = 8, for K = 0, 

sinh 8, for K = - 1. 

(2.3) 

The model with K = + 1 is spherically symmetric, the one 
with K = 0 is plane symmetric, and the one with K = - 1 is 
hyperbolically symmetric. The constant K should not be 
confused with the FLR W curvature index k; the former is 
the sign of curvature of the two-dimensional orbits of the 
symmetry groups mentioned above. 

The source is in each case a perfect fluid, and the coordi
nates in (2.1) are comoving; thus the velocity field is 

(2.4 ) 

From the form (2.1) it is not easy to reobtain the FLRW 
models, so we shall change to another parametrization. 

III. COORDINATES BETTER ADAPTED TO THE FLRW 
LIMIT 

Let R(t) be a function (which will coincide with the 
scale factor in the FLR W limit), and let 

F(t) = - 11(30). (3.1) 

In the spherically symmetric case we then have 

dsz = D Z dt Z - [R(t)IV(t,x,y,z) F(dxz + dyZ + d~), 
(3.2) 

where 

D = F(R IV) (VIR,,), 

def Z 
u=r, 

(x,y,Z) = resin 8 cos t,b,sin 8 sin t,b,cos 8), 

Y(t,r) = V(t,u)/[rR(t)], 

(3.3 ) 

(3.4 ) 

(3.5 ) 

(3.6) 

and the function V(t,u) is determined by the equation 

R(t)w,uulwz =/(u), (3.7) 

where/ (u) is an arbitrary function, and, in the present case, 

w = V(t,u), (3.8) 

b(u) =/(u)u512• (3.9) 

Equation (3.7) is the Kustaanheimo-Qvist equation.5 

The FLR W models (all of them ) are obtained from here 
when /=0 and v" = 0, thus V = 1 + (114 )kr, where 
k = const. Without the assumption v" = 0 the spherically 
symmetric subcase of the Stephani universeZ

-4 results where 
k(t) is an arbitrary function. 

The matter density and pressure are here equal to 

(3.10) 

3 4(uV z
u - VV u) 2F" 

KP= --+ ' '----
F Z R Z (FzD) 

+4 [ ~ ] (1- 2UV,u) (VV,u - V,V u) 
(R D) V . .. 

(3.11 ) 
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(K = 81TG /c4). In the FLRW limit, Eqs. (3.10) and (3.11) 
reproduce the Friedman equations if the t coordinate is cho
sen so thatF= - R IR". 

In the plane symmetric case the metric form is again 
(3.2) and (3.3) where this time 

u=Z, 

(x,y,Z) = (8 cos t,b,8 sin t,b,ln r), 

Y(t,r) = V(t,z)IR(t), 

and again Vis determined by (3.7) and (3.8) where 

(3.12) 

(3.13 ) 

(3.14 ) 

b(u) =/(u). (3.15) 

When/= 0 and V = 1, the flat FLRW model results. How
ever, with / = 0 and V = a + bz; a,b = const, the open 
(k < 0) FLR W model is obtained in a nontrivial disguise, as 
will be shown in Sec. IX. The matter density and pressure are 
in this caseZZ

-
Z5 

(3.16 ) 

(3.17 ) 

Finally, in the hyperbolically symmetric case, the metric 
form can be transformed into (3.2) and (3.3) where 

u = xly, (3.18) 

V(t,x,y) =yw(t,u), (3.19 ) 

and w(t,u) obeys (3.7). The transformations corresponding 
to (3.5) and (3.6) and also (3.13) and (3.14) are carried out 
in two steps. We first observez6

,z7 that the two-dimensional 
metric (d8 Z + sinhz 8 dt,bz) may be transformed into 
(dr + e2r d~) (see Appendix A), so (2.1) can be written 
as 

dsz = FZ(t) (Y:,IY)z dt Z 

- r- 2 y-2 (t,r)(dr 2 + r 2 dr + r Vr d~). (3.20) 

Now we define 

r = exp{arcsin[ (xly)z + 1] -1/2}, 

l' = -! In(xz + y2), 

Y= [(xly)z+ l]-I/Zw(t,u)IR(t), 

(3.21 ) 

(3.22) 

(3.23 ) 

and change (3.20) into (3.2) with (3.3), (3.19), and (3.18). 
Moreover, if variables are changed in (2.2) according to 
(3.21), (3.18), and (3.19), then w will obey (3.7) where this 
time 

(3.24 ) 

With/ = 0 and w,' = 0, this Barnes model can reproduce the 
flat and the open FLR W model, but the limit is not achieved 
trivially; see Sec. IX. The matter density and pressure are 
here22 

3 2(uz +l)/w3 6uww.u 
KP=Jii+ R3 + RZ 

3(uz + l)w~u 3w2 

R2 -ji2' (3.25 ) 
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2uww,u 
R2 

[ 
(U

2 + 1) w,u ] 
X u - W (WW,IU - W,IW,U)' (3.26) 

The transformations changing (2.2) into (3.7) fulfill in 
each case the Barnes equations (6.12), (6.13), and those 
following them. 

In the previous papers of this author,IO-12 the Barnes 
models were unknowingly reobtained and some were named 
differently. The hyperbolically symmetric model was called 
there "line homogeneous." The "axially symmetric uni
verse" of Ref. 11 is the unified representation from Sec. VII 
of this paper, and the other cases of Ref. 11 lead to one or 
another of the three Barnes models. 

Several special solutions of Eq. (3.7) were found by dif
ferent authors5 •6,8.28-37 (the list of references is not guaran
teed to be complete), and the existence of solutions consist
ing of elementary functions was systematically investigated 
by Stephani.38 The result was that Eq. (3.7) can be integrat
ed to a first-order equation whenf(u) = un orf(u) = eU or 
f(u) = (u+a)"(u+.B)-n-5 (a,{3,n are constants), 
and it can be completely solved in elementary functions 
whenf(u) = U- 1511 orf(u) = (au2 + 2bu + C)-5/2 (a,b,c 
are constants). For this last case Wyman30 provided a gen
eral formal solution (not necessarily elementary). In the co
ordinates used in this section, all these results translate im
mediately into the corresponding plane and hyperbolically 
symmetric cases even though the papers quoted were con
cerned with spherically symmetric space-times. However, as 
argued in Refs. 10 and 11, it may be more important from the 
physical point of view to solve Eq. (3.7) in the variable 
/( u,t) II = 1,,' where / is the affine parameter on the geodesics 
orthogonal to the fluid flow and to the group orbits, since / 
has a direct geometrical meaning while u has not. The trans
formation u-+/(u) may not be elementary. 

The transformations that change (2.1) into (3.2) pre
serve in each case the comoving character of the coordinate 
system, and so 

(3.27) 

The Weyl tensor22 is in each case proportional to the 
arbitrary function f(u), and so will vanish whenever 
f (u) = O. Then, each of the Barnes models becomes a sub
case of the Stephani universe.2

-4 Withf =I 0, the Barnes mod
els are of Petro v type D. Note that the Stephani universe has 
in general no symmetry,3 so only its special cases are con
tained as limitsf-+O in the Barnes models. 

Since the space metric in (3.2) is manifestly conformal
ly flat, its symmetries will be closely related to conformal 
symmetries of the flat space. These are shortly described in 
the next section. 
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IV. THE CONFORMAL GROUP OF A FLAT SPACE 

In this section we shall consider a flat Riemannian space 
of arbitrary signature and arbitrary dimension n. Let r4 , 
A = 1, ... ,n, be the Cartesian coordinates so that the metric 
form is 

(4.1 ) 

where each E; equals either + lor - 1. A transformation of 
coordinates x-+yA (x) is called a conformal symmetry of 
( 4.1) if it changes the metric form (4.1) to 

dS; = <I>(y)dS;_y, (4.2) 

where <I> is a function and dS;_y is obtained from (4.1) by 
replacing all r4 by yA . The conformal group (i.e., the group 
of conformal symmetries) of an n-dimensional flat space has 
[!n (n + 1) + 1] parameters; !n (n - 1) of them belong to 
the symmetry group (for which <I> = 1) and 1 belongs to the 
dilatation transformation, r4 lyA = / = const (where 
<I> = / - 2 ). The remaining n parameters are connected with 
the following transformations: 

(4.3) 

where C~ , A = 1, ... ,n, are the group parameters. After Ple
banskj39 we shall call (4.3) the Haantjes transformations, 
although Haantjes derived in fact only the special cases of 
(4.3) where (1) esCS =0 (Ref. 40) and (2) just one e A 

was nonzero.41 The group (4.3) is Abelian. Composing two 
such transformations with the sets of parameters eA and Ir 
results in a single transformation (4.3) with the set of pa
rameters (eA + Ir ). Consequently, the inverse transfor
mation to (4.3) is obtained by interchanging x's withy's and 
replacing all eA by ( - eA 

). The generators of (4.3) are 

(4.4) 

The following properties of (4.3) are useful in calcula
tions: 

XAr4=YAyAIT, 

dXA dxA = dYA dyA IT2. 

(4.5) 

(4.6) 

Equation (4.3) can be interpreted as the succession of 
the following three transformations.39 

(1) Inversion in the (pseudo-) sphere of radius L cen
tered at r4 = 0, x A = L 2UA lusUS. 

(2) Translation by the vector L 2e A, uA = ~ + L 2e A. 
(3) Inversion in an identical pseudosphere centered at 

~ =O,~ =L 2yAlyys' 
Since L cancels in the end, it may be assumed that L = 1 
without loss of generality. In the following we shall often 
denote (4.3) by 

r4 = H(e i, ... ,en)yA; (4.7) 

its inverse is then yA = H( - e 1, ... , - en )xA 
• 
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V. SYMMETRY GROUPS OF THE BARNES MODELS 

For the spherically symmetric and the plane symmetric 
model, the symmetries are well known. The generators are 
Ji = Eijk:Jd (a laxk) in the former case and J 1 = a lax, 
J2 = a lay, J3 = x(a lay) - yea lax) in the latter. For the 
hyperbolically symmetric model in the form given by (3.2), 
(3.3), (3.7), (3.18), and (3.19) the generators are found 
from the Killing equations to be 

a a a 
J 1 =x-+y-+z-, (5.1) 

ax ay az 

a 
J z=-, 

az 

a 2 a 22-2a J3 = - 2xz-- yz-+ (x +y -z-)-. 
ax ay az 

(5.2) 

(5.3 ) 

The corresponding symmetry transformations are, respec
tively, 

X'i = lxi, i = 1,2,3, 1= const, 

z' = z + a, a = const, (x',y') = (x,y), 

and the Haantjes transformation, 

(x',y',z') = H(O,O,C) (x,y,z) , C = const, 

which will be for once written out explicitly: 

(5.4 ) 

(5.5) 

(5.6) 

, x , y , [z + C(x2 + y2 + r)] 
x =-, y =-, z = , 

TH TH TH 

TH = 1 + 2Cz + C 2(X2 + y2 + r). (5.7) 

It may be verified that the algebras of the symmetry 
groups of the three models are of Bianchi types IX, VIIo, and 
VIII, respectively. These are all the Bianchi types possible 
with two-dimensional orbits. 

As usual, while solving the Killing equations several al
ternatives are encountered, of the form: either a certain dif
ferential expression vanishes and a constant in the Killing 
vector survives, or else the constant vanishes and a possible 
one-parameter symmetry group is absent. In this way, spe
cial subcases of a class of metrics are revealed that have high
er symmetry. Such special cases of the Barnes models will be 
presented in the next section. However, a few more cases 
show up in several places which will be ignored for the rea
sons explained below. 

(1) If V" = 0, then Eq. (3.7) implies that either (a) 
R,I = 0, and Eq, (3.3) becomes invalid, or (b) w.uu = 0. 
Equation (3.3) results from the Einstein equations22 

GOi = 0, i = 1,2,3, for the metric (3.2) if (VIR) ,I #0. Oth
erwise, GOi =0 and Dremains arbitrary. However, then mat
ter density does not depend on time and e = ° [see Eq. 
(7.2) in Ref. 14]. Thus case l(a) is of no interestforcosmol
ogy and will be ignored here. In case 1 (b) a FLR W model 
results (see Sec. IX) whose symmetries are well known. 

(2) If Vseparates, V = g(t)v(x,y,z), then Eq. (3.7) im
plies again that either (gl R) ,I = 0, which is equivalent to 
case 1 ( a), or else case 1 (b) occurs. 

(3) If/(u) = 0, then a subcase of the Stephani universe 
results (see Sec. IX) that is beyond the scope of this paper. 

These subcases will be called "trivial." 
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VI. SUBCASES OF HIGHER SYMMETRY 

A. The spherically symmetric model 

A detailed analysis of the Killing equations shows that 
only one subcase of higher symmetry exists here which is in 
fact also trivial, but different from those mentioned above. 
The subcase results when the arbitrary function/ (u) from 
(3.7) is/= B lu5 /2, whereB = const and w(t,u) = V(t,u) is 
given by 

(6.1 ) 

where A is (the cosmological) constant. Equation (6.1) is a 
first integral of (3.7) and is equivalent to Eq. (6.7) from Ref. 
42 (the correspondence is V I R = cf>, u = Yl, B = f, 1/ 
F = g). Therefore (6.1) defines the Schwarzschild-de Sitter 
solution which in the more familiar "standard" spherical 
coordinates has the form 

ds2 = Pdt 2 _ P - 1 dr 2 _ r 2 dO 2 

(6.2) 
def 

whereP = K - 2mlr - jAYl, m = - ~B, andK = + 1 (for 

the proof see Ref. 42). The reason for the peculiar notation 
will become clear further on. The additional symmetry is 
time independence in the coordinates of (6.2). 

B. The plane symmetric model 

Two subcases of higher symmetry exist here, one of 
which is again trivial in the same sense as (6.1). In the trivial 
case the function / ( u) from ( 3.7) is / = C = const and 
w = Vis given by the following first integral of (3.7): 

(;r - ~ c(;r -;z + fA = 0. (6.3) 

As indicated in Appendix B, this case can be transformed 
into (6.2) with K = 0, i.e., is the plane symmetric analog of 
the Schwarzschild-de Sitter solution. The additional sym
metry is again time independence in the form (6.2). 

The other subcase of higher symmetry has F = const 
and 

V = R(t)azv(azt), (6.4 ) 

where a is an arbitrary constant and veX) is defined by 

XZv.xx + 2Xv.x = Bv2, (6.5) 

where X = azt, B is another arbitrary constant, and the func
tion/(u) from (3.7) is 

/= B I(ar). (6.6) 

The metric is 

dsz = (azv,xlv)Z dt Z - (azv) -2(dx2 + dy2 + dr). (6.7) 

With (6.6), Eqs. (3.7) and (6.5) are consistent. The addi
tional symmetry is 

t = t'll, (x,y,z) = I(x',y',z') , 

and its generator 
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a a a a 
J4 = -t-+x-+y-+z-

at ax ay az 
(6.9) 

has the following commutators with the other three genera
tors,J1 = a lax, J2 = a lay, andJ3 = x(a lay) - yea lax): 

[J;,J4 ] =J;, i= 1,2; [J3,J4 ) =0. (6.10) 

Note that the group generated by J 1, J2, J4 is of Binachi 
type V and has three-dimensional orbits. The orbits are not, 
however, orthogonal to the flow lines of the fluid and have 
indefinite geometry (J4 may be spacelike in one place and 
timelike in another). Thus (6.7) is a tilted Bianchi type V 
space-time, with an additional symmetry generated by J3• 

Up to inessential reparametrizations, the solution coincides 
with the one investigated in detail by Collins and Wain
wright43,44 and so has a barotropic equation of state. 

C. The hyperbolically symmetric model 

As in the spherically symmetric case, the analysis of the 
Killing equations shows that only one subcase of higher sym
metry exists here, in which w(t,u) is given by the following 
first integral of (3.7): 

(~t = 1: u2 ~ ± {~ (1 + :2)5/2 (~r 
[ 

w ]2 1 (1 A)}I12 
- R(1 + u2) + 1 + u2 Jii - 3 ' 

(6.11 ) 

where B is a constant given by feu) = B I( 1 + U2)5/2,J is 
the function from (3.7) while A is the cosmological con
stant. By coordinate transformations the solution defined by 
Eq. (6.11) can be reduced to (6.2) with K = - 1 [then 
sin (K 1120) = sin(iO) = i sinh 0) and so it is the hyperboli
cally symmetric counterpart of the Schwarzschild-de Sitter 
solution. The additional symmetry is time independence in 
the coordinates of (6.2). The transformation from (6.11) to 
(6.2) is sketched in Appendix C. 

The metrics represented by (6.2) belong to the type D 
metrics investigated by Kinnersley,45 and are a subcase of 
those given by Eq. (25.74) in Ref. 26, but in a different coor
dinate system. 

VII. COORDINATES COVERING ALL THREE MODELS 
SIMULTANEOUSLY 

The following metric represents all the three models of 
Barnes simultaneously, 

d~=F2(t)(~r(!r dt
2 

R 2(t) 
----,,-:..~- (dx2 + dy2 + dr), (7.1) 
(z + b)2S2(t,Z) 

where F(t) and R (t) are arbitrary functions, b is an arbi
trary constant, the variable Z is defined by 

(7.2) 

a is another arbitrary constant, and the function S(t,Z) is 
defined by the KQ equation, 
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R(t)S,zzIS2 =fG(Z), (7.3) 

fG (Z) being an arbitrary function. With any given S(t,Z) , 
Eqs. (7.1) and (7.2) represent a two-parameter family of 
metrics. However, we shall show that (7.1)-(7.3) are al
ways equivalent to one of the Barnes models, namely, (I) 
with a < b 2 to the spherically symmetric one, (II) with 
a = b 2 to the plane symmetric one, (III) with a > b 2 to the 
hyperbolically symmetric one. 

Thus in the coordinates of (7.1 )-(7.3), continuous de
formations of one model into another are possible. 

A. The spherically symmetric model 

We introduce the constant a by 

a = b 2 _ a 2
• (7.4) 

The cases when a>O and ao;;;O will have to be considered 
separately. When a>O, we define the constants A and 1 by 

a =A 2(1 + 2A/)-2, 

a= [2/(1 +AI)]-I, (7.5) 

which implies 

b = (1 + 2AI + 2A 2/ 2)/[21(1 + AI) (1 + 2A/»). (7.6) 

The equations are solvable for A and I without further condi
tions on a and a. Then we perform on (7.1)-(7.3) the se
quence of three transformations 

(1) z = z' + A 1(1 + 2A/), 

(2) the Haantjes transformation, 

(x,y,z') =H(O,O, - I) (x',y',z"), 

(3) z" = z'" - A. 

The final result is transforming Z given by (7.2) into 

(7.7) 

(7.8) 

(7.9) 

Z= 1(1+AI) u-A
2

, (7.10) 
1 + 2AI Fu - (1 +AI)2 

where u = X,2 + y'2 + z',,2, and the metric (7.1) into 

d~ = D 2 dt 2 - (R IV)2(dx,2 + dy'2 + dz',,2) , (7.11) 

whereD = F(t)(R IV)( V IR),I and 

V= [/2U - (1 +AI)2)S/[2/(1 +AI»). (7.12) 

This suggests that the substitutions (7.10) and (7.12) 
change (7.3) into (3.7) and (3.8). This is indeed the case, 
andf(u) from (3.7) is here 

feu) = 2[/(1 +AI)f[/2U - (1 +Al)2)-5fG(Z(u»). 
(7.13) 

Note that all the operations make sense also for a = ° (then 
A =0). 

When ao;;;O, we define A and I by 

a = -A 2(1 + 2AI + 2A 2F)-2, 

a= [2/(1 +AI»)-I, 

which implies 

(7.14 ) 

b = (1 + 2A/)/[2/(1 +AI)(1 + 2AI + 2A 21 2)]. 

Again, (7.14) are solvable for A and I without further condi
tions on a and a. In the sequence of transformations step ( 1 ) 
is to be replaced by 
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(7.15 ) 

steps (2) and (3) remaining unchanged. The finalresult for 
Zis 

Z = 1(1 + AI) u + A 2 

1+2AI+2A 2/ 2 / 2u-(1+AI)2' 
(7.16) 

and for the metric it is again (7.12) and (7.13). Just as be
fore, the substitutions (7.16) and (7.12) change (7.3) into 
(3(7) and (3.8) withf(u) given again by (7.13). The limit 
a -+ ° (thus A -+ 0) of (7.14) and the subsequent operations is 
the same as of (7.5) - (7.13 ). In either case, each step of the 
transformation was invertible, so we proved that (7.1)
(7.3) with a < b 2 is equivalent to the spherically symmetric 
model for all possible values of a and b. 

B. The plane symmetriC model 

The cases a = b 2 =1= ° and a = b = ° have to be treated 
separately. In the first case, we perform the sequence oftwo 
transformations 

(4) z=z' + b, 

(5) the Haantjes transformation, 

(x,y,z') =H(O,O, -1I(2b)j(x',y',z"). 

The result on Z in (7.2) is 

Z = bz" I(z" - 2b), 

and the metric (7.1) is transformed into (7.11) with 

v = (z" - 2b)S. 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

Just as should be expected, the substitutions (7.19) and 
(7.20) change (7.3) into (3.7) and (3.8) where this time 
u =z" and 

f(z") = 4b"fG(Z(z"»)/(z" - 2b)5. (7.21) 

When a = b = 0, the sequence (4) and (5) should be 
changed to 

(4')z=z'+I, 

(5') (x,y,z') =H(O,O, -1)(x',y',z"), 

resulting in 

Z = ~(z" -1)-' 

and 

V(t,z") = (z" - I)S (t,Z(z"»). 

The function f (z") from (3.7) is here 

f(z") = !fG(Z(z"»)/(z" - 1)5. 

(7.22) 

(7.23) 

(7.24) 

(7.25) 

(7.26) 

Each step of the transformations is invertible, so (7.1)
(7.3) with a = b 2 is equivalent to the plane symmetric model 
for each possible value of a. 

c. The hyperbolically symmetriC model 

We introduce a by 

a = b 2 + a 2. (7.27) 

The cases b> 0, b < 0, and b = ° have to be considered sepa
rately. When b > ° we define I, and 12 by 
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b -, = 2/i, 

a-I = 2/,/2, 

(7.28 ) 

(7.29) 

and then perform the following sequence of three transfor
mations: 

(6) x = (n + n) '/2z'I(l,/2), y = x'112 + y'11" 

z = - x'll, + y'112, (7.30) 

(7) x' =x" + 11(2/,), (7.31) 

(8) (x",y',z') = H( -I" -/2,0)(x"',Y",z"). (7.32) 

The finalresult for Z given by (7.2) is 

Z = aul(bu - a), (7.33) 

where 

u = x"'ly" , 

and for the metric (7.1) it is (7.11), where 

V = y" (bu - a)S(t,Z(u»)la'12. 

(7.34) 

(7.35 ) 

This suggests that the substitution (7.33) together with 

S = a'/2w(t,Z(u»)/(bu - a) (7.36) 

will change (7.3) into (3.7) with (3.18). This is indeed the 
case. Thus the metric (7.1 )-(7.3) with b > ° and a > b 2 can 
be transformed into the hyperbolically symmetric Barnes 
model; the function f ( u) is then 

feu) = a 2a5/2fG(Z(u»)/(bu - a)5. (7.37) 

When b <0, we change (7.28) to 

b-' = -2n, 
and the transformation of z in (7.30) to 

(6') z = x'll, - y'112, 

(7.38 ) 

(7.39) 

the other steps in the sequence of transformations remaining 
unchanged. Instead of (7.33) we then obtain 

Z = aul(bu + a), (7.40) 

which corresponds to replacing b by - band Z by - Z in 
(7.33). Hence (7.33) also covers, in fact, the case b < 0. 

The sequence of transformations is different for b = 0. 
Then we define 

2 def 2 
a = a = 11 (41 ), 

and perform the transformations 

(9) x = x' + 11(2/), 

(10) (x',y,z) = H( -1,O,O)(x",y',z'), 

which result in 

Z= -au 

with 

u =x" Iy'. 

(7.41 ) 

(7.42) 

(7.43 ) 

(7.44) 

(7.45) 

Equation (7.44) is in fact the limit of (7.33) when b = 0. 
However, the transformations (6 )-( 8) do not have a mean
ingfullimit b -+ 0, so the effect of (9) and ( 10) on the metric 
(7.1) has to be calculated separately. It turns out that (7.1) 
changes to (7.11) where 
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v = y'S(t,Z(u»), (7.46) 

which shows that the resulting metric is the hyperbolically 
symmetric Barnes model. The functionJ from (3.7) is here 

J(u) = a 2JG(Z(u») (7.47) 

[this is again the limit b-+O of (7.37)]. Thus (7.1)-(7.3) 
can be transformed into the hyperbolically symmetric model 
when a > b 2 for each possible value of b. Since each transfor
mation in the sequences (6 )-(8) and (9) and (10) is invert
ible, (7.1 )-(7.3) with a > b 2 is in fact equivalent to the hy
perbolically symmetric model. 

VIII. SYMMETRIES OF THE BARNES MODELS IN THE 
COORDINATES OF SEC. VII 

Since in the form (7.1 )-(7.3) the symmetries are rather 
difficult to recognize, we shall present them explicitly. Apart 
from special cases discussed in Sec. VI, the generators of 
symmetries are 

J 1 = - 2xy ~ + (x2 - y2 + Z2 + 2bz + a) i. 
ax ay 

a 
- 2y(z + b) az' 

J2 = ( - x 2 + y2 + r + 2bz + a) ~ 
ax 

a a 
- 2xy- - 2x(z + b) -, 

ay az 

a a 
J3 =x--y-. 

ay ax 

The commutation relations are 

(8.1 ) 

(8.2) 

(8.3 ) 

[J1,J2] = 4(b 2 - a)J3 , [J2,J3 ] = J 1, [J3,J1 ] = J2. 
(8.4 ) 

Just as the results of Sec. VII suggest, when a < b 2, a = b 2, or 
a > b 2, the Bianchi type ofthe algebra (8.4) is IX, VIIo, or 
VIII, and it corresponds to the symmetry, spherical, plane, 
or hyperbolic, respectively. 

The transformations generated by J3 are evidently rota
tions. Those generated by J 1 are generalizations of the 
Haantjes transformations, 

x' = xlW, z' = (z + b)IW - b, 
(8.5) 

y' = [y cosh (2/31') + ( U 12/3)sinh(2/3r) ]/W, 
def 

where l' is the group parameter, /3 = (a - b 2) 1/2, 

def 

U = X2 + y2 + r + 2bz + a, 

d~ 2 2 ~ 2 
W = [a - x - y - z- - 2bz - 2b (8.6) 

+ U cosh (2/31') ]1(2/3 2) + (yl/3)sinh(2Ih). 

Equations (8.5) and (8.6) cover all three cases given after 
Eq. (8.4): when a < b 2,/3becomesimaginary, so/3 = iBand 
cosh(2/3r) = cos (2/31') , /3 -I sinh(2/3r) = B -I sin(2Br). 
With a = b 2 we have 
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lim W= 1 +2ry+~(x2+y2+r+2bz+b2), 
/3-0 
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in that case (8.5) and (8.6) is a composition of z" = z + b 
and the Haantjes transformation (x',y',z') = H(O,O,r) 
(x,y,z" ). 

The transformation generated by J2 is obtained from 
(8.5) and (8.6) by just interchanging x withy and x' withy'. 

IX. THE FLRW LIMIT OF THE BARNES MODELS 

Let us change the t coordinate in (3.2) and (3.3 ) to T( t) 
defined by 

dT FR" 
dt R 

(9.1) 

Then, in the new coordinates 

D = - R 2( V IR),TI( VR,T) = - V,TR I( VR,T) + 1. 
(9.2) 

Thus the T coordinate was chosen so as to make F( n 
= - R (T)IR,T' In what follows, we shall use just this co

ordinate. 
In order to obtain the FLR W models from the Barnes 

models, we must first make the latter conform ally flat. As 
was stated after (3.27), this happens when thefunctionJ(u) 
from (3.7) vanishes. Solving (3.7) in that case we obtain 

w(t,u) = a(t) + b(t)u. (9.3) 

With arbitrary a and b the metric corresponding to (9.3) is 
in each of the three cases a subcase of the Stephani uni
verse2

-4 [in order to verify this, one has to occasionally use 
transformations like (9.7), (9.9), or (9.10) below]. 

Now the three models have to be considered separately. 
In the spherically symmetric case, Eq. (9.3) implies that V 
in (3.2) will be 

(9.4 ) 

If a # 0, then it can be scaled to 1 by redefining b (n and 
R ( n. Let us then assume a = ° first. Then obviously b # 0, 
and so b can be scaled to 1 by redefining R (n. From (3.10) 
and (3.11) we then seethatp = p(t) andp = p(t), i.e., (9.4) 
with a = 0, b = 1 should be a FLRW model. Indeed, the 
standard form of the FLR W metric, 

ds'l = dT 2 - [R(nIV]2(dx2 + dy2 + dr) (9.5) 

with 

V= 1 +1k(X2+y2+r) (9.6) 

is obtained in this case by the sequence of two transforma
tions, 

(1) z=z'-1, 

(2) (x,y,z') =H(0,0,1)(x',y',z"). 
(9.7) 

The resulting k = 0. 
With a # 0, we scale a to + 1 and find from (3.11) that 

P,u = ° implies either b = const or p = - p = const. The 
latter case is the de Sitter solution, the former covers all the 
FLRW metrics (k = 0, ± 1). Thus (9.4) leads to (any) 
FLR W model when a and b are both constants. 

In the plane symmetric case (9.3) implies for (3.2) 

V=a(n+b(nz. (9.8) 
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If b = 0, then this is evidently the flat FLR W model. Any 
b =/= ° can be scaled to 1 by redefining R ( T). In that case we 
find from (3.17) that P,z = ° implies either a = const or 
p = - p = const. The latter case is again the de Sitter solu
tion, while the former is a FLRW model. The transforma
tions to (9.5) and (9.6) are the following. When a =/=0, 

(3) (x,y,z) = H(O,O, - 1I(2a»)(x',y',z'), 

(4) (x',y',z') = a(x",y",z"); 

and; when a = 0, 

(5) (x,y,z) = H(O,O,l) (x',y',z'), 

( 6) z' = z" - 2. 

(9.9) 

(9.10) 

In both cases the resulting k is necessarily - 1. Hence the 
plane symmetric Barnes model can reproduce only the flat 
(k = 0) and the open (k = - 1) FLRW models. 

Finally, in the hyperbolically symmetric case, (9.3) im
plies for (3.2), 

V=a(T)y+b(T)x. (9.11) 

If either a = ° or b = 0, then (9.11) is equivalent to (9.S) 
with a = 0. We shall thus consider the case ab =/=0. Then a 
can be scaled to 1 redefining R ( T), and from (3.26) we 
conclude that P,u = ° implies either b = const or 
p = - p = const. The latter is once more the de Sitter solu
tion, while the former is a FLRW metric. It can be trans
formed to the standard form (9.5) and (9.6) by the follow
ing sequence of transformations: 

(7) (x,y,z) = H( - !,b,O) (x',y',z'), 

(S) x' =x" -1, y' =y" -lib, (9.12) 

(9) (x",y",z') = [(b 2 + 1) 1/2/(2b) ](x"',y"',z"'). 

The resulting k is necessarily - 1. Hence the hyperbolically 
symmetric Barnes model can reproduce the open (k<O) 
FLR W model. It can also reproduce the flat (k = 0) FLR W 
model if the following trick is applied to (9.11) (with a and b 
being constant). We first transform x = x' = + Bib, and 
then let b-+O. In this way (9.11) becomes V = ay + B, and 
in the limit a-+O this is the flat FLRW metric. 
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APPENDIX A: TRANSFORMING THE HYPERBOLIC 
TWO-METRIC 

into 

We shall transform the two-dimensional metric 

ds ~ = de 2 + sinh2 e dcp2 (A1) 

(A2) 

(compare Refs. 26 and 27). The following formulas alter
nately present the transformation and its result on the pre
vious metric form: 

e = In(1 + 2p ) -In(1 - 2p ), 

ds ~ = 16( 1 - 4p2) -2(dp2 + p2 dcp2) , 
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(A3) 

(A4) 

u = p sin cp - !, v = p cos cp, 

d~ = (u + u2 + V2)-2(du2 + dv2), 

U = [w - (w2 + z2)]IT, v = ziT, 

def 

T=I-2w+w2+z2, 

ds ~ = (dw2 + dz2)lw2 

(AS) 

(A6) 

(A7) 

(AS) 

[if the previous step looks miraculous, then consult Sec. IV, 
it is the Haantjes transformation in two dimensions, 
(u,v) = H( - 1,0)(w,z)], 

and the resulting metric is (A2). 

(A9) 

• 
APPENDIX B: THE PLANE SYMMETRIC ANALOG OF 
THE SCHWARZSCHILD-de SITTER SOLUTION 

In order to bring out the analogy of (6.2) with Eq. (6.7) 
in Ref. 42, let us change the variable z and the function w 
according to 

z=ln;, w=R<I>(t,;)/;. (Bl) 

Then (6.3) will change to 

<1>,; = (<1>/;) ± [jC(<I>/;)3 +F-2(t) - A/3f/2, (B2) 

where; plays the role of r from Ref. 42, and the metric 
becomes 

ds2 = F2(t)<I>-2<1>~ dt 2 _ <1>-2 [d; 2 + ; 2 (d(j2 + dcp2)], 

(B3) 

where x = (J cos cp, y = (J sin cpo By the methods of Ref. 42, it 
can now be shown that a coordinate transformation of the 
formt(t ',; '),;(t ',;') exists that preserves the algebraic form 
of (B3 ), but changes <I> so that the term F - 2 in (B2) disap
pears, thus making the new <I> time independent. The new goo 
becomes (;<1>,; - <1»2 (primes dropped). The further coor
dinate transformation r = ;<1> - I reduces then the metric to 
(6.2) with K -+0 and m = - C 13. The generator of the ad
ditional symmetry, which in the original coordinates 
(t,x,y,z) was 

J
4 

= __ 1_ [(WIR),z] ~ + _1_~, 
2F (wIR) t at 2F az 

(B4) 

is then transformed into a lat. 

APPENDIX C: THE HYPERBOLICALLY SYMMETRIC 
ANALOG OF THE SCHWARZSCHILD-de SITTER 
SOLUTION 

Let us perform the change of variables inverse to 
(3.21)-(3.23) in the metric (3.2) with (3.1S) and (3.19) 
and w given by (6.11), i.e., 

x = e-7" cos On ;), y = e-7" sinOn ;), (Cl) 

which implies 

u = xly = lItan(ln ;), (C2) 

where; plays the role of r from (3.21). The metric then 
becomes 
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d~ = F2(R Iw)2(wIR)~, dt 2 

- (1 + U2) [R Iw(t,u) ]2(d;2/;2 + dr + e2T dr). 
(C3) 

Let us next introduce the new function Y( t,u) in (6.11) by 

(C4) 

then change the variable according to (C2), and finally in
troduce the new function <I>(t,;) by 

Y = <1>/;. 

The resulting equation for <I> (t,;) will be 

<1>,; = <1>/; ± [ _ (<1>/;)2 

(C5) 

+ jB(<I>/;) 3 + F- 2(t) - A/3 f/2. (C6) 

This is analogous to Eq. (6,7) in Ref.42 [the sign before (<I>I 
;) 2 is opposite here]. The methods of Ref. 42 work here 
exactly as described in Appendix B, so a transformation to 
(6.2) with K = - 1 exists, where m = - B 13 and r = ; I I 
<1>,; , being that variable in which lIF2 drops out from (C6). 
The generator of additional symmetry which in the coordi
nates of (6.11) is 

J
4 

= [(1 + u2) (wIR),u _ u wlR ] 
(wIR)" (wIR)" 

x~~_L~+~~ (C7) 
Fat Fax Fay 

reduces in the coordinates of (6,2) to J4 = a lat. 
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Some generalized soliton solutions of the cosmological Einstein-Rosen type defined in the 
space-time region t 2;pr- in terms of canonical coordinates are considered. Vacuum solutions 
are studied and interpreted as cosmological models. Fluid solutions are also considered and are 
seen to represent inhomogeneous cosmological models that become homogeneous at t - 00. A 
subset of these evolve toward isotropic Friedmann-Robertson-Walker metrics. 

I. INTRODUCTION 

Many known cosmological solutions of the Einstein
Rosen form can be deduced as generalized soliton solu
tions. 1

,2 Soliton solutions are obtained by application of the 
Belinskii and Zakharov soliton transformation3 and can be 
easily generalized by taking advantage of the linearity ofEin
stein's equations for the Einstein-Rosen metric. 

The main ingredients in the construction of a soliton 
solution are the seed metric, which is the starting solution to 
be transformed, and the so-called pole trajectories, a set of 
well defined functions that may be real or complex, Al
though solutions with real pole trajectories may be obtained 
as the limit of solutions with complex poles when some of the 
parameters are null, they also form a class on their own. 

In terms of canonical coordinates (t,Z)3 (for instance, 
Einstein-Rosen coordinates), the generalized soliton solu
tions with real poles are defined either in the space-time re
gion r-;pt 2 or in the region t 2;pr-. These solutions may be 
completed by matching them to the seed solutions in the 
region t 2;pr- orin r-;P t 2, respectively.4,5 The completed solu
tions, however, have discontinuous first derivatives along 
the matching light cones r- = t 2, These light cone disconti
nuities disappear if we take complex poles: the metrics are 
then defined in the whole (t,z) coordinate range and the two 
regions are smoothly matched, 

All soliton solutions can be understood in terms of one
pole and two-pole solutions.6 Real one-pole generalized soli
ton solutions valid in r-;pt 2 have been seen 1,2 to include well
known solutions such as the spatially homogeneous Ellis and 
MacCallum7 metrics and their Wainwright, Ince, and 
Marshman8 inhomogeneous generalizations; the first have 
the cosmological singularity only, at t = 0, but the second 
are also singular at Izl .... 00 and r- = t 2. The Wainwright et 
al. solutions completed with the seed solutions in t 2;pr- are 
better interpreted as the limits of complex pole solutions9 or 
as composite universes.4,10 Real two-pole generalized soliton 
solutions, on the other hand, have been seen to include the 
Carmeli and Charach11 ,12 pulse wave solutions, which are 
not singular at Izl- 00. In all of these solutions the spatially 
homogeneous Kasner metric has been taken as the seed met
nco 

In this paper we consider the generalized soliton solu
tions with real poles defined in t 2;pr-. To our knowledge 

these solutions have not been studied previously. In some 
sense they are complementary to the solutions just men
tioned and their possible relevance as cosmological models 
should be emphasized. 

We consider vacuum one-pole and two-pole solutions. 
For the one-pole solutions we see that, unlike the metrics in 
r-;pt 2, they do not include homogeneous metrics. They have 
only the cosmological singularity at t = 0 and the light cone 
singularity at r- = t 2. This second singularity, however, dis
appears when one takes complex poles. Therefore, all of 
these solutions are potentially interesting as limits of perfect
ly regular inhomogeneous cosmological models, but are 
much simpler and easier to study. On the other hand, two
pole solutions give, as in the previous case, pulse wave type 
metrics. All of the generalized soliton solutions evolve in 
time to the seed solution (the Kasner metric in our case) and 
are classified as Petrov type I metrics. 

We also consider solutions representing the coupling 
with a massless scalar field. Such solutions are easily ob
tained from the vacuum metrics. The new solutions admit a 
fluid interpretation8,13,14 according to the space-time prop
erties of the scalar field; in some regions it is a perfect fluid 
with a stiff equation of state whereas it is an anisotropic fluid 
in others. The scalar field also admits a generalized soliton 
solution and we show that the final metric can be seen as a 
generalization of a Tabensky and Taub fluid plane symmet
ric metric, 13 The most interesting aspect of this solution is 
that it approaches spatially homogeneous metrics for t ..... 00 
and for some values of the parameters it approaches the iso
tropic Friedmann-Robertson-Walker (FRW) metric. 
Thus this is an example of cosmological isotropization of 
initially inhomogeneous metrics. 

The vacuum solutions with one and two poles are stud
ied in Sec. II by means of the curvature tensor. The fluid 
solutions, which are easier to interpret because of the exis
tence of a coordinate system attached to the fluid, are consid
ered in Sec. III. 

II. VACUUM SOLUTIONS 

In this section we consider the generalized soliton solu
tions with real poles that are defined in the space-time region 
t 2;pr-. We also consider briefly the solutions defined in r-;p t 2. 

The Einstein-Rosen metrics can be written as 

442 J. Math. Phys. 30 (2), February 1989 0022-2488/89/020442-04$02.50 © 1989 American Institute of Physics 442 



                                                                                                                                    

(1) 

where/and <I> are functions of t and Z only. 
According to Einstein's equations the potential function 

<I>(z,t) verifies a linear wave equation. Using the linearity of 
this equation, soliton solutions of <I> may be generalized easi
ly.I.2,S In fact, if we take the spatially homogeneous Kasner 
metric as the seed metric, 

<l>o=dlnt, 1o=(d 2-1)/2Int, (2) 

where d is an arbitrary real parameter, the soliton solutions 
with n simple poles may be written as6 

n (/L') <1>=<1>0 + <l>s = dIn t + L In --l... , 
;= I t 

(3) 

[ 
n (II )]2+d-n / = lot n(4 - n)/2 JI .c;-

n n 

X IT (/Lk -/LI)2 IT (/L~ _t2)-I, (4) 
k,1= I k= I 
k>1 

where 

/L;± = Z; ± (z7 - t 2) 1/2, Z; =it - z, (5) 

are the pole trajectories that are real if the parameters it are 
real or complex otherwise; they verify that /L/ It = t I/L;- . 

The analysis of these solutions is usually performed by 
considering one and two poles only.6 

By taking it real we see that <l>s' for /L/, is a linear 
superposition ofterms of type cosh -I (z lit). Therefore, the 
one-pole solution may be generalized as 

(6a) 

where h is a real parameter. The corresponding/ coefficient 
is easily found from (4) by taking appropriate limits: 

/ = t (d' + h ' - I) /2 (zt _ t 2) - h '/2 exp [hd cosh - I (z / t) ] . 

(6b) 

Solution (6), which is defined in the space-time region 
iZli;>t, is the Wainwright et al. solution.8 Generally it has 
singularities at t = 0, izi-+ 00 , and t 2 = zt. When 
h 2 = d 2 + 3 it has the cosmological singularity only (t = 0) 
and is the Ellis and MacCallum 7 spatially homogeneous an
isotropic solution: Bianchi V if d = 0, Bianchi III if d 2 = 1, 
and Bianchi Vlh otherwise. In this case it is better to use 
coordinates (T,Z) adapted to spatial homogeneityl2 

t = exp( - 2aZ)sinh(2aD, Z = exp( - 2aZ)cosh(2aD, 
where a is a positive constant. 

. When this solution is completed by matching it to the 
Kasner solution in the space-time region t 2;>zt, it may be 
seen as the limit of the one complex pole solution with no 
light cone singularities9 and it may be interpreted as a com
posite universe.4 ,l0 

To complete this short review of soliton solutions de
fined in zt ;>t 2 we now consider the two-pole solutions that 
are necessary in order to give an overview of all the soliton 
solutions. These are the solutions obtained with /L 1+ and /L2- , 

<l>s = (h 12) [cosh-I (zl/t) - cosh-I (z2/ t) ], 

min(izt\,iz2i);>t, (7a) 

and the/coefficient is 
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/ = t (d' - 1)/2(/L2 _ /LI)h '/2(/LI//L2)h(2d - h)/4 

X(zt - t2)(~ _ t 2»)-n'18. (7b) 

Metrics (7), which are not singular at izi-+ 00, are the Car
meli and Charach ll ,I2 pulse wave solutions. They may be 
seen as the limit of the corresponding complex pole solutions 
that describe gravisolitons propagating on a Kasner back
ground. 16 

The solutions we wish to consider here are the family of 
real pole generalized soliton solutions defined in the space
time region t;> iZII. In some sense they may be considered as 
complementary to the solutions just mentioned. For one 
pole such a family may be obtained in a way similar to (6a) 
but changing h to ih (Refs. 5 and 17): 

<l>s = h cOS-I(zllt), iZli<t. (8a) 

The / coefficient may be obtained also from (4) by taking 
appropriate limits: 

/ = t (d' - h' - 1)/2(t2 _ zt )h'/2 exp[dh cos-I(z/t)]. 

(8b) 

This solution may be matched to the Kasner metric in the 
region iZli;>t. 

We may now study the intrinsic properties of solution 
(8). By taking the null tetrad 

n= (2/)-1I2(a, +az )' 1= (2/)-1I2(a,-az )' 

m = (2gxx ) -1/2 ax + i(2gyy) -1/2 ay, 

and the complex conjugate of m, m*, the Riemann tensor 
has three non-null components only. IS For the metric (8) 
these are 

'112 = - (8/) - I [(1 + h 2 _ d 2) t - 2 

- 2hzI dt -2(t 2 - zt) -1/2], 

'110 = - (2/) -IX +, '114 = - 2(/) -IX-, 

X± = (t2_~)-I/2(hzt-2(3d2_h2_1) 

± ht - I (3d 2 - h 2 - 3»)/4 

+ (t2_~)-lh2d(2+~t-2±3zt-I)/2 

+ (t2_~)-3/2h(z+z3±t(2+h2 

+ h 2~t -2)/2) + dt -2(d 2 - h 2 - 1 )/4. 

(9) 

The algebraic classification of this metric is easily done 
by following the d'lnvemo and Russell-Clark algorithm. 15,18 
For h #- 0 the metrics are of Petro v type I. Of course for h = 0 
the metric reduces to the Kasner seed, which is of Petrov 
type D for d = 0, flat space for d 2 = 1, and Petrov type I 
otherwise. 

The metric has only the cosmological singularity at 
t = 0 and the light cone singularity at zt = t 2; but this last 
one may be avoided with complex poles. Unlike the solution 
(6), there are no values of the parameters for which the 
metric is spatially homogeneous. Therefore for a cosmologi
cal interpretation we match metric (8) with the Kasner met
ric in iZli;>t and the new solution may be seen as the limit of 
inhomogeneous complex pole solutions that have the cosmo
logical singularity only. Such complex pole solutions are ac
ceptable cosmological models, and may be considered as 
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composite universes,4.1O; however, they are not so easily de
duced and analyzed. 

Metric (8) evolves to the spatially homogeneous 
Kasner metric when t -+ 00 • 

We may now consider the two-pole solutions. They are 
obtained, similarly to (8), by changing h to ih in (7a): 

ct>s = (h /2)[cos-I(zl/t) - COS-I (Z2/t ) ], 

t>max(lzll,lz21), (lOa) 

and the metric coefficientjis found to be 

j= t(d 2-h 2-1)12[ (t2 -zt )(t 2 _~) ]h2/8 

X(Z2~t2_zt _ZI~12_~)h2/4 

X(~12_~ +~12_zt)-h2/4 

Xexp[ (dh /2)(cOS-1 (ZI/t) - cOS-I(Z2/1»)]. (lOb) 

This metric is complementary to the Carmeli and Charach II 
pulse wave solutions (7). It may be understood as the (de
structive) superposition of the two solutions (8). In (7) this 
superposition was essential in order to avoid the singularity 
at Izl-+ 00 of the one-pole solutions (6). Here this is not 
necessary because the solution (8) is not singular at Izl-+ 00 

(it is not defined there). The interpretation ofthe solution, 
however, is similar. The space-time may be divided by the 
light cones IZII = land IZ21 = I. In the intersection region we 
have solution (10); it is matched to the one-pole solution at 
the "inner" light cones and to the seed solution at the "out
er" cones. At 1-+ 00 the completed metric becomes the 
Kasner metric and thus it may be interpreted as pulse waves 
propagating on a Kasner background. It is the limit of the 
corresponding complex pole solution; in such a solution an 
observer sitting at some fixed Z will start in an homogeneous 
model and will end up in the same model after having gone 
through inhomogeneous regions of type (8). 

III. SOLUTIONS WITH FLUIDS 

We now consider the coupling of Einstein's equations 
with a massless scalar field 0'. These equations read 13 

RI"V = 0'.1" O'.v' (lla) 

0';1";1"=0. (1lb) 

It is well known that a solution of this system may have a 
fluid interpretation.8

•
13.14 Given 0' this is done in the follow

ing way. If 0'.1" is a timelike vector, 0'.1" erl" < 0, 0' may be con
sidered as the potential of a perfect fluid with a stiff equation 
of state p = p (p = pressure, p = energy density). This is 
achieved by defining the density, pressure, and four-velocity 
of the fluid as 

p=p= -~O'.l"erl", ul" = (-0"l"erl")- 1/20'./l-' (12) 

The energy-momentum tensor of the fluid is identified from 
the rhs of (11a) as Tl"v - !8'l"vT, where 

Tl"v = 2puI"uv +pgl"v' (13) 

that is, a perfect fluid with a stiff equation of state. 
If 0'.1" is a spacelike vector, 0'.1" erl" > 0, the above identifi

cation is still formally valid but now ul" is a spacelike vector 
and the perfect fluid interpretation does not hold. Following 
Tabensky and Taub13 we can see that the rhs of ( lla) may be 
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identified with an anisotropic fluid. For this we define an 
orthonormal tetrad (TI" ,O-'I",xl" 'YI" ), where TI" is a timelike 
vector, 0-1" =ul"' and xI"' YI" are spacelike vectors. Now gl"v 
= - TI" Tv + o-.I"o-.v + xl"XV + YI" Yv and the rhs of (11a) 

can be written as Tl"v - !8'I"V T with 

Tl"v = ~O'.A erA ( 1'1" 1'v + 0'.1" O'.v - XI"XV - Y I" Yv ), (14) 

which corresponds to the energy-momentum tensor of an 
anisotropic fluid with energy density p = !O'.A erA and vanish
ing heat-flow vector. The weak and strong energy condi
tions l9 are satisfied and the fluid interpretation is reasona
ble.13 

For the Einstein-Rosen metrics (1) the solutions of 
(11) are easily found. In such a case the scalar field O'(t,z) 
verifies the same linear wave equation, ( 11 b), that the poten
tial field ct>(t,z) verifies. Only the metric coefficientj(t,z) is 
modified by the presence of such a scalar field and it is simply 
found as the product of two functions, each one of them 
determined, respectively, from ct>(I,Z) and O'(I,Z) by similar 
equations. 13.20 

Therefore we may take generalized soliton solutions for 
0'. For the real one-pole case we take, as in (8a), 

O'=alnl+bcos-I(ZI/I), 1>lzll, (15) 

where a and b are arbitrary parameters. This is the solution 
used by Tabensky and Taub13 in their study of plane sym
metric metrics that evolve to FRW models. 

Now thejcoefficient is easily obtained by making use of 
( 4) and (8b) as 

(16a) 

The potential ct> has not been modified, i.e., ct> = ct>o + ct>s 
with ct>s being (8a), 

(16b) 

Metric (16) gives a solution to Einstein's equations 
( 11 a) with the coupling of the massless scalar field (15). It 
reduces to the Tabensky and Taub plane symmetric metric 
when d = h = O. For I this metric approaches a spatially 
homogeneous metric. 

The space-time regions where 0'.1" is, respectively, time
like and spacelike are divided by the straight line, 

(17) 

According to the previous discussion we have a perfect fluid 
in the space-time region between the straight line (17) and 
I = Z I > 0 and an anisotropic fluid in the complementary re
gion. 

The presence of a fluid makes this metric easier to study 
and interpret because we may adapt the coordinate system to 
the fluid. Following Refs. 13 and 21 we shall introduce co
moving coordinates. In the region where 0'.1" is timelike we 
may use O'(t,z) as the time coordinate and define a space 
coordinate Z (t,z) by 

dZ=a-II(O'.z dl+O'., dz); (18) 

this ensures that Z.I" erl" = 0 and that Z.I" is spacelike. 
Equation (18) is easily integrated as 

(19a) 
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The fluid lines are the hyperbolas defined by Z = const; they 
approach straight lines for t -+ 00. The time coordinate may 
be defined as 

T = exp[a-Iu(t,z) - a-'b cos-l(b(a2 + b 2) -1/2)], 
(19b) 

where the constant parameters have been introduced for 
convenience and u(t,z) is given in (15). 

In the region where u,l' is spacelike, T and Z are space 
and time coordinates, respectively, and the fluid lines are 
defined by u(t,z) = const. 

The coordinate change defined by (19) is not explicitly 
invertible. However, for large t, which is the region we are 
interested in, it is 

t= T + b(a2 + b 2) -1/2Z, z=Z + b(a2 + b 2) - 1/2T, 

and the metric (16) can be written in comoving coordinates 
as 

ds2 = T(d' + h' + 2a' + 2b' - '){1 + (Z In (a2 + b 2) -1/2 

where 

X [ (b 12)( d 2 - h 2 - 2a2 - 2b 2 - 1) - ahd]} 

X{[I- 2(Z/nb(a2 + b 2)-1/2]dZ 2 - dT2} 

+ T[1 + (Z/nb(a2 + b 2)-1/2 

A = 1 + (ZIT)(a2+b 2)-1/2(db-ah) 

xexp{h cos-l[b(a2 + b 2)-1/2]). 

(20) 

For d = h = 0, i.e., the Tabensky and Taub plane sym
metric solution, and 2(a2 + b 2) = 3 the metric approaches 
at T -+ 00 the flat FR W metric with a stiff perfect fluid 

dr = T(dZ 2 + dx2 + dy2 - dT 2). (21) 

Metric (20) also approaches the isotropic flat FRW 
model, (21), when d = 0 and 2(a2 + b 2) = 3 - h 2. For all 
other values of the parameters the metric approaches a spa
tially homogeneous but anisotropic model. 

To finite values of time the metric is spatially inhomo
geneous and may be interpreted as representing inhomoge
neous finite perturbations on homogeneous metrics. There
fore the solutions (20) may be considered as an example of 
inhomogeneous cosmologies that become spatially homoge
neous and, for some values of the parameters, isotropic, as a 
result of cosmological evolution. 
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Solution (16) may be matched to the space-time region 
IZII>t with the seed soution obtained by setting h = b = O. 
There we again have discontinuities in the first derivatives 
for the metric and the fluid potential. Rather than interpret
ing it as a solution with shock waves, it is better interpreted 
as the limit of the corresponding complex one-pole solutions 
that have no fluid discontinuities in the pressure or the den
sity. The asymptotic behavior at t -+ 00 of such a solution is 
that of the real pole solution described above, i.e., it evolves 
to spatially homogeneous metrics. 

We could also describe fluid solutions with two or more 
poles; the interpretations, however, are now rather obvious. 
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It is shown that previous results concerning test inassless fields on algebraically special vacuum 
backgrounds can be extended to the case of massless spin-~ Rarita-Schwinger fields. A 
decoupled equation is derived from the Rarita-Schwinger equation on an algebraically special 
vacuum space-time and it is shown that all the components of the field can be obtained from a 
scalar potential that obeys a wavelike equation. In the case of type D metrics, identities of the 
Teukolsky-Starobinsky-type are obtained. Some relations induced by Killing spinors are also 
included. 

I. INTRODUCTION 

In recent years there has been some interest in massless 
spin-~ (Rarita-Schwinger) fields, mainly in connection with 
supergravity.I-3 According to the supergravity field equa
tions the Rarita-Schwinger field acts as a source of torsion 
and curvature; when the Rarita-Schwinger field vanishes 
the supergravity field equations reduce to the Einstein vacu
um field equations. Therefore, the first-order perturbations 
of a solution of the supergravity field equations with a van
ishing spin-~ field are determined by the Rarita-Schwinger 
equation on a background space-time that is a solution of the 
Einstein vacuum field equations. 

By considering the specific case of a type D vacuum 
background, making use of a supersymmetry transforma
tion to eliminate some components of the field, Guven3 

found that there exist two decoupled equations derivable 
from the Rarita-Schwinger equation; he also showed that, in 
the case of the Kerr metric, these two decoupled equations 
can be solved by separation of variables and it turns out that 
something similar occurs for all the type D vacuum met
rics.4

•
5 All the components of the field are, essentially, deter

mined by these two decoupled components provided that the 
conformal curvature be different from zero. 3 Guven's decou
pled equations correspond to make s = ± ~ in the master 
equations found by Teukolsky,6 which govern certain com
ponents of other perturbing massless fields (Weyl neutrino 
fields, electromagnetic fields, and gravitational perturba
tions). 

Actually, Teukolsky's procedure applies to all the alge
braically special vacuum space-times: the component of a 
Weyl neutrino field, an electromagnetic field, or the per
turbed Weyl spinor, obtained by fully contracting the field 
with a multiple principal spinor of the conformal curvature 
(Weyl spinor), satisfies a decoupled equation. On the other 
hand, in these cases, all the components of the fields are 
obtainable from a scalar potential that satisfies a wavelike 
equation.7

-
12 

In this paper we show that in an algebraically special 
vacuum space-time, for each multiple principal spinor of the 
conformal curvature there exists a decoupled equation that 
follows from the Rarita-Schwinger equation, thus extending 

Guven's result3 to all the algebraically special types, includ
ing the flat case, and that all the components of the field can 
be obtained by differentiation from a single scalar potential. 
We also show that in the case of a vacuum type D space-time 
the solutions of the two existing decoupled equations are 
differentiably related and that the existence of a two-index 
Killing spinor leads to a relation between decoupled compo
nents and potentials. 

In the derivation of the expression for the Rarita
Schwinger field in terms of potentials we make use of the 
form of the metric of an algebraically special vacuum space
time given in Refs. 13 and 14. Although this involves the 
complex extension of space-time, the final expressions apply 
directly to any real algebraically special vacuum space-time. 
In general, a complex space-time may not possess real slices; 
however, the derivation followed here amounts to complexi
fying the background space-time, going back at the end to 
the original real slice. A similar procedure has been applied 
previously in Refs. 9-12 to various other fields. In most of 

I this paper we employ the spinor formalism following the 
notation and conventions of Plebanski et al. (see, e.g., Ref. 
15), but the fimd expressions are also given in the Newman
Penrose notation (see, e.g., Ref. 16). The spinor indices 
are raised and lowered according to r/J A = E AB ¢B and ¢B 
= r/JA~B. 

II. PRELIMINARIES 

The Rarita-Schwinger equation on a curved back
ground space-time can be written as 

V AD r/JA BC = V BCr/J
A 

AD' 

or, equivalently, in the form, 

H ABc = H(ABC) ' 

HAsc =0, 

where 

(1) 

(2a) 

(2b) 

HA =V D.I.A. HA _VD .1. A 3 
BC- (B 'f' C)D' sc= (S'f' IDIC)' ( ) 

(The parentheses denote symmetrization on the indices en
closed and the indices between bars are excluded from the 
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symmetrization.) The definitions (3) are similar to those of 
the electromagnetic spinors in terms of the vector potential 
(see, e.g., Ref. 16) and Eq. (2b) is analogous to the defini
tion of an (anti- ) self-dual field. There exist transformations, 
analogous to the gauge transformations for the electromag
netic field, that map a solution of the Rarita-Schwinger 
equation into another solution provided the Ricci tensor 
vanishes. These transformations are given by 

!/JABC-+!/JABC + VBCaA, (4) 

where a A is an arbitrary spinor field. From Eq. (3) and the 
Ricci identities it follows that, under the transformation (4), 

the fields H ABC and HAEC are transformed into 

H A
BC + V(BbVC)b aA 

= H A
BC - 2CABCDaD - (R /6)81Ba C) (5a) 

and 

HAEC + VD(EVIDIC)aA = HAEC + 2CADECaD, (5b) 

respectively, where C ABCD are the spinor components ofthe 
conformal curvature, R is the scalar curvature, and C ABCb 
are the spinor components of the traceless part of the Ricci 
tensor. From Eqs. (2) and (5) it is clear that if a A is arbi
trary and !/J ABC is a solution ofEq. (1), then the transformed 
field (4) will also be a solution of ( 1 ) if and only if the Ricci 
tensor vanishes. In contrast with the electromagnetic case, 
the field H ABC is not invariant under the transformation (4), 
unless the conformal curvature is also equal to zero. 

In the supergravity theory the metric of the space-time 
is coupled to a massless spin-~ Rarita-Schwinger field. The 
supergravity field equations are invariant under supersym
metry transformations which, on the spin-~ field, are given 
by Eq. (4). When the Rarita-Schwinger field vanishes, the 
supergravity field equations reduce to Einstein's vacuum 
equations; therefore, since the torsion and the curvature pro
duced by the spin-~ field depend quadratically on this field, 
in the linear approximation about a solution with !/J ABC = 0 
the supergravity field equations reduce to Eq. (1) together 
with the Einstein vacuum field equations.2

,3 

In flat space-time the field H ABC satisfies the massless 
free-field equations, If the Ricci tensor vanishes, from Eqs. 
( 1) and (3) and the Ricci identities one finds that 

VARHABC = - VARV(Bb~C)b 

- V(BbVIAIR~C)b + 2CABCD~DR 
- V(BbVC)b~AR + 2CABCD~DR 

= 2CABCD~DR. (6) 

These equations are not restricted by algebraic consistency 
conditions. In fact, from Eq. (2a) it follows that 

V B·VARH - V(B. VA)RH - 2C ABD H 
R ABC - R ABC - - C ABD' 

and applying VB R to the right-hand side ofEq. (6), using the 
Bianchi identities and Eq. (3), one obtains 

V B
R (2CABCD~DR) = 2CABCDVBR~DR 

= - 2CABCDHABD' 

which coincides with the foregoing expression. 
When the Ricci tensor is different from zero, apart from 
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the fact that Eq. (1) is not invariant under the transforma
tions (4), there exist integrability conditions on Eq. (1) in
volving the Ricci tensor, the field !/JABb and its derivatives, 
which are very restrictive. For these reasons we will restrict 
ourselves to the case where the Ricci tensor is equal to zero. 
Furthermore, in what follows we shall impose the condition 
that the conformal curvature be algebraically special. 

III. DECOU PLED EQUATIONS AND THE TEUKOLSKY
STAROBINSKY IDENTITIES 

In this section we shall show, following the procedure 
used in Ref. 6, that in an algebraically special vacuum space
time the contraction of H ABC' defined in (3), with a multiple 
principal spinor of the conformal curvature satisfies a decou
pled equation, thus extending Guven's resule to a wider 
class of space-times. 

The algebraic degeneracy of the conformal curvature 
means that there exists a spinor field I A that is a multiple 
principal spinor of C ABCD (the Weyl spinor), i.e., 

IAIBlcCABcD = O. (7) 

Then, from Eqs. (5a) and (7) it follows that IAIBlcHABc is 
invariant under the transformations (4). This "gauge-invar
iant" component satisfies a decoupled equation. In order to 
obtain this equation we shall write down the equivalent of 
part of Eq. (6) in the Newman-Penrose notation, allowing 
the spinor indices to take the values 0 and 1, instead of 1 and 
2 as in Refs. 9, 10, 14, and 15. In a frame such that 
'II 0 = 0 = 'III' according to the Sachs-Goldberg theorem, 
K = 0 = 0' and one has 

(D - £ - 3p)Hool - (8 - 3a + 1T)Hooo = '112!/Jooo" 
(8) 

(8 - p - Jr)Hool - (a - 3y + J-t)Hooo = '112!/JOOI" 
where our convention for the definition of H ABC is such that, 
e.g., 

Hooo = (8 - 2P - a + 1f)!/Jooo' - (D - 2£ + E - P)!/JOOI" 
(9) 

Then by applying (8 - 2P - a - 31' + 1f) to the first equa
tion in (8) and (D - 2£ + E - 3p - p) to the second one 
and subtracting, we obtain 

[(D - 2£ + E - 3p - p) (a - 3y + J-t) 

- (8 - 2P - a - 31' + 1f) (8 - 3a + 11') - '11 2 ]Hooo 

=0, ( 10) 

where we have used Eq. (9) and the relations 

(D - 3p)'II2 = 0, (8 - 3r)'II2 = 0, (11 ) 

which follow from the Bianchi identities (cf. Ref. 6). 
In the case of a vacuum type D space-time there are two 

linearly independent solutions of Eq. (7) and correspond
ingly there are two decoupled equations that follow from Eq. 
(6). In a frame such that '112 is the only nonvanishing compo
nentofthe Weylspinor, thecomponentsHoooandHll1 satis
fy Eq. (10) and 
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[(A + 2y- r+ 3p, +.u)(D+ 3E-p) 

- (8 + 2a + /3 + 31T - 1') (8 + 3/3 - 1") - 'l'2]HlIl 

=0, (12) 

respectively. In all the type D vacuum metrics, Eqs. (10) 
and (12) can be solved by separation ofvariables.4

•
5 

The solutions ofEqs. (10) and (12) satisfy certain dif
ferential relations, namely, 

(D + E - 2E - 5p)(D + 2E - E - 3p) (D + 3E - P )HlIl 

= (8 - a - 2/3 + 51T)( 8 - 2a -/3 + 31T) 

x (8 - 3a + 1T)Hooo (13 ) 

and 

(8 + /3 + ill - 51") (8 + 2/3 + a - 31") (8 + 3/3 - 1") HIlI 

= (A - y+ 2r+ 5p,)(A - 2y+ r+ 3p,) 

X (A - 3y + p,)Hooo, (14) 

which are similar to the Teukolsky-Starobinsky identities 
found in the case ofthe electromagnetic field (see, e.g., Ref. 
17). The validity of Eq. (13) can be verified by a straightfor
ward but rather lengthy computation using Eqs. (1), (6), 
and (11) and the relations 

(D-E-E-p)p=O, (8+a-/3 +1T)1T=0, (15) 

which follow from the Ricci identities with the Ricci tensor 
being equal to zero, and 

(16) 

The computation can be simplified by employing the Ger
och-Held-Penrose formalism. 18 

A shorter proof of ( 13) can be given in the case where 
'I' 2 =1= 0. From Eq. (5a) it is clear that by means of a transfor
mation (4) one can make Hool = ° = HoII ; then from Eq. 
(6) one has 

(D+ 3E-p)Hlll = 'l'2tPllO" 

tP I 00' + tPOIO' = 0, 

(8 - 3a + 1T)Hooo = - 'l'2tPOOO" 

On the other hand, from Eq. (1) it follows that 

(D-E-p)tPolO' -PtPlOO' = (8-2a-/3 +1T)tPooo', 

(8 -/3 + 1T) tPlOO' + 1TtPOIO' = (D + 2E - E - P)tPllO" 

Using these equations together with Eqs. (11), (15), and 
(16), Eq. (13) can be readily verified. Equation (14) isjust 
the "primed version" of Eq. (13) in the sense defined in Ref. 
18; hence it does not require a separate proof. 

Equations ( 13) and ( 14) can be written in other equiva
lent forms, making use of Eq. (15), e.g., 

(D + E - 2E - 4p)(D + 2E - E - 2p) (D + 3E - 3p )HlIl 

= (8 - a - 2/3 + 41T)( 8 - 2a -/3 + 21T) 

IV. SOLUTION OF THE RARITA-SCHWINGER 
EQUATION IN TERMS OF POTENTIALS 

(17) 

In this section we shall show that in a vacuum algebrai
cally special space-time the solution of the Rarita-
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Schwinger equation can be expressed in terms of a scalar 
potential that satisfies a single second-order partial differen
tial equation. 

As shown in Refs. 13 and 14, the metric of a vacuum 
algebraically special space-time can be written in the form 

dil = 2t/J-2 drt ® (dPA + QAiI dqil), (18) 
s 

where rt and pA are complex coordinates, QAiI = QilA' and t/J 
is a function that satisfies 

lCVAillc=IAlcacillnt/J, (19) 

where I A is a multiple principal spinor of the conformal cur
vature C ABCD [see E.q. (7)]. Then the vector fields 

a 
alA = {i-. =.{iaA, 

apA 

a2A = {i t/J2 C~ + QAiI ail )=.{i t/J2DA, 

form a null tetrad satisfying aAiI·aciJ = - 2EACEiliJ' 

(20) 

We shall consider the complex conjugate of Eq. (1) 
written in the form 

HAilc = H(Ailc) , 

H ABC =0, 

where 

(21a) 

(21b) 

HAilC=.VR(iI~C)R' HABC=,V(BR~IR IC)' (22) 
By using the components of the connection for the tetrad 
(20) given in Ref. 14 one finds that, with respect to this 
tetrad, the equation H A II = ° amounts to 

where JA =.aAt/J. Contracting Eq. (23) with JA, it follows 
that aR(JAt/J-1I2~RI) =0, since aR'JA =aRaAt/J 
= - t/JCllRA = 0. Therefore there exists (locally) a func

tion M such that JA t/J - 1I2~R I = aRM; hence 
t/J-I/2~RI =KAaRM+JABR, where KA is independent 
of pil and satisfies K A JA = 1 and B R is some pair of func
tions. Substituting into Eq. (23) one obtains 
aR (t/JB R - MKR) = 0, which implies that t/JBR - MKR 
= a R N, where N is some function. Thus 

t/J-1I2~RI = KA aRM + t/J-IJA(MK R + aRN) 

= {i{a R(t/J- I12s A) + t/J-IJA(t/J-1/2SR)}, 

where t/J-1I2SA=. (MK A + Nt/J-IJA)/{i. Therefore, HAIl 
= ° implies that locally 

t/J-1I2~RI = {i{aR(t/J-1/2sA) + t/J-IJA(t/J-I12SR)} 
(24) 

for some S R. Even though the preceding derivation requires 
JA =1=0, it is easy to see directly from Eq. (23) that in the case 
JA = 0, Eq. (24) also applies. Equation (24) can be written 
in the form 

(25) 

as it can be readily verified by using the connection coeffi
cients for the tetrad (20). 
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From Eqs. (22) and (25) one gets 

2HAIl = - VIRt/i\ - VlRt/iR I 

= - VIRt/iRz - VlR V/s A 

- VIR [t/iRl - V/SA] + V(/Vl)RS A. 

The last term is equal to zero by virtue ofthe Ricci identities 
since we are assuming that the Ricci tensor vanishes, and 
evaluating the first term explicitly we obtain that HAil = 0 
amounts to 

aR [¢-5/l(t/i\ - V/s A)] 

+¢-IJA¢-512 C,pRR2 -V/SR ) =0. 

Hence by comparing with Eqs. (23) and (24) we see that 

¢-5/Zt/iR2 = ¢-512V/SA + /i(aR(;A + ¢-IJA(;R), (26) 

for some (; R. 

In order to write Eq. (26) in a covariant form we intro
duce a spinor field i' BC = i' CB such that, in the frame (20), 
it has components i'll = 0 = ~12' yfl2 = ¢5/2(;A. Then 
one finds that Eq. (26) is equivalent to 

t/i\ = V/S A + ¢-2VBR(¢2~Bl)' (27) 

Moreover, since ¢-2VBR(¢2yfBI) =0, we can write Eqs. 
(25) and (27) in the form 

(28) 

Substituting now this last expression into the first of 
Eqs. (22) and using the Ricci identities with the scalar cur
vature equal to zero we get 

HA iJc = - 2CAiJCDSD + VS(iJ [¢-2VR 
C) (¢2yf RS)]' 

(29) 

Evaluating the second term and expressing the result in 
terms of (; A we find 

The symmetry condition (21a) is equivalent to HA AC = 0; 
hence (; A is restricted by the condition 

aCaA(;A + ¢-IJA aA(;c + ¢-IJA adA = 0, 

which can be rewritten as 

¢-lac[¢3aA(¢-2(;A)] =0. (31) 

Assuming JA ",0 one immediately obtains that the most 
general solution of Eq. (31) is given by 

¢-2(;A = /i[b¢-2K A + a A(¢-2if)], (32) 

where b is a function independent of pA and if is some func
tion (the factor ¢ - 2 multiplying if is inserted for later con
venience). [On the other hand, the condition JA = 0 is very 
restrictive; it implies that the spinor fA is at least a triple 
principal spinor of CABCD' thus excluding types II and D, 
and that the shear-free congruence of null geodesics defined 
by fA has expansion and twist equal to zero. 13

•
14 In what 

follows only the case JA '" 0 will be considered. J Substituting 
Eq. (32) into (26) one gets 
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¢-5/2t/iR2 = ¢-512V/S A 

where 

+ 2(a Ra Aif - ¢-IJA aRif 

+ b¢-IJAK R) 

= ¢-512V/SA 

+ 2(a Ra AH - ¢-IJA aRH), 

H=if - bKiJpiJ. 

(33) 

(34) 

Equations (25) and (33) can now be written in the covariant 
form 

(35) 

[cf. Eq. (28) J, where XABC is totally symmetric and in the 
frame (20) has components X222 = ¢5/2H and all others 
equal to zero. In a covariant way, this means that X ABC is 
proportional to fA I B f c· 

The only restriction on the potential X ABC comes from 
the equations H A 22 = 0, which amount to 

V2R {¢-2VBR [¢VSA(¢XlBS)]} = O. 

After some rearrangement these conditions can be written as 

¢aA{¢-I[DR aRH -! (aiJQiJR)aRH 

-! ¢-2C(3)H]) = 0, 

where C (3) =2C1122 and we have used the fact that 

~ R¢-2 = - aAaiJQAB - 6<P aA (¢-2DA¢) = 0, 

¢-2C12AB = ~ a ca(A QiJ)C - </J-I a(ADB) ¢ = 0, 

and that 

¢-3C(3) = - ~¢-I aAaBQAB 

is independent of pA (see Ref. 14), which implies that the 
expression between braces is a function independent of pA. 
On the other hand, from Eq. (33) one finds that the field is 
unchanged if H is replaced by H + a ( qR ) ¢2 + c ( qR ). There
fore, by using this freedom, one can make the potential H to 
satisfy the wavelike equation 

DR aRH - ~ (aRQBk )aRH -! ¢-2C(3)H = O. (36) 

Expressed in covariant form, in terms of X ABC' this equation 
is equivalent to 

V R(S¢-3VCR¢3XAB)C - 2C(SA CDXB )CD = 0, (37) 

and according to Eqs. (22) and (35) the field H ABC is given 
by 

H ABC = - 2CAiJCDS D + VS(B¢-2VR
C) </JVDA¢XSRD' (38) 

The last term can also be expressed in the form 

¢VS(A ¢-2VR iJ¢-2VD C) ¢3XSRD (39) 

[see Eq. (3.16) of Ref. 9]. 
In terms of the Newman-Penrose notation, in a frame 

such that K = 0 = u (and hence \flo = 0 = \fI1)' Eq. (37) 
takes the form 

[(a + 2y- r+,u)(D+ 3E+ 2p) 

- (b + 2a + P - r){o + 3f3 + 27) - \fI2 lx = 0, 
(40) 
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where X is the only nonvanishing component of X ABC and we 
have made use of Eq. (19), which in this case gives 
K = 0 = a, p = D In ifJ, 7 = D In ifJ. According to Eq. (35) 
the components of the field are given by 

"'0'0'0 = (D - "E) So' , "'0'1'0 = (D - a)so' + PSI" 

"'1'0'0 = (D + "E)SI' -1i"So', "'1'1'0 = (D + a)SI' - ASo" 

"'0'0'1 = (1)-(J)So' + (D+2€-"E+p)(D+3€)X, 

"'0'1'1 = (a - r)so' + 7SI' 

+ (8 + 2/3 - a + 7)(D + 3€)X + p(8 + 3/3)X, 

"'1'0'1 = (8 + (J) SI' - fiSo' 

+ (D + 2€ +"E + p)(D + 3/3)X - 1i"(D + 3€)X, 

"'1'1'1 = (a + r)sl' - VSo' 

+ (D + 2/3 + a + 7)(D + 3/3)X - A(D + 3€)X· 
(41) 

By comparing Eq. (35) with (the complex conjugate 
of) Eq, (4) we see that the effect of a "gauge transforma
tion" (4) on "'ARC can be taken into account by simply shift
ing the spinor field SA (which is not restricted by the field 
equations) and leaving the potential X ABC unchanged. 

In Refs. 19 and 20 it was shown that the existence of a 
two-index Killing spinor establishes a relation between de
coupled components and potentials for massless fields of 
spins!, 1, and 2 (see also Ref. 8). A similar relation holds for 
Rarita-Schwinger fields. A two-index Killing spinor LAB 
satisfies 

VCARLBC) =0 (42) 

and its existence requires that the conformal curvature be of 
type D or N. All the vacuum type D space-times admit a 
two-index Killing spinor. In a frame such that '1'2 is the only 
non vanishing component of the Weyl spinor the solution of 
(42) is given by Loo=O=L II , and LOI =LIO 
= const('I'2) -1/3 satisfies 

(D + p)Lol = 0, (a - p)Lol = 0, 

(D + 7)Lol = 0, (8 - 1T)LOI = 0, 
(43) 

where we are using 0 and 1 to label the spinor components in 
order to get a closer agreement with the Newman-Penrose 
conventions. By using Eq. (43) it is easy to see that if Hili is 
a solution ofEq. (12), then 

(44) 

is a solution ofEq. (40), and conversely. This means that the 
component Hili acts as a potential for all the components of 
a field that, in general, is different from the original one. 
Since in all the type 0 vacuum metrics Eq. (12) is known to 
admit separable solutions,4.5 so does Eq. (40) (see also Ref. 
21 ). 

A restricted class of type N metrics admits a solution of 
Eq. (42). In this case the solution ofEq. (42) must be of the 
form LAB = LA L B and in a frame such that '1'4 is the only 
nonvanishing component of the Weyl spinor, Lo = 0, and L, 
must satisfy 
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(45) 

By commuting the derivatives acting on Hooo one can rewrite 
Eq. (10) as 

[ (a - 4r - r + fi)(D - 3€ - 4p) 

- (8 - 4a + (J - 7) (D - 3/3 - 47) - 1O'I'21Hooo 

= 0, (46) 

and using Eq. (45) one can easily verify that if Hooo satisfies 
Eq. (10), then 

(47) 

satisfies Eq. (40), and conversely. Furthermore, if X is a 
solution of Eq. (40) then, using Eq. (45), one finds that 
(L I ) -3X satisfies the massless field equation for spin-O and 
that (L I)-2X, (L,)-IX, and LIX are potentials for a Weyl 
neutrino field, an electromagnetic field, and a gravitational 
perturbation, respectively (see Ref. 20). This relationship 
between potentials yields a relationship between fields. For 
instance, using Eq. (38) and following the same steps as in 
Ref. 20, one finds that, in terms of the components ifJ AD of the 
electromagnetic field generated by (L I) -IX, 

H ADc = - {2CADCbS D + L SVsAifJDC 

- ~ ifJCAD VS
C) Ls}· 

On the other hand, using the fact that LA is a quadruple 
principal spinor of the conformal curvature, from Eq. (6) it 
follows that ifJ AB = HABcL c satisfies the source-free Max
well equations. This shows that the spin-raising and spin
lowering operations, valid in the case of conformally flat 
space-time (see §6.4 of Ref. 22), also apply in the present 
case. 

v. CONCLUSIONS 

The results presented here show that despite the differ
ences between Eq. ( 1 ) and the usual massless free-field equa
tions and the equations for gravitational perturbations, in an 
algebraically special space-time all of them share several 
properties such as the existence of decoupled equations and 
the possibility of expressing all the components of the field in 
terms of a single scalar potential. Moreover, the decoupled 
equations and the equations for the potentials can be sum
marized by certain general expressions applicable to the 
cases s = 0, ~, 1, ~, and 2. 

In the cases s = !, 1, and 2, it is known that the equation 
for the potential is the adjoint, in the sense of Ref. 8, of the 
corresponding decoupled equation, which is related to the 
fact that the respective field equations are self-adjoint. Simi
larly, Eq. (1) is self-adjoint and Eq. (40) is precisely the 
adjoint ofthe decoupled equation (10). 

ACKNOWLEDGMENT 

The author acknowledges support from the Sistema Na
cional de Investigadores. 

'D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, Phys. Rev. D 13, 
3214 (1976). 

'P. C. Aichelburg and H. K. Urbantke, Gen. Relativ. Gravit. 13, 817 
(1981 ). 

.JR. Giiven, Phys. Rev. D 22,2327 (1980). 

G. F. Torres del Castillo 450 



                                                                                                                                    

'N. Kamran, J. Math. Phys. 26, 1740 (1985); N. Kamran and R. G. 
McLenaghan, in Gravitation and Geometry: A Volume in Honor of 1 Rob
inson. edited by W. Rindler and A. Trautman (Bibliopolis, Naples, 1987). 

sG. F. Torres del Castillo, J. Math. Phys. 29, 2078 (1988). 
6g. A. Teukolsky, Astrophys. J. 185, 635 (1973). 
7L. S. Kegeles and J. M. Cohen, Phys. Rev. D 19, 1641 (1979). 
sR. M. Wald, Phys. Rev. Lett. 41,203 (1978). 
9G. F. Torres del Castillo, J. Math. Phys. 25, 342 (1984). 
lOG. F. Torres del Castillo, J. Math. Phys. 27,1586 (1986). 
11M. S. Hickman and C. B. G. McIntosh, Gen. Relativ. Gravit. 18, 1275 

(1986). 
12B. P. Jeffryes, preprint, Max-Planck-Institut, MPA 263, 1986. 
13J. F. Plebanski and I. Robinson, Phys. Rev. Lett. 37, 493 (1976); in 

451 J. Math. Phys .• Vol. 30. No.2. February 1989 

Asymptotic Structure of Space- Time, edited by F. P. Esposito and L. Wit
ten (Plenum, New York, 1977). 

l4G. F. Torres del Castillo, J. Math. Phys. 24, 590 (1983). 
ISJ. F. Plebanski, J. Math. Phys. 16,2395 (1975). 
16R. Penrose and W. Rindler, Spinors and Space-time (Cambridge V.P., 

Cambridge, England, 1984), Vol. 1. 
l7G. F. Torres del Castillo, J. Math. Phys. 29,971 (1988). 
IKR. Geroch, A. Held, and R. Penrose, J. Math. Phys. 14, 874 (1973). 
19G. F. Torres del Castillo, Proc. R. Soc. London Ser. A 400, 119 ( 1985). 
20G. F. Torres del Castillo, J. Math. Phys. 27,1583 (1986). 
21N. Kamran, C. R. Acad. Sci. 304, 299 (1987). 
22R. Penrose and W. Rindler, Spinors and Space-time (Cambridge V.P., 

Cambridge, England, 1986), Vol. 2. 

G. F. Torres del Castillo 451 
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The no boundary proposal for the wave function of the universe is investigated in a 
minisuperspace model of pure gravity with cosmological constant. The model's four geometries 
consist of five four-simplices joined together to make the surface of a five-simplex from which 
one four-simplex face has been removed. The model is further simplified by symmetrically 
choosing all the interior edges of equal length and all the edges of the four-simplex boundary of 
equal length. The wave function is thus a function of a single boundary squared edge length 
and is specified by an integral over the single interior edge length. The analytic properties of 
the action in the space of complex edge lengths are exhibited, its classical extrema are 
calculated, and the possible contours of integration defining the wave function of the universe 
are discussed. A descending contour of constant imaginary action is proposed along which the 
integral defining the wave function is convergent and which predicts classical space-time in the 
late universe. This contour is the analog for the model of the conformally rotated contour 
appropriate to Euclidean sums over asymptotically flat space-times. The wave function is 
evaluated numerically for this contour both directly and by semiclassical methods. 

I. INTRODUCTION 

The "no boundary" proposal I for the initial conditions 
of our universe prescribes, among other amplitudes, the 
wave function of a closed universe on a connected spacelike 
surface as a Euclidean sum over histories of the form 

'lio(h,<p,aM) = L v(M) ( DgD<I>exp( -/[g,<I>,M]). 
M Jc 

(1.1 ) 

The arguments of the wave function, hand <p, denote the 
three metric and matter field configurations, respectively, on 
the three-manifold aM; I is the Euclidean gravitational ac
tion for the metric g and matter field configurations <I> on a 
four-manifold M. The sum over manifolds is over a class of 
four-manifolds M that have a boundary aM and no other 
boundary. The functional integral is over the four-metrics g 
and matter field configurations <I> that induce hand <p, re
spectively, on the boundary aM. Other amplitudes are pre
scribed by this proposal. For example, there are the ampli
tudes associated with a surface that has disconnected 
parts,2.3 important for the value of the cosmological con
stant,4 or the "muItisurface" amplitudes important for the 
recovery of a notion of time. 5 These have an analogous con
struction to that of the wave function (1.1). 

To make a construction such as (1.1) definite, the class 
of manifolds, the measure for the functional integrals, and 
the contour C over which these integrals are to be taken must 
all be specified. Various possibilities have been discussed for 
the class of manifolds2.6 and for the measure.7 In this paper 
we shall discuss some possibilities for the contour C in the 
context of a simplical minisuperspace model. 

For several reasons the contour of integration defining 
the wave function of the universe may be expected to run 
over complex metrics. First, were the action such as to make 
an integral over real metrics convergent, the wave function 
defined by (l.I) with a real contour of integration would 
contradict one of the immediate facts of our experience-the 

classical space-time of the late universe. Classical space-time 
is a prediction of an oscillatory wave function in those re
gions of configuration space (the classically allowed re
gions) where it is well approximated semiclassically.2.8 The 
integral of exp( - I) over real Euclidean geometries can 
never oscillate. A complex contour is therefore necessary. 
Second, were the action such as to make an integral over real 
metrics convergent, it seems unlikely that ( 1.1) would yield 
a wave function satisfying the constraints required by diffeo
morphism invariance and, in particular, the Wheeler
DeWitt equation.9 A complex contour of appropriate range 
could well give a construction by which the constraints are 
satisfied. 

Fortunately, the Euclidean Einstein action-the low en
ergy limit of any quantum theory of gravity-does not per
mit a real contour of integration with the unacceptable prop
erties described above. It can assume arbitrarily negative 
values when evaluated on certain real metrics 10 and (1.1) 
integrated over all real metrics would diverge. Merely from 
finiteness, one is naturally led to a complex contour. 

In simple, familiar, flat space quantum field theories, 
there is no issue of the choice of contour for the Euclidean 
sum over histories defining the ground state. The sum is 
typically over real Euclidean field configurations with ap
propriate asymptotic behavior. Why then should the con
tour be an issue, or even a possibility for choice, for the sum 
over histories defining the analog of the ground state in the 
quantum mechanics of closed cosmologies? It is perhaps ap
propriate to briefly review the reasons. 

Einstein gravity and gauge field theories are examples of 
theories that are most straightforwardly formulated in terms 
of redundant variables. Physical properties such as the posi
tivity of the energy necessary for a stable ground state are 
features of the theory expressed in terms of these physical 
degrees of freedom. Sums over histories defining quantum 
amplitudes are sums over these physical degrees of freedom. 
Indeed, the machinery of gauge fixed functional integrals is a 
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formalism for carrying out just such sums without explicitly 
isolating the physical degrees of freedom. Redundant gauge 
degrees of freedom can be "fixed" in such constructions. 
However, if there are gauge invariant redundant degrees of 
freedom, there can be many contours of integration that cor
respond to summing the physical degrees of freedom over a 
real, physically appropriate range, but which differ in the 
contour assigned to the redundant variables. Such contours 
are physically equivalent when they give convergent results. 
It is the existence of gauge invariant redundant variables that 
makes the choice of con tour an issue in ( 1.1 ) . 

Linearized general relatively is an example of a theory of 
this type for which the physical and redundant degrees can 
be explicitly identified. The action can be arbitrarily negative 
for some linearized metrics, but is positive when restricted to 
the physical degrees of freedom. The energy expressed in 
terms of the physical degrees of freedom is positive; there
fore, there is a stable ground state. Indeed, it could not be 
otherwise since linearized gravity is just the theory of a free 
spin-2 field in flat space-time. The possible contours ofinte
gration for constructing the ground state wave function by 
the analog of (1.1) can be explicitly discussed. 11.12 There is 
no real contour giving the ground state wave function since 
the resulting integral would be divergent. However, there are 
contours in which the redundant variables are integrated 
over complex values that correctly yield the ground state 
wave function of the Hamiltonian theory. Indeed, this can be 
demonstrated to all orders in perturbation theory. 12 

In the full theory of general relativity we have no explicit 
decomposition into physical and redundant variables. How
ever, the positive energy theorem of classical general relativi
tyl3 suggests the existence of a stable ground state when the 
theory is restricted to asymptotically flat space-times. The 
work of Gibbons, Hawking, and Perry,1O coupled with the 
positive action theorem of Schoen and Yau 14 has shown how 
sensible convergent results can be obtained for Euclidean 
sums over asymptotically flat space-times, with contours 
along which the conformal degree offreedom takes complex 
values. However, in the case of closed cosmologies we have, 
as yet, no explicit prescription for the complex contour that 
defines the "no boundary" wave functions. Here we have 
neither an explicit decomposition into physical and redun
dant variables nor a notion of total energy to guide us. There
fore, it seems appropriate to search generally for suitable 
contours. In particular, we can ask whether there are com
plex contours ofintegration that (i) are convergent, (ii) lead 
to a wave function that predicts classical space-time in the 
late (t;;;: 10-43 sec) universe, and (iii) lead to a wave func
tion that satisfies the constraints implementing diffeomor
phism invariance. In this paper we discuss this question in 
the simplest simplical minisuperspace model. 

Minisuperspace models have a history of utility in the 
exploration of quantum gravity and quantum cosmol
ogy.15.16 In a minisuperspace model the parameters needed 
to describe a family of space-time histories is truncated to a 
manageable number leading to a tractable quantum mechan
ical model of general relativity. In some circumstances these 
models may give rise to approximations to quantities of 
physical interest. 17.18 A useful class of systematically impro-
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vable models can be obtained by using the methods of the 
Regge calculus,19 to restrict the geometries contributing to 
( 1.1) to the possible simplicial geometries built on a fixed 
simplicial manifold. Such models were generally discussed 
in the first two papers of this series. 18.20 

The question of the possible contours of integration 
obeying criteria (i)-(iii) can be usefully explored in minisu
perspace models for which the possible contours can be ex
plicitly displayed. Simplicial minisuperspace models are 
particularly useful in this way. The possible contours of inte
gration are the contours in the space of complex squared 
edge lengths of the simplicial geometry. Since the Regge ac
tion is an algebraic function of the squared edge lengths, its 
analytic properties as a function of these many complex vari
ables are straightforwardly displayed and the consequences 
of a particular choice of contour analyzed in an elementary 
way. In this paper we carry out such an analysis for the 
simplest minisuperspace model. The model is specified in 
Sec. II. In Sec. III the semiclassical approximation to the 
sum over geometries is discussed. In Sec. IV it is shown that 
the steepest descents contour through the extrema that give 
classical space-time in the late universe is a contour satisfy
ing the applicable criteria above. Some brief conclusions are 
drawn in Sec. V. 

II. THE MODEL 

The surface ofa tetrahedron (a three-simplex) consists 
of four triangles that together form a two-dimensional sim
plicial geometry without boundary. If one of these triangles 
is removed, the result is a two-dimensional simplicial geome
try with a single one-dimensional boundary consisting of 
three edges (see Fig. 1). Two dimensions up, a similar proce
dure can be used to construct a four-dimensional simplicial 
geometry with a single S 3 boundary. A five-simplex consists 
of six points in five dimensions, with every pair defining an 
edge. The surface of a five-simplex consists of six four-sim
plices that together form a four-dimensional geometry with
out boundary. If one of these four-simplices is removed, the 
remaining five four-simplices form a simplicial four-geome
try with a single three-sphere boundary. There are five ver
tices in the boundary and a single interior vertex. There are 
thus ten boundary edges and five interior ones that join the 

FIG. 1. A two-dimensional simplicial geometry. Remove one triangle from 
the surface of a tetrahedron and one obtains the two-dimensional simplicial 
geometry shown. The geometry consists of three triangles meeting in the 
single interior vertex. There is a single closed boundary consisting of the 
three edges (heavy lines) of the removed triangle. The simplical geometry 
used in constructing the minisuperspace model of this paper is the four
dimensional analog of that pictured here. 
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interior vertex to each of the five boundary vertices (see Fig. 
1). The simplicial manifold is clearly invariant under per
mutations of the five boundary vertices. If all boundary 
edges are chosen equal and all interior edges separately 
equal, one obtains a family of symmetric simplicial geome
tries. Each is characterized by just two numbers: the squared 
boundary edge length Sb and the squared interior edge length 
Sj. This symmetric family of simplicial four-geometries de
fines our minisuperspace model. We include no other geo
metrical degrees of freedom, no other manifolds, and no 
matter degrees offreedom. The wave function is thus a func
tion only of the boundary edge length Sb and given by the 
transcription of ( 1.1 ): 

'l'O(Sb) = L dlt(sj)exp[ -l(sb,sj)]' (2.1) 

The only integration is over the interior edge Sj over a con
tour C with a measure It. To complete the model it remains 
to specify C, It, and the action 1. 

For the action we take the Regge action for Euclidean 
Einstein gravity with cosmological constant, that is, we take 
the simplicial analog of 

121=-2( d 3xJhK-( d 4x,[gR+2A( d 4x,[g. JaM JM JM 
(2.2) 

Here, R is the scalar curvature, A is the cosmological con
stant, K is the extrinsic curvature scalar of the boundary, and 
1= (161TG) 112 is the Planck length in the units with 
fz = c = 1 used throughout. The first term is an integral over 
the boundary of the manifold and the second over its interi
or. The simplicial analog of (2.2) is 19

•
21 

121 = - 2 L A (O')t/J(O') - 2 L A (0')0(0') oeaM OEint(M) 

+ 2A L V4 (r). (2.3 ) 
TEint(M) 

The sums are, respectively, over triangles a in the boundary 
aM, over triangles a in the interior of M, and over interior 
four-simplices r. Here, 0(0') is the deficit angle of triangle a 
and t/J(O') is the angle between the normals to the boundary 
tetrahedra meeting in triangle o'. The area of triangle a is 
A (a) and V4 ( r) is the four-volume of the four-simplex r. 
Further details of definition, as well as practical prescrip
tions for expressing these quantities in terms of squared edge 
lengths, are reviewed in Paper I. 

The analytic properties of the action as a function ofthe 
complex squared edge lengths will be important for an analy
sis of possible complex contours of integration: Although 
they can be explicitly exhibited for the model, they are also 
generally read off easily from Eq. (2.3) and the relations 
(Paper I) defining volumes, areas, and angles in terms of 
squared edge lengths. In particular, let el ,e2,oo.,e" be vectors 
lying along the edges of an n-simplex emanating from one 
chosen vertex O. The volume n-form for the simplex is 
(tJ" = e 1 A 00' A en and the squared volume is given in terms of 
it by [see Paper I, Eq. (3.6)] 
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edge length between vertices a and {3, we concl ude that V ~ is 
a polynomial in the squared edge lengths. The deficit angle 
0(0') is 21T minus the sum of the "dihedral angles" between 
the three-simplices meeting at o'. Similarly, t/J( a) is 1T minus 
the sum of the dihedral angles between the interior three
simplices meeting at o'. The dihedral angle ifJ between two 
three-simplices with the volume forms (tJ3 and (tJ3 is [see 
Paper I, Eq. (3.9)] 

(2.5) 

and (tJ3·(tJ3 = (3!)-2det(ea ·ep). Using this formula, Eq. 
(2.4 ), the relation 

cos-I(z) = - ilog(z + R'=i), (2.6) 

and the law of cosines to express the vector scalar products in 
terms of squared edge lengths, the analytic properties of the 
angles entering the action may be explicitly exhibited. 

The analytic properties of the action in the complex 
squared edge lengths may be summarized as follows: There 
are logarithmic infinities on those surfaces that correspond 
to the vanishing of the polynomial which gives a three-sim
plex squared volume. The action is not single valued. Evi
dently, there are branch surfaces where the volume of a tri
angle, three-simplex, or four-simplex vanishes and, also, 
there are branch surfaces on which the squared cosine of any 
dihedral angle equals unity. However, a degenerate triangle 
or three-simplex implies the degeneracy of the four-simplex 
that contains it. Further, the identity [see Paper I, Eq. 
(3.12)] 

(2.7) 

gives a relation between the dihedral angle between two 
three-simplices meeting in a triangle, their volumes V3 and 
V 3' the volume V4 of the four-simplex they span, and the 
area A of the triangle in which they meet. This shows that 
cos ifJ = ± I only when either A or V4 vanishes. The branch 
surfaces of the action are therefore entirely contained in 
those surfaces on which the volume of some four-simplex 
vanishes. Except for these branch surfaces and logarithmic 
singularities the action is an analytic function ofthe squared 
edge lengths. 

To carry out the integral (2.1) for the present model the 
action must be expressed in terms of the two edge lengths Sb 

and S j' The quantities occurring in (2.3) are straigh tfor
wardly calculated by use of (2.4) and (2.5). The results are 
most conveniently expressed in terms of the dimensionless 
ratios 

(2.8) 

where H 2 = 12 A/3. The volume of each four-simplex is 

V4=(1/(2~»)~ (5_§)tl2. 

The area of each interior triangle is 

Aj =¥b(5-V I/2 

and the associated deficit angle is 

0= 21T - 3 cos-1{H (25 - 1)/(35 - 1) n. 
The area of a boundary triangle is 

Ab = (-/3/4 )Sb 

James B. Hartle 

(2.9) 

(2.10) 

(2.11) 

(2.12 ) 
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and the angle 1/1 for each is 

1/1 = 1T - 2 COS-I{(1/(2~»)[ 1/(3s - 1) 1/2]}. (2.13) 

The action (2.3) is then 

1= [ - SY(s) + S2[5 (s) ]lH 2=f(S,s)IH2, (2.14) 

where 

Yes) =5{J)" [1T- 2cos-l(zl)] 

+ (4s-I)1/2 [21T-3coS-I(Z2)]} (2.15) 

and 

(2.16 ) 

with 

I 1 
Z I = 2~ (3s _ 1) 1/2 ' 

Z =-.!...(2s-I). 
2 2 3s - I 

(2.17 ) 

In familiar quantum theories the choice of measure for a 
sum-over-histories formulation is dictated by requiring cor
respondence with the Hamiltonian version of the theory.6 
However, there may be no natural Hamiltonian formulation 
of the quantum mechanics of closed cosmologies from which 
to draw this information. 22 The corresponding constraints in 
the more general formulations of quantum mechanics have 
not yet been fully explored; they certainly have not been for 
the Regge calculus. Fortunately, the main results of this in
vestigation for the contour C do not seem very sensitive to 
the choice of measure among those in a "reasonable" class, 
e.g., measures that are polynomials in the squared edge 
lengths. Several choices have been suggested as natural in 
one way or another. For illustrative purposes we shall 
choose the simplest possibility and write 

d/-l(sj) =ds;I(21Ti/2). (2.18) 

The factor 21Ti/ 2 is a convenient normalization. Thus we can 
write (2.1) as 

"'O(S) =~i dsexp [ - f(S;s)]. 
2mH c H 

(2.19) 

The analytic and asymptotic properties of the action 
f (S,s) as a function of the complex variable S are easily 
deduced from the general discussion of the analytic proper
ties of the action or from the explicit expressions (2.9)
(2.13) and the definition of cos-I(z). There is a square root 
branch point of f (S,s) at S = § where the four-simplices 
become degenerate; there is another square root branch 
point at S = 1 where the interior triangles become degener
ate; and, finally, at S = j there is a square root branch point 
and a logarithmic branch point near which f (S,s) behaves 
as 

f(S,s) -1<N310g(3s - 1)S. (2.20) 

There is also a branch point of the logarithms at infinity. 
Choosing phases so that cos - I (z) is realfor - 1 < z < 1, 

real values of the squared edge length S correspond to real 
geometries with real metrics. Indeed, the metric inside each 
four-simplex is easily displayed in the basis whose defining 
basis vectors e j lie along the edges from the single interior 
vertex 0 to the five vertices i of the boundary four-simplex; it 
IS 
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gjj =ej'ej =!(SOj +SOj -Sj), (2.21) 

where saP is the squared edge length joining vertices a and {3. 
The metric is real for real values of saP' For the symmetric 
choice of edges SOj = SbS and sij = Sb' the eigenvalues of 
(2.21) are A =!, A =!, and the two values 

A = 1 +!s ± [(1 + g)2 - 2(s - V f12. (2.22) 

Thus we have the signature ( + , + , + , + ) for s> § and 
( - , + , + , + ) for S < §. The real axis for S > § is the regime 
of real Euclidean geometries; the regime for S < § is the re
gime of real Lorentzian geometries. 

The phases of the complex functions are chosen so that 
on the real axis for s> ~ one has real volumes (2.9), real 
areas (2.10), real deficit angles (2.11), and real Euclidean 
action (2.14). It is thus convenient to define a first sheet for 
the action function cut from ~ to - 00. The reality of f 
above S = ~ establishes that the action is real analytic: 

(2.23 ) 

The Euclidean action for the Lorentzian geometries in the 
range S < 1 is pure imaginary, taking opposite signs above 
and below the cut. In this range, about the cut, 

Yes) = i5{ - 2J)" sinh-I ( 1 ) 
2~(1 - 3S) 1/2 

+ (1- 4S)1/2 

X [21T - 3 cos-
I
( + 2~ -=-1/)]), (2.24a) 

[5(s) =i(5~/8) q-S)1/2. (2.24b) 

If the function f (S,s) is continued in S once around all 
the branch points at S = 1, j, and §, that is, through the cut 
along S < 1, we reach its second sheet. The value of f (S,s) 
on the second sheet is the negative of its value on the first 
sheet. This is easily seen as follows: The function cos - I (z) 

defined by (2.6) has branch points at z = - 1, + 1, and 00 

and may be discussed in the plane cut from - 00 to - 1 and 
1 to 00. The corresponding branch points of cos -I (Z2) are at 
(; = §, 1, and j, respectively, so that the cuts defining its first 
sheet run from 1 to j and j to §. Thus cOS-I(Z2) does not 
change when continued around S = 1, j, and~. The branch 
points of cos- I (Zl) corresponding to Z = - 1, 1, and 00 lie 
at S = 1, §, and j, respectively, so again the cuts defining the 
first sheet lie between these points. Thus, from (2.17), when 
continued once around, cos -I (z I) ..... cos -I ( - Z I) 
= 1T - cos- I (ZI)' These results, together with the changes 

in sign of the roots in (2.15) and (2.16), are sufficient to 
establish that f (S,s) on the second sheet is the negative of 
its value on the first sheet. In particular, if one continues 
twice around S = 1, j, and §, the function f(S,s) does not 
change. 

The asymptotic behavior of the action for large S is im
portant for establishing the convergence of any proposed 
contour C. This is dominated by the scalar curvature and 
volume terms in (2.14). On the first sheet we have, for large 
lsi, 

(2.25a) 
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(2.25b) 

where 

Serit = (l6/~) [21T-3cos-I(j)] =29.306. (2.26) 

Thus 

(2.27) 

The asymptotic behavior on the first sheet thus depends cru
cially on whether S is greater or less than the critical value 
Serit. On other sheets the asymptotic behavior will change as 
the branch points at S = i and ~ are circled, resulting in 
changes of signs of the factors in (2.25). 

III. SEMICLASSICAL APPROXIMATIONS 

The wave function defined by (2.19) will predict classi
cal space-time for those values of Sand H for which the 
semiclassical approximation appropriate to Lorentz signa
tured classical geometries is valid. In this section we explore 
the classical geometries predicted by the action (2.14) and 
the semiclassical approximations which can be built upon 
them. 

Classical simplicial geometries are the extrema of the 
Regge action, here determined by the single algebraic equa
tion 

I'(S,s) = 0, (3.1 ) 

where a prime denotes the derivative with respect to S. For a 
given boundary edge length, Eq. (3.1) is to be solved for the 
value of S that extremizes the action. This extremum deter
mines the interior edges through (2.8) and thus a complete 
simplicial geometry. From (2.14), condition (3.1) is equiva
lent to 

(3.2) 

a relation which permits an easy graphical analysis of the 
extrema. The left-hand side of (3.2) is real. The right-hand 
side of (3.2) is real for real S> § because both :7 and f§ are 
real and real for realS <! because they are purely imaginary. 
The same right-hand side is reached whether one continues 
to above or below the cut S <!. Figure 2 shows a plot of the 
right-hand side of (3.2). From (2.25) asymptotically for 
large S one has 

:7'(s)/f§'(s) -SeriO (3.3) 

where Serit is given by (2.26). Thus for every 0 < S < Serit 
there is a Euclidean geometry with S > ~, which is a solution. 
For every S> Serit there is a Lorentzian geometry with S < !, 
which is a solution. 

The real solutions of (3.2) correspond to pairs of ex
trema of the action. For S> Serit' S <! the two extrema are 
reached from S > ~ by continuing to either above the cut 
along S <! or to below it. The action of both these extrema is 
purely imaginary [cf. (2.24)], but of opposite sign. For 
S < Serit there is an extremum on the first sheet with S > ~ and 
a real Euclidean action. The second member of the pair is at 
the same location on the second sheet, reached by continuing 
around all the branch poin ts at S =!, j, and~. It also has real 
action, but of opposite sign. As S is varied smoothly from 
below Serit to above it, this pair of extrema migrate to ever 
larger values of realS and reappear as the two extrema with 
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FIG. 2. Classical solutions. The solution of the algebraic equation that de
termines the extrema of the Euclidean Regge action can be obtained from 
the curve plotted here. It is a plot of the function Y'(5)1[1'(5), which is 
equal to the scaled squared boundary edge length S at an extremum. A value 
of S thus determines 5 and a unique squared interior edge length through 
Si = H2[25 IS. For S < Sen! the solutions have 5> g, real action, and Euclid

ean signature. For S> Se<il the solutions have 5 <!, imaginary Euclidean 
action, and Lorentzian signature. 

S> Serit at large negative S. 
It is interesting to compare the distribution of extrema 

obtained here with those of the analogous continuum mini
superspace model in which the geometries are restricted to 
be homogeneous and isotropic. 2 There the solution of the 
Euclidean Einstein equation with cosmological constant is a 
round four-sphere with radius H -I. There are real Euclid
ean solutions for round three-sphere boundaries whose 
boundary radius is less than the critical value H - I. In the 
continuum model there are two solutions for a boundary 
radius less than H - 1 corresponding to a four-geometry con
sisting of greater than a hemisphere of the four-sphere or less 
than a hemisphere. The action (2.2) is negative for both. 

However, because of the -Ji in (2.2), it can be continued in 
the metric so as to reverse its overall sign. We should, there
fore, countfourextrema of the action in the space of complex 
metrics-two with positive action and two with negative. 

Analogously to the continuum case the simplicial model 
has real extrema when the boundary is sufficiently small, 
S < Serit. Unlike the continuum case there are two extrema of 
opposite sign of the action rather than four. A model with a 
single interior vertex is incapable of approximating both 
more than a hemisphere of a four-sphere and less. 

For boundary radii greater than H - 1 the continuum 
model exhibits two pairs of extrema. Each pair has complex 
conjugate values of the action. The pairs differ in the sign of 
the real part of the action. The imaginary parts are the action 
of Lorentzian de Sitter space normalized to vanish at the 
minimum radius of contraction. For S> Serit the simplicial 
model displays two extrema with purely imaginary complex 
conjugate actions. 

The wave function (2.19) will predict the correlations 
of classical space-time where it is well approximated by the 
semiclassical approximation associated with one or both of 
the Lorentzian extrema. This will be the case when the con-
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tour C can be distorted to pass as a steepest descents contour 
through these points and the range of integration in their 
neighborhoods gives the dominant contribution to the inte
gral. For this to be the case Sand H must be such that, 
locally, the integrand is sharply peaked about the extrema. 
Globally the contour must be such that no greater contribu
tions arise from other extrema on the steepest descents con
tour or its end points. 

Semiclassical approximations for 'l'o(S) that predict 
classical geometry are therefore linear combinations of the 
steepest descents approximation to the integral (2.19) aris
ing from the Lorentzian extrema. That is, defining J = iY 
so that Y is real at a Lorentzian extremum, such semiclassi
cal approximations are linear combinations of 

[ 
S2 ]112 

'I' (S)-
o 21TH 2Y;xt (S) 

{ 
. [Yext(S) 1T]} Xexp +1 --

- H2 4' 
(3.4) 

where Y ext and Y;xt are evaluated at the extremum value of 
S. For the CPT symmetric wave function of the no boundary 
proposal we expect the real combination of these two expo
nentials. 

If the local and global properties of the contour are ap
propriate as described above, we expect the steepest descents 
approximation to be valid when the argument of the expo
nentials in (3.4) is large. This will be the case for the large Sb 

of the late universe, where 

Y ext (S)/H 2-fr,(S /H)2 = fr,(M/[2); (3.5) 

it will also be the case over the whole range of S (except for 
turning points) when H 2 = /2 A/3 is sufficiently small, as it 
certainly is in our late universe. 

IV. STEEPEST DESCENTS CONTOUR FOR THE NO 
BOUNDARY WAVE FUNCTION 

The descending contour of constant imaginary action 
passing through both complex conjugate extrema for 
S> Serit yields a convergent integral defining a real '1'0 that 
predicts classical space-time when H2 is small. Therefore, it 
is a natural candidate for the contour defining the no bound
ary wave function of the universe. In this section we shall 
demonstrate these results and discuss the continuation of the 
resulting wave function to values of S <Serit. For the one 
complex variable of this model, a descending contour of con
stant imaginary action is a steepest descents contour. 

Figure 3 shows the steepest descents contour that passes 
through both Lorentzian extrema when S> Serit. The con
tour consists of two complex conjugate sections, each pass
ing through one extremum. Along with the real analyticity 
of the action, this ensures that the wave function resulting 
from (2.19) is real. Each section is a curve of constant 
Im(J) equal to its value Y ext at the extremum through 
which it passes. Descending most steeply from the extre
mum one could generally end either at infinity, a singular 
point of the function J, or at another extremum with the 
same value ofIm(J). The only singular point is at S = j, at 
which Im(J) diverges; therefore no steepest descents con
tour can end there. The two exhibited extrema have opposite 
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FIG. 3. The steepest descents contour for S>Scrit. Shown here is the com
plex 5 plane with branch points ( X ) at 5 = 1, j, and § cut from - 00 to §. 
The steepest descents contour for S = 50 is plotted. It consists of two com
plex conjugate sections plotted as the solid and dotted lines. Each passes (on 
different sheets) through an extremum of the action (e) at 
Re 5 = - 0.0836, 1m 5 = 0 and each has infinite end points. 

signs of Im(J) so that a steepest descents contour cannot 
connect them. In the absence of any other extrema the steep
est descents contour must pass from infinity to infinity; the 
numerical integration of Fig. 3 bears this out. Proceeding 
upward from the extremum, Eq. (2.27) shows the contour is 
asymptotic on the first sheet to the parabola 

(5.J2,/8 )S(S - Serit ) 1m (s 1/2) = Y ext ' (4.1 ) 

Along this curve the asymptotic behavior ofRe(J) is 

ReJ(S,S) - (5.J2,/8) (S - Serit) Is 1
1/2

, (4.2) 

so that the defining integral (2.19) converges with any poly
nomial measure. Proceeding downward from the extremum 
the contour enters the second sheet. It cannot proceed di
rectly to infinity since the action is asymptotically negative 
on the second sheet. Rather, for sufficiently large S the con
tour passes through the cut between S = j and ~ reaching a 
third sheet, in effect changing the asymptotic sign of f1, but 
not of Y. On this third sheet the contour proceeds to infinity 
along the parabola 

(5.J2,/8) (S + Serit )lm(S 1/2) = Y ext ' (4.3) 

Re J behaves as 

Re J (S,S) - (5.J2,/8) (S + Serit ) Is 1112 (4.4) 

and the integral from infinity to infinity is therefore conver
gent. For smaller values of S the behavior near the branch 
points is slightly more complicated, but the contour is still 
infinite in extent. Since each section of the contour has no 
finite end points or other extrema along it, as Y becomes 
large or H2 small the behavior of integral (2.19) along each 
section is given increasingly accurately by the steepest de
scents approximation based on the Lorentzian extremum. 
Thus taking both sections ofthe contour together, the semi
classical approximation for S> Serit becomes 
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'I' (S) _ 2 cos ext - ~ 
[ 

S2 ] 112 [y" (S) ] 

o 21TH 2 Y~~t (S) H2 4' 
(4.5) 

Thus we recover a real '1'0 and classical space-time when the 
universe is large.23 

The third sheet, reached by following the steepest de
scents contour downward from the extremum reached from 
the upper half of the first sheet, is the same as that reached 
from following the steepest descents contour upward from 
the extremum reached from the lower half of the first sheet. 
It is this crucial fact that allows the closure of the contour 
and a simple analytic continuation of integral (2.19) to 
S <Serit. The fact may be deduced from an elementary, but 
detailed analysis of the change in phases of the various terms 
in (2.14) as one proceeds along the contour. A more general 
argument is as follows: We are considering the two continua
tions J 1 (5) and I n (5) along complex conjugate curves. 
Initially, on the first sheet, as a consequence of real analytic

ity, the continuations are related by J 1 (5) = I n (5); this 
relation will continue to be maintained because the contours 
are conjugate to each other. Therefore if the continuations 
cross the real axis in a range where each are separately real, 
we have 

(4.6) 

and they will agree. However, no matter how the branch 
point are circled, J (5) is real for 5> §. Circling one of the 
square root branch points can at most change its sign. Cir
cling the logarithmic branch point changes 
COS-I (z) ~COS-I (z) ± 1T. Therefore the two continuations 
must reach a common third sheet. 

The asymptotic behaviors (4.2) and (4.4) allow the two 
sections of the steepest descents contour to be joined at infin
ity on the first and third sheets. The result is a closed contour 
defining the wave function of the universe. The contour can 
be distorted smoothly from the third sheet to the second 
because J (5) is not singular at the branch point 5 = § 
through which it passes. The result is the closed contour of 
Fig. 4. 

Since the contour is closed and finite, there is no obstacle 
to continuing the wave function defined by (2.19) to values 
of S less than Serit . One can then investigate the semiclassical 
behavior of '1'0 in the limit where H2 becomes small. In fact, 
the contour can be distorted into a steepest descents contour 
for S < Serit . The extrema are located at real values of 5 on the 
first and second sheets. The asymptotic behavior of (2.19) 
for small H 2 is given by the integral in the neighborhood of 
the extremum on the first sheet. This is 

'l'o(S)- - [S2/21TH 2I;xt(S)] 1/2 exp[ -Iext(S)], 
(4.7) 

where I ext (S) and I ~~t (S) are evaluated at the extremum 
value of 5. 

With the contour defined, both the integral (2.19) and 
its semiclassical approximations (4.5) and (4.7) are easily 
evaluated. Figure 5 shows a numerical evaluation of Eq. 
(2.16) for H2 = 50 along the actual steepest descents con
tour. Figure 6 shows the corresponding semiclassical ap
proximation evaluated from (4.5) and (4.7). For this value 
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FIG. 4. Continuation to S < Sent. The steepest descents contour shown in 
Fig. 3 can be distorted into the closed contour shown. Starting on the posi
tive real axis the contour winds around all finite branch points, through the 
cut - ro < S < i, onto the second sheet, and around all the finite branch 

points again to close on the first sheet. Thus it winds around the branch 
points twice on the curve shown. Using the closed contour the integral can 
be continued to S < Sent' For these values the integral can be distorted into a 
steepest descents contour, shown here for S = 10. This contour passes 
through both real extrema (e) at Re S = 0.469, 1m 5 = 0, one on the first 
sheet, one on the second. It is the integral on the first sheet that gives the 
dominant contribution to the integral defining the wave function in the 
semiclassical approximation. 

of H 2, Y / H 2 ~ 20 in the classical allowed region S > Serit' so 
that we expect the semiclassical approximation to give a 
good approximation to the actual integral. It does for large 
values of S. The semiclassical approximation gives a poor 
approximation for S near Serit and only a moderate approxi
mation below Sent. 

Both the wave function and its semiclassical approxima
tion show the characteristic features expected from similar 
minisuperspace models based on symmetry.2 Here, S>Serit 
is the classically allowed region in which the wave function 

-40~--~2~0-~~-r-it,.--4~0,.-----60~---~80~--~IOO~ 

s 
FIG. 5. The wave function. A numerical integration of the wave function 
defined by Eq. (2.19) and the steepest descents contour of Figs. 3 and 4 is 
plotted for H 2 = 50. The wave function oscillates in the classically allowed 
range of S> Sent. In the classically forbidden range of S < Sent the wave 
function decays inward from the very large peak in \'l'o\ at Se,'" 

James B. Hartle 458 



                                                                                                                                    

o 

-I 

'ito 

-2 

-3 

Serif 40 60 80 100 
s 

FIG. 6. The semiclassical wave function. The semiclassical approximation 
to the wave function specified by Eqs. (4.5) and (4.7) is plotted for 
H2 = 50. The semiclassical approximation is infinite at the "turning point" 
S = Sent because I ;'.t (S) vanishes there. The semiclassical wave function 
becomes an increasingly accurate approximation to the wave function of 
Fig. 4 for large values of S. Where this approximation is valid we may say 
that the wave function predicts the correlations of classical de Sitter space. 

oscillates. The semiclassical approximation here corre
sponds to classical de Sitter space. The oscillation at arbi
trarily large values of S corresponds to the limitless expan
sion of de Sitter space. The boundary between the classically 
allowed and classically forbidden regions at S = Serit corre
sponds to the minimum radius of contraction H - 1. The 
wave function is large near the boundary Serit' correspond
ing to the most probable three spheres in de Sitter space. It 
decays exponentially from these high values for S < Serit' re
flecting the classically forbidden nature of this region. 

v. CONCLUSIONS 

The steepest descents contour for the no boundary wave 
function of the universe explicitly displayed in this paper 
manifestly meets two of the criteria set forth in Sec. I. It leads 
to a convergent integral for \110 and to a wave function that 
predicts classical space-time when the universe is large. The 
third criterion, which concerned the constraints implement
ing diffeomorphism invariance, cannot be an issue for this 
simple Regge model since a simplicial geometry exhibits no 
exact nontrivial invariances, but only approximate ones 
(see, e.g., Ref. 18). 

The proposed contour is in no sense a distortion or rota
tion of the contour of integration over real Euclidean geome
tries. That contour runs along the real 5 axis from 5 = i to 
5 = 00. Therefore, it has a finite end point at 5 = fi that will 
not be displaced by distortion or rotation. For S> Serit the 
integral (2.19) over this real contour converges. However, 
the asymptotic behavior for small H 2 is not governed by a 
Lorentzian extremum, but rather by the end point at 5 = i. 
The wave function defined by this contour does not predict 
classical space-time in the late universe. 

The results of this model suggest that it will be of consid
erable interest to investigate whether a descending contour 
of constant imaginary action through the classical extrema 
can provide a general definition of the no boundary wave 
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function consistent with convergence, classical space-time, 
and invariance. 
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Given two quasilocal C *-algebras A and B of relativistic quantum field theory, their state 
spaces E(A) and E(B), and a positive, unit preserving map L: B--+A respecting the relativistic 
quasilocal structure of A and B, (B,E(B») is said to be a local hidden theory of (A,E(A») via L if 
for every state rp in E(A) the state L *fPEE(B) can be decomposed in E(B) via a subcentral 
measure into states with pointwise strictly less dispersion than the dispersion of rp. It is shown 
that if there is a unique, locally normal, locally faithful, analytic vacuum state in E(A) then 
(A,E(A») cannot hav~ a local hidden theory (B,E(B») via L. This improves the result obtained 
in J. Math. Phys. 28,833 (1987). 

I. INTRODUCTION 

In previous papers l
,2 the problem of hidden variables 

was redefined in the operator algebraic framework of quan
tum mechanics as the problem of finding conditions on the 
unital C *-algebras A and B and on a positive, unit preserving 
mapL:B--+A that implies that (B,E(B») is not a hidden theo
ry of (A,E(A») via L [where E(A ),E(B) are the state spaces 
of A and BF in the sense of the following definition. 

Definition 1: Here (B,E(B») is a hidden theory of 
(A,E(A») via L if for each state fPEE(A) one can find a posi
tive (regular Borel) measure J-t on the state space E(B) with 
the help of which the composite state rpoL = L *fPEE(B) can 
be obtained in the integral form 

L*rp(x) = I OJ (x)dJ-t (OJ), xEB, (1) 

such that for all xEB the following conditions hold: 

if O'",(Lx) >0, then O'",(x) <0'", (Lx), (2) 

if O'",(Lx) =0, then O'",(x) =0, (3) 

for all OJE supp J-t, whereO'.p (Lx) = rp (LX)2) - rp(LX)2 and 
0'", (x) = OJ(x2) - OJ(X)2 are the dispersions of the states rp 
and OJ, and supp J-t denotes the support set of J-t. 

This definition is a natural generalization of earlier hid
den variable definitions, especially the one due to von Neu
mann.4 In view of this definition, if, besides having positivity 
and being unit preserving, L has certain additional algebraic 
properties, a negative result on the existence of a hidden the
ory of (A,E(A») via L can be interpreted as determining an 
algebraic structure responsible for a given statistical uncer
tainty inherent in the descript~on of physical systems by C *
algebras that represent the algebraic structure in question. It 
can be proved, for instance, that (B,E(B») is not a hidden 
theory of (A,E(A») via a Jordan homomorphism L if A is a 
simple C *-algebra, which means that if(B,E(B») is a hidden 
theory of (A,E(A») via L then the Jordan algebra structures 
of A and B must be regarded differently.5 

Based on definition 1, the problem of local hidden vari
ables can also be naturally reformulated in terms of quasilo
cal C *-algebras6

: if both A and Bare quasilocal C *-algebras 

a) Temporary address until June 1989: Department of Physics. University 
of Florida. Gainesville. Florida 32611. 

then (B,E(B») is said to be a local hidden theory of(A,E(A») 
via L if L preserves the local structure of A and B in some 
appropriate sense, (B,E(B») is a hidden theory of(A,E(A») in 
the sense of Definition 1, and the measure J-t in (1) can be 
chosen subcentral, which is to be interpreted as a natural 
locality property of J-t. 7 

A negative result on the existence of a local hidden theo
ry of(A,E(A») shows what locality properties must be violat
ed if(A,E(A») has a local hidden theory. It was proved in a 
previous paper that if L maps the local algebras onto local 
algebras in such a way that disjoint algebras are mapped 
onto disjoint ones and, in addition, L factorizes on disjoint 
algebras, then (modulo some technical assumptions) 
(A,E(A») does not have a local hidden theory (B,E(B») via L 
provided the local algebras in both A and Bare (isomorphic 
to) type I von Neumann algebras. 8 

However, this result is unsatisfactory in at least two re
spects: (i) the local algebras in relativistic quantum field 
theory cannot be type I von Neumann algebras9 so the pre
vious result does not apply to the relativistic case; and (ii) 
even more importantly, due to the lack of expression of rela
tivistic covariance on the quasilocal algebra, the locality 
properties of L are not related to relativistic locality in any 
way. But it is just the relativistically local (also called Ein
stein 10cal lO

) hidden variable theories that have been the 
main subject of interest since Bell's work. I I To have a result 
on the nonexistence of a local hidden theory of (A,E(A»), 
where A is a quasilocal C *-algebra of relativistic quantum 
field theory, is, furthermore, particularly desirable in light of 
the recent work of Summers and Werner, who have proved 
that Bell's inequalities are maximally and typically violated 
in relativistic quantum field theory. 12 The violation of Bell's 
inequalities in a theory T is commonly interpreted in most 
papers in the literature on local hidden variables as the im
possibility of Tbeing Einstein local. The results of Summers 
and Werner show that this interpretation is certainly not 
valid in relativistic quantum field theory, which implies that 
the usual approach to the local hidden variable problem 
through Bell's inequalities does not work in relativistic 
quantum field theory. 

In this paper we prove a proposition asserting the non
existence of a local hidden theory (B,E(B») of (A,E(A») via 
L, where A and Bare quasilocal C *-algebras of relativistic 
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quantum field theory and L is a positive, unit preserving map 
from B into A that has natural Einstein local properties (see 
Definition 2 below). Before stating the proposition we brief
ly recall the notion of a quasilocal algebra in relativistic 
quantum field theory and define the Einstein local properties 
of L. 

II. EINSTEIN LOCAL HIDDEN THEORIES 

Recall that A is a quasilocal C *-algebra of relativistic 
quantum field theory if A is the uniform closure of a net 
{A (V), VCM} of (strictly) local C*-algebras A (V) (with 
common unit) associated to the open, bounded subsets Vof 
the Minkowski space M, where the net has the following 
properties: (i) if VI is contained in V2 then A (VJ ) is a subal
gebra of A ( V2 ), (ii) if VI is spacelike separated from V2 then 
every element of A ( VI) commutes with every element of 
A ( V2 ), and (iii) there is a representation a of the identity
connected component P of the Poincare group by automor
phisms on A such that agA ( V) = A (g V) for all V and geP. 

Part of the axioms of relativistic quantum field theory is 
also the assumption of existence of at least one physical rep
resentation of the quasilocal C *-algebra A, which means 
mathematically that one postulates the existence of an a
invariant state cpEE(A) (vacuum) such that the spectrum 
condition holds in the corresponding cyclic representation 
17"'1'.13 

In what follows "relativistic quasilocal algebra" will al
ways mean a quasilocal C *-algebra of this type with the 
further assumption that all local algebras are von Neumann 
algebras and "relativistic quantum field theory" will mean a 
pair (A,E(A») with a relativistic quasilocal algebra A and its 
state space E(A), which is supposed to contain at least one 
vacuum state. 

Let A and B be two relativistic quasilocal algebras and 
denote by {3 the representation of P on B. We wish to define 
Einstein local properties of the positive, unit preserving map 
L: B - A, by which we mean properties that express the simi
larity of the relativistic quasilocal structure of A and B. In 
the following definition (a) is a natural locality demand, the 
content of (c) is that L does not destroy the relativistic co
variance whereas (b) is of technical nature. 

Definition 2: The positive, unit preserving map L: B-A 
between two relativistic quasilocal algebras A and B is called 
Einstein local if (a) L maps the local algebras into local 
algebras, (b) the restriction of L to each local algebra is 
continuous in the ultraweak operator topology, and (c) L 
commutes with the two representations a and {3 in the sense 
that 

(4) 

We sum up with the following definition. 
Definition 3: Let A and B be two relativistic quasilocal 

algebras. Here (B,E(B») is a local hidden theory of(A,E(A») 
if (a) L is Einstein local, (b) (B,E(B») is a hidden theory of 
(A,E(A») viaL in the sense of Definition I, and (c) ft in (1) 
can be chosen subcentral. 

Before formulating the proposition let us recall a few 
definitions and facts that will be used in the proof. A state q; 
on A is called locally normal if the restriction of q; to every 
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local von Neumann algebra A (V) is ultraweakly contin
uous. The state q; is said to be locally faithful if the condition 
x> o implies q;(x) > o for any strictly 10caielementxEA (V). 
Let T be the translation subgroup of P. A state q; is called a 
translation clustering state if 

lim q;(xalgy) = q;(x)q;(y) 
I-co 

for all spacelike geT and for all local x,y. 
For a positive, unit preserving map L: B-A the 

Cauchy-Schwartz inequality L(x2r~L(x)2 holds for all 
self-adjoint xEB.14 Let ft be a subcentral measure on E(B) 
that decomposes a state t/JEE(B) in the sense of ( 1). Then if 
",is a factor state, i.e., if the center Z." = 17"." (B)" n17"." (B)' of 
the von Neumann algebra 17"." (B)" generated by '" in the 
Gel'fand-Naimark-Segal (GNS) representation 17"." con
sists of the mUltiples ofthe identity only, then ft is the Dirac 
measure {j." concentrated at ",. 

Proposition 1: Let (A,E(A») and (B,E(B») be two relativ
istic quantum field theories. Ifthere is a non-dispersion-free, 
locally normal, locally faithful, a-invariant, translation clus
tering state q; on A such that the spectrum condition holds in 
the representation 17" L ° 'I' then (A,E(A») does not have a local 
hidden theory via L in the sense of Definition 3. 

Proof The proof is similar to the proof of the proposition 
in Ref. 2. One shows first that ifthere is a state t/JEE(A) with 
nonzero dispersion u." (Lxo) > 0 on some self-adjoint xoEB, 
then (B,E(B») cannot be a hidden theory of(A,E(A») via L if 
the only measure that decomposes L *t/JEE(B) is the Dirac 
measure {jp.". To show this assume that (B,E(B») is a hid
den theoryof(A,E(A») viaL. By integrating (2) with respect 
to /J = {j L 0." one obtains 

""'(Lxo)2_Lx~»"'(Lxo)2-J w(xo)d/J(w) =0, 

(5) 
which is a contradiction since the left-hand side of (5) is not 
greater than zero by the Cauchy-Schwartz inequality for L. 

Thus to prove Proposition 1 it is enough to show that 
there is a non-dispersion-free state t/JEE(A) such that 
L *t/JEE(B) is a factor state. We prove that L *q; is a factor 
state over B by showing that the assumption of L *q; not 
being a factor state contradicts the clustering property of cpo 

Since cp is a invariant and L *q; is {3 invariant both a and 
{3 are implemented by unitary representations U and Win 
the GNS representations 17"'1' and 17"L 0'1' of A and B, respec
tively. Denote L11" as the "representation" of Lin 17"'1' and 
17"L0tp' i.e., Lrr(17"ptp (x») = 17"'1' (Lx). Then (c) in Definition 
2 takes the form 

(6) 

Assume that L *cp is not a factor state. Then there is a nontri
vial projector 17"Lo 'I' (P) in the center: 

Z = 17"ptp (B)" n17"ptp (B)' 

= n (17"L0tp(B(V))"n17"LOtp(B(V))'). 
VCM 

The last equality follows because B is a quasilocal algebra. 15 

By the local normality of cp and L, L *cp is locally normal, too, 
and so 17"P 'l'(B(V))" = 17"L*tp(B(V»). Thus 17"L0'l'(P) is a 
nontrivial projector contained in (the center of) each local 
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algebra 'IT L ° '" (B( V) I. Fix a V. Now L maps the local algebras 
into local ones thus L1T'IT L ° '" (P) is an element in some local 
algebra'IT",A(V'). We may assume that L1T'lTLo", (P) is non
zero for if it were then we could take the orthogonal comple
ment ('lTp ", (P) Ii, which shares all the properties of 
'IT L ° '" (P) stated so far and the unit preserving property of L 

implies that L1T 'lTp ", (P) and L".('lTL0'P (PW cannot both be 
zero. So L". 'IT L ° '" (P) is a nonzero element, which is also posi
tive by positivity of L and this implies that L". 'IT L ° 'P (P) has a 
nontrivial spectral projector L". 'IT L ° '" (e). By a theorem of 
Araki!6 the elements of Z commute with Wg (geP) and so 
L". 'IT L ° '" (P) commutes with Ug (geP) by (6). But then Ug 

commutes with L". 'IT L ° '" (e), too, and it follows that 
L1T 'IT L ° '" (e) is a U-invariant nontrivial projector in 
'IT ",A( V'). Let 'IT", (R)E'IT",A( V') be any nonzero local projec
tor orthogonal to L". 'IT L ° '" (e). Since rp is locally faithful we 
have 

('o""'IT,,, (R)a",)O, (a""L".'lTLO",(e)'o",)O, (7) 

where a", is the cyclic vector representing rp in the 'IT", repre
sentation. On the other hand, by the clustering property of rp 
and by the U invariance of L1T 'IT L ° '" (e), 

0= (a""'IT,,, (R)L 1T 'lTp l/' (e)a",) 

= lim ('o""'IT",(R)UtgL".'lTLO",(e)U~a,,,) 
t_ 00 

= <'o",,'IT ",(R)n",) (nl/',L".'lTLol/' (e)'o",) 

must hold, too, which contradicts (7). 

III. DISCUSSION 

Let rp be a vacuum state in E(A). If the vacuum vector 
a", is analytic for the generator of time translations (in the 
representation 'IT ",) then by the Reeh-Schlieder theorem!7 rp 
is cyclic and separating for the local algebras, which means 
that in this case rp is locally faithful, too. Obviously, the re
quirement that the vacuum state is not dispersion-free is not 
a strong one; moreover, if the vacuum state rp in E(A) is the 
unique a-invariant state then rp is known to have also the 
translation clustering property (both in massive and in 
massless theories 18

). In this case, by (c) of Einstein locality 
of L, L *rp is the unique J1-invariant state, therefore, by the 
assumption that E(B) contains at least one vacuum state, 
L *rp is the (unique) vacuum state in E(B); in particular, the 
spectrum condition is fulfilled in 'IT L' "'. So if(A,E(A) I is such 
that the vacuum state rp is a unique a-invariant, analytic, 
locally normal state then the assumptions of Proposition 1 
are fulfilled and Proposition 1 tells us that such (A,E(A) I 
relativistic quantum field theories are the best possible ones 
if "best" means "containing the least statistical uncertain
ty," i.e., the statistical uncertainty inherent in the descrip
tion of quantum fields by these theories cannot be reduced 
without violating either at least one of the Einstein local 
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properties ( 1 )-( 3) in Definition 2 or the subcentrality of fl. 
Note that "statistical uncertainty" has been assumed in 

this paper to be measured by the dispersion of quantum 
states. However, the dispersion is not the only conceivable 
measure of uncertainty of a probability distribution: the en
tropy also expresses a kind of uncertainty, which is concep
tually different from what is expressed by dispersion. Based 
on the entropic measure of uncertainty the nonlocal hidden 
variable problem was reformulated in a previous paper19 and 
it will be interesting to i.nvestigate the local hidden variable 
problem in relativistic quantum field theory using entropic 
uncertainty. 
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The inverse scattering method is employed in order to obtain solutions of a nonrelativistic and 
nonlinear model exhibiting spontaneous breakdown of symmetry. Explicit expressions for 
multiple-soliton solutions are developed. The one-soliton solution exhibits some interesting 
properties. In particular, they interpolate between two different vacua of the theory differing 
by a phase related to the soliton velocity. 

I. INTRODUCTION 

This paper deals with the problem offinding solutions to 
nonlinear field theoretical equations through the use of the 
inverse scattering technique. I The equation that we will 
study in this paper is 

a a2 

i -q(x,t) + -2 q(x,t) - k IqI2q(X,t) + kpq(x,t) = 0, at ax 
( 1.1) 

where k and p are positive constants. 
One of the motivations for studying (1.1) is that the 

nonrelativistic model associated to it describes a system ex
hibiting a manifold of degenerate vacua (lql2 = p), thus be
ing a typical model exhibiting spontaneous breakdown of 
symmetry. Furthermore, model (1.1) describes the effect of 
a net background charge in a nonrelativistic Bose gas whose 
interaction potential is a {) function.2 In this context kp is just 
the chemical potential. 

The classical, finite energy solution to ( 1.1 ) should obey 
nontrivial asymptotic conditions 

lim q(x,t) = pl/2 , ( 1.2a) 
x_", 

lim q(x,t) = pl/2eia , ( 1.2b) 
x_ - 00 

that is, the classical solution should tend to one of the field 
theoretical configurations associated to the degenerate va
cua. 

The usual repulsive nonlinear Schrooinger (NLS) 
equation is just a particular case of ours. That is, it is just the 
particular case in which the background charge is zero. For
mally we take the p ~ 0 limit of ( 1.1 ). The application of the 
inverse scattering method (ISM) to solving the NLS equa
tion is found in Ref. 3. 

As is already well known, the ISM is applicable to equa
tions of the form 

a<I> A 
-=S[<1>] , at (1.3 ) 

where S is a nonlinear operator (differential in x), whenever 
Eq. (1.3) can be represented in the form 

aL = i[L 71'] 
at " (1.4 ) 

where Land 71' are linear differential operators containing 
the function <1>(x,t). 

In the case of Eq. (1.1), Land 71' are given by 

The fact that the model studied here is just an extension 
ofNLS model becomes more transparent when one looks to 
( 1.5 ) - ( 1. 7). The H in ( 1. 7) is the operator analogous to 71' 
in the context of the NLS model. Thus, the difference be
tween the two, at the level of the operators 71' and L, resides 
in the piece pU3 in 71'. 

Since we have obtained the operators Land 71' and, as 
we will show later, because of our ability to solve the inverse 
problem for the operator L, Eq. (1.1) can be solved by the 
ISM. 

The order of the paper is the following: In Sec. II we 
discuss the direct problem, and in Sec. III we obtain the 
Gel'fand-Levitan-Marchenko equation, thus implementing 
the inverse program. Explicit applications for N-soliton so
lutions are shown in Sec. IV. In this section, we discuss some 
interesting properties ofthe one-soliton solution that we ob
tained explicitly. The final part, Sec. V, is dedicated to our 
conclusions. 

II. THE DIRECT PROBLEM 

The next step in the ISM consists of the analyses of the 
eigenvalue problem for the differential operator L. That is, 
we consider the eigenvalue equation 
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LN = liN, N = (::) . (2.1 ) 

Since K is self-adjoint, it follows from (1.4) that the 
spectrum of L is independent of time. On the other hand, the 
eigenvectors N evolve in time in accordance with the equa
tion 

dN 
dt 

(2.2) 

where Kin (2.2) is defined in (1.6). The explicit definition 
of ( 1.5) leads us to the following equation for the eigenvec
tors: 

!!...(nl) = (- i(U 2 + \q\2) + ip qx + 2iqli )(nl) 
dt n2 q~ - 2iq*1i i(U 2 + \q\2 - p) n2 . 

(2.3 ) 

As explained previously we will be interested in a set of 
solutions for the eigenvalue equations (2.1) where the un
known "potential" q(x,t) satisfies the nontrivial asymptotic 
conditions (1.2). For q(x,t) satisfying (1.2a) one can write, 
considering these asymptotic values for q(x,t), the asympto
tic eigenvalue equation 

If one looks for asymptotic solutions of the form 

one gets the following set of values for {3: 

{3 = ± ~p - Ii 2 . 

Thus, fOI 

p>1i 2 , 

{3 is real and the solution is of the form 

A exp(~p -Ii 2 x) + Bexp( - ~p -Ii 2 x), 

thus corresponding to a discrete spectra. 
On the other hand, if 

p <Ii 2 , 

the solution takes the form 

A 'exp{i~1i 2 - P x) + B' exp( - i~1i 2 - P x) 

=A 'eiKx + B' e- iKx, 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

and one has a continuous spectrum. This is the one we will be 
interested in from now on. 

We define the functions ~ and '\fI as solutions of Eq. 
(2.2) whose asymptotic forms are q; and t/J, that is, 

'\fI(x,li) -+ t/J(x,li) 
x_ + 00 

=e + jp2 - P )exp{i~1i 2 - P x) , 

\jj(x,li) ¢r(x,li) 
x_ + 00 

=( ~)exp( -NIi 2 -px), \Ii + vii -p 

~(x,li) -+ q;(x,li) 
x_ - 00 

(
eia(1i + f,f2=p») = ,fji p exp{i~1i 2 - P x) , 
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(2.9a) 

(2.9b) 

(2.9c) 

CJ)(x,li) -+ qJ(x,li) 
x_ - 00 

=( . ,fji ~ )exP( - i~1i 2 - p x). (2.9d) 
e - 'a (Ii + vii - p) 

We note that \jj and qJ in (2.9) are defined as 

¢r=0'1¢r*, CJ)=O'I~*' (2.10) 

In view of the asymptotic conditions (2.9a) and (2.9c) 
one can write the following integral equations for '\fI and ~: 

'\fI(x,li) = t/J(x,li) - L" K1(x,x')t/J(x',Ii)dx', (2.11a) 

~(x,li) = q;(x,li) - f~ 00 K 2(x,x')q;(x',Ii)dx', (2.11b) 

whereK I and K 2 in (20) are two by two kernel matrices, that 
is, 

(2.12) 

One can further show that the following restrictions 
hold true: 

(2.13 ) 

The pair of solutions '\fI, \jj forms a complete set of solu
tions. In this way one can write the solutions ~ and CJ) as 
linear combinations of these two: 

~(x,li) = CII (li,k)'\fI(x,li) + CI2 (Ii,k)\jj(x,li) , 

CJ)(x,li) = CTt<Ii,k)\jj(x,li) + CT2 (li,k)'\fI(x,li) , 

where k in (2.14) is given by 

k = ~Ii 2 -p. 

(2.14 ) 

(2.15) 

One can invert (2.14) and write, analogously, '\fI and \jj 
as linear combinations of ~ and CJ): 

'\fI(x,li) = Cdli,k)~(x,li) + C21 (li,k)CJ)(x,li) , 

\jj(x,li) = C!I (x,k)~(x,li) + C!2 (li,k)CJ)(x,li) . 
(2.16) 

The coefficients Cij in (2.14) and (2.15) can be ex
pressed in terms of W ronskians of the functions ~ and '\fI, 
being the Wronskian of two functions u, v defined as 

W(u,V) = U1V2 - U2V1 • (2.17) 

The coefficient C 12 (Ii) defined in (2.14), for instance, can be 
expressed as 

(2.18 ) 

In order to compute the Wronskians we remember that 
they are x independent and consequently they can be deter-
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mined from the asymptotic expressions for the various func
tions given in Eqs. (2. 9a) - (2. 9d). One obtains, for instance, 

W(<<I»,Ci) = - W(1\l,~) = -2~A2_p(~A2_p+;O 

=-2k(k+A). (2.19) 

By computing other Wronskians one gets the following 
relevant relation among the coefficients: 

Cr2(A) = -CJI(A), 

CI2 (A) =:= C21 (A) , (2.20) 

CI1 (A)CTdA) - C12 (A)CT2 (A) = - 1 . 

The time dependence of the coefficients Cij can be in
ferred from the time dependence of the eigenvalues N(x,t). 
By assuming that this time dependence is of the form 

N(x,t) =/(t)1\l(x,t), (2.21 ) 

and since N(x,t) evolutes in accordance with (2.2), where 
JY is given in (1.6), one has 

C I2 (A,t) = C12 (A,O) , 

CI1 (A,t) = CI1 (A,O)exp( - 4iA ~A 2 - pt). (2.22) 

III. THE INVERSE SCATTERING PROBLEM 

We now turn to the problem of reconstructin~ q(x,t) 

from the scattering data [Cij(A,t), - "'P <A <"'P]. As a 
matter of fact, it suffices to reconstruct «I» (x) (or 1\l) from 
Cij(A,O). 

In the problem we are studying here the solution q(x,t) 
can be expressed as 

q(x,t) = 2iK g> (x,x,t) + "'P , (3.1 ) 

where the kernel K t is defined in (2.11a). 
In order to implement the inverse program, the basic 

tool is the Gel'fand-Levitan-Marchenko (GLM) integral 
equation.4 This equation allows us to determine the kernel 
K (i) from our knowledge of the scattering data. With the 
kernel in hand, the solutionq(x,t) is determined from (3.1). 

In order to write the GLM equation we consider the 
scattering function defined as 

«I» (x,).) = lji(X,A) + CJI (A,k)1\l(x,).) . (3.2) 
C12 (A,k) C I2 (A,k) 

One can rewrite (3.2) as 

{
_l_«I»(x,).) _ ¢(x,).)} exp[ip:r=pyJ 
C 12 (A) ~A 2 _ P 

= {CJI (A) 1\l(x,).) + ;ji(X,A) - ¢(X,A)} 
C 12 (A) 

X exp[ip:r=pyJ . 

~A 2 _ P 
For convenience from now on we will take y > x. 

(3.3) 

The GLM equation is obtained by integrating (3.3) in 
the complex plane A along the contour shown in Fig. 1. The 
contour, which we call C in the following, is the dotted one in 

Fig. 2. We restrict ourselves to K = ~A 2 - P such that 
ImK(A) >0. 
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1m)... 

Re)... 

FIG. 1. Integration contour in the complex plane used in order to write the 
GLM equation. 

First of all we will integrate the left-hand side of (3.3) 
along contour C. In order to do this one notes first that 

C12 (A,k), «I»(x,).)exp(i~A 2 - P y), and ¢(x,).) 

Xexp(i~A 2 - P y) have analytic continuation for 

Im( ~A 2 - p) > O. Furthermore, if C 12 (A) has poles located 

at Aj (where AjE ] - "'P,"'P[ ), then ~A J - p= ± iVj . 
Since, on the other hand, we are restricted to 

Im( ~A 2 - p) > 0 one can write 

~AJ-p=iVj' vj>O. (3.4) 

Since the left-hand side of (3.3) is analytic in the Rie

mann surface in which Im~A 2 - P > 0, one integrates the lhs 
over the closed contour of Fig. 1. 

One can then write 

f lhs + J Ihs + J lhs = 21Ti ~ residue. Jc y, y, J 

(3.5) 

Remembering that we have chosen y> x and 

Im( ~A 2 - p) > 0, one obtains 

J (~ -¢)expUp:r=p y) - O. (3.6) 
y, C12 ~A 2 _ P ..t_ 00 

Consequently one can write, from (3.5) and (3.6), 

f lhs = 21Ti L residue Jc j 

(3.7) 

1m)... 

2 
,---------.-------

- _____ -4 _________ J 
: Re,,-
~---------<--------

3 -vp " 
FIG. 2. Integration contour that we have named C in the paper. 
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where Vj in (3.7) is given, by using (3.4), as 

Vj=~p-AJ. (3.8) 

We integrate now the right-hand side of (3.3) over the 
contour C. We divide the integration contour into four 
pieces, as shown in Fig. 2. That is, 

L rhs = i + i + i + i· 
The following observations are relevant in order to carry 

out the integration. 

When A varies from .JP + iE until + 00 + iE (path 1) 

(E>O), then A can be written as A=Ao+iE with 
A ~ - p > 0 and consequently one can write 

K(A) =~A2_p=~A~ -p(1 +iEAoI~A~ -p), 

that is, for path 1, 1m K (A) > O. Analogously one has that 
1m k(A) <0 for paths 2 and 4. Whereas, as in path 1, 
1m k(A) > 0 in path 3. This just means that, since we inte
grate the rhs for 1m k(A) > 0, one has to make in paths 2 and 

4 the replacement of ~A 2 - P by - ~A 2 - p. 
Finally we will make the change of variables A ..... k; using 

the k defined in (2.15) it follows that k dk = A dA. The inte
gration over k then leads us to 

1 i ( -1) L.JP B(x + y) ) - rhs = 21TK (I> (x,y)8(y - x) + 
2 c 0 (x + y) + i[a la(x + y) ]B(x + y) 

_ roo K l(X x,/ .JP B(x' + y) )dX' 
L '\A(x'+y)+i[ala(x'+y)]B(x'+y) , 

(3.9) 

where 

A (z) = Joo C(A,k) + C( - A,k) eikz dk , 
- 00 2 

B(z) = Joo C(A,k) - C( - A,k) eikz dk , 
-00 U 

and C(A,k) in (3.10) is defined as 

C(A,k) = Cll (A,k)IC12 (A,k) , 

if one defines Cj as 

Cll(A,k) I 
(dldA)C12 (A,k) A=Aj ' 

k= IVj 

(3.10) 

(3.11 ) 

(3.12) 

The Gel'fand-Levitan-Marchenko equation follows by 
equalizing equations (3.7) and (3.9). One obtains 

217K 1(x y )(-I)+( .JPB(x,y) ) 
, 0 \A (x,y) + i[a la(x + y) ]B(x + y) 

- i+ 00 dx' K l(X,X') 

X( .JP B(x' + y) ) 
\A(x',y) + i[a la(x' + y) ]B(x' + y) 

= 1TLCj{e-v/x+y>(.JPIVj .) 
j A/Vj-I 

_ roo dx' K1(X,x,)(.JP1Vj .)e- v/ x'+ Y>}. 
L A/Vj-I 

(3.13 ) 

IV. MUL TISOLITON AND SINGLE-SOLITON SOLUTIONS 

Solutions describing N solitons can be obtained by con-
sidering reftectionless potentials. In this case 
A(x,y) = B(x,y) = 0 and the GLM equation reduces to 
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2K l(X,Y)( ~ 1) 
= L cje- v/ x+y>( .JPlvj ) 

j A/Vj - 1 

_ (+ 00 dx' K1(X,X')( .JPlvj )e-v/x,+y). 
L Ajlvj - 1 

(4.1 ) 
In order to get multisoliton solutions it follows from 

(3.1) thatthe relevant matrix elements areK g>(x,y), which 
satisfies the GLM equation 

2Kg>(x,y) 

'" C (Aj + iVj) -v(x+y> 
-£..j e J 

j Vj 

X {KlP(x,x) (Aj +ivj ) + Kg>(X,X').JP} . (4.2) 
Vj Vj 

Since, from (2.13), Kll (x,x') can be obtained from 
K22 (x,x') as a simple complex conjugation, one can just 
write that the equation satisfied by K ii> (x,x') is 

2Kg>(x,y) 

- L Cj (.JP) e-Vj(x+y> 
Vj 

X{Ki:>(x,x') (Aj +ivj ) + Kg>(X,X').JP}. (4.3) 
Vj Vj 

The one-soliton solution is found by assuming that 
C12 (A,k) has a single pole, that is, C12 (A,k) = 0 for 

k = iv = i~p2 - A 2 (AER, VER). Under these conditions 
one can solve explicitly the preceding system of equations 
[ (4.1 )-( 4.3)] and obtain 
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K
(I)( ) _ 2(Clv)(A +iv)e- 2vx 
12 X,X - - --''---:'''''':''''-:'''--'---

4-2(CIV).Jji e- 2vx 

From relation (3.1) it follows that 

2iK12 (x,x) = -.Jji + q(x) , 

thus the procured solution reads 

q(x) =.Jji + - 4i( C IV)(A + iv)e - 2vx 

4-2(Clv).Jji e- 2vx 

(4.4) 

(4.5) 

(4.6) 

One gets q(x,t) from expression (3.1) by considering 
the explicit time evolution of the scattering data. This depen
dence appears through the parameter C. In this way the de
pendence of C in t can be inferred from (3.12). That is, 

C(t)= CII(A,k,t) I. (4.7) 
(d IdA)C12 (A,k,t) K= iv 

From (2.22) one gets 

C(t) = Coe
4Avt , 

where Co is given as 

Co = CII (A,O) I 
(dldA)C12 (A,O) K=iv' 

(4.8) 

(4.9) 

Together all this leads to the explicit solution 

(A +iV)2+.Jji( _2v/Co)e-4Avte2vx 
q(x,t) = (4.10) 

.Jji _ (2v/Co)e-4Avte2vx 

A more convenient form for the one-soliton solution is5 

[here we change notation q(x,t) =qJc (x,t,v)] 

qJc (x,t,v) = [v - iy tanh(ym (x - vt) )].Jji e - i(Apt -.J) , 

(4.11 ) 

where {} is an arbitrary phase, y = ~, and v is the ve
locity of the soliton ( - 1 < v < 1 ). This parameter v is relat

ed to the old one as v = A /.Jji. We have also taken 

co.Jji = - 2v. 
Solution (4.11) describes charged solutions moving 

with velocity v. The conserved charge associated to one such 
solution is given as 

Qc = f dx qJ ~(x,t)qJc (x,t) , 

whereas the momentum and energy are 

p= -i f dX[qJ~axqJc]' 
E = f dX[ qJ ~( - ~!)qJc + ~ (qJcqJ ~)2 - Kp(qJcqJ n ] . 

The charge and energy of the soliton will be given by 

Qs = Qc - Qo, Es = Ec - Eo, 

where Qo and Eo are the charge and energy of the condensate 
(or the vacuum energy) given by 

Qo = Lp, Eo = LAp2/2 , 

where L is the size ofthe system that, at this point, we take 
finite. For the solitons (4.11) one gets 

Qs = - 2py/~mAp, p= - 2pvy, Es = ~pr· 
This solution qJv (x,1) describes a pulse that moves in the 

x direction with velocity v in a medium of density p (the 

468 J. Math. Phys., Vol. 30, No.2, February 1989 

condensate density) and is interpreted as a coherent state of 
the bosonic system. 

The large x behavior (for fixed t) of qJ(x,t) gives 

lim qJ(x,t) =.Jji exp i( {} + 8 - Apt) , 
x- 00 

whereas 

lim qJ(x,t) =.Jji exp i(qJ - 8 - Apt) , 
x- + 00 

where 8 = arccos v. 
Therefore these solutions cut the condensate (the mani

fold of degenerate vacua) in two sectors of phases where the 
difference in phase is given by 28. Since this difference is time 
independent (even when there exist quasiparticles in the sys
tern) it constitutes itself in a charge.5 

Figure 3 exhibits in the complex qJ plane the "trajector
ies" of different qJc solutions when x varies from - 00 to 
+ 00. This figure corresponds to a choice of {} = 8 and we 

have fixed the time as t = O. 

v. CONCLUSIONS 

We applied the inverse scattering technique in order to 
get classical solutions to a nonlinear nonrelativistic model 
exhibiting a spontaneous breakdown of symmetry. 

The model we have studied is just an extension of the 
usual nonlinear Schrodinger theory (NLS model). Physical
ly the model considered here describes a nonrelativistic Bose 
gas whose particles interact via a 8-like potential but, and 
this is the difference from the NLS model, it takes into ac
count the possibility of a net background charge in the sys
tem. 

As a result of the above-mentioned distinction between 
the two theories, one expects that the differences show up at 
the classical and at the quantum level. 

At the classical level this is manifest by the fact that the 
x-independent solution (condensate or vacuum configura
tion) is characterized by an infinite set of solutions. That is, 
the vacuum is infinitely degenerate. This has an interesting 
reflection on the set of solitonlike solutions. For instance, the 
one-soliton solution describes a pulse moving with velocity v 
in such a way that for each velocity there corresponds a cer
tain phase difference in the manifold of degenerate vacua. 

In the process of quantizing model (1.1) the approach 
developed here is also relevant. This is a result of the fact that 
the inverse scattering technique is a way to cast the Hamilto
nian written in terms of action-angle variables.6 The quanti
zation of model ( 1.1) is in progress and will be dealt with in a 
future publication. 

FIG. 3. Solitons with different 
velocities interpolate different 
points in the manifold of degen
erate vacua. To each velocity 
there corresponds a phase differ
ence. 
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We believe that the classical solutions described here 
can also be obtained from the NLS equation by making the 
substitution q -+ qe - ipkt and at the same time considering 
nontrivial boundary conditions. This approach has been car
ried out in Ref. 7. For the quantized version, we believe that 
work with the spontaneously broken symmetry version is 
more advantageous since the introduction of a chemical po
tential (as we do) is a very systematic way of taking into 
account the presence of a background charge. 
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Using rigged Hilbert space techniques, the spinning particle is BRST quantized. It is shown 
~hat there is a unique admissible Hermitian form on the extended phase space. With respect to 
It, the.BRST operator is an~i-Hermitian. The doubling of the BRST cohomology is removed by 
choosmg a subspace on WhICh the Hermitian form is positive definite. 

I. INTRODUCTION 

In recent times BRST methods have become increasing
ly important in the attempts to quantize constrained sys
tems. Despite all these efforts there still exist problems even 
at a basic level. For instance, the inner product structure of 
the BRST cohomology has not yet been satisfactorily de
fined. 

We illustrate and solve this problem in the case of the 
spinning relativistic particle. We use (a slightly modified 
version of) the model given in Ref. 1. We find (in a sense) all 
irreducible representations of the operator algebra of this 
model. What one might suspect, to represent the odd canoni
cal variables by r matrices and the odd ghosts by multiplica
tion with a Grassmann variable, does not work because then 
the odd canonical variables and the odd ghosts would com
mute with each other, whereas they must anticommute. So 
this is not a representation. As we will see, insisting on the 
usual Grassmann form leads to a reducible representation. 

On the space of wave functions one then has to give a 
Hermitian form that sat~fies, among other requirements, 
that the BRST operator n is Hermitian or anti-Hermitian 
with respect to it. It turns out that there is no (nonzero) 
Hermitian form on the extended phase space such that n. is 
Hermitian w.r.t. it. There do exist, however, two linearly 
independent Hermitian forms such that n. is anti-Hermitian 
w.r.t. them (Theorem 1). One of them leads to a pseudosca
lar product on the physical space, however, and thus has to 
be rejected. Hence there remains a unique (up to normaliza
tion) Hermitian form on the extended phase space that ful
fills all the requirements. With respect to this form, real even 
and imaginary odd classical variables are represented by 
Hermitian operators, and real odd and imaginary even vari
ables by anti-Hermitian ones. This is in conflict with the 
usual opinion that real variables always have to be represent
ed by Nermitian and imaginary variables by anti-Hermitian 
operators. (For the above mentioned reducible representa
tion there exists a Hermitian form such that n. is Hermitian' 
however, when restricted to the invariant subspaces of th~ 
operator algebra this form vanishes.) 

Our Hermitian form would be well defined if the wave 
functions were square integrable. However, as in the bosonic 
case2 this is not sufficiently general. We can give the Hermi
tian form a well-defined meaning even when generalized 
functions occur using the same rigged Hilbert space tech
niques that were introduced in Ref. 2 to handle the bosonic 
case. 

The wave functions are eight component spinors. The 
Hermitian form is such that the first four components are 

paired with the last four. If we choose the components to lie 
in the parts of a Gel'fand triple in such a way that in the 
Hermitian form distributions are always paired with test 
functions, then the Hermitian form is well defined. To de
scribe in which part of the Gel'fand triple the components of 
the wave functions lie, we introduce the "characteristic func
tion." There are several characteristic functions such that 
the respective Hermitian form on the extended phase space 
is well defined, but only one that leads to a nondegenerate 
induced Hermitian form on the BRST cohomology 
(Theorem 2). That the choice of the function spaces in 
which the components of the wave functions lie is unique 
here (in contrast to the bosonic systems treated in Ref. 2) 
stems from the simplicity of the considered system. (Indeed 
for the minimal sector of the scalar particle the characteristic 
function is also unique.) It will not hold for general systems. 
We conjecture that the characteristic function is monotoni
cally increasing in the component corresponding to the com
muting ghosts and monotonically decreasing in the compo
nent corresponding to the canonical momenta. 

For the above unique choice offunction spaces we then 
calculate the BRST cohomology. This is more difficult than 
in the bosonic case because, e.g., such subtleties as the do
main of definition of n. have to be properly taken into ac
count. The result is given in Theorem 3. We see that there 
occurs a doubling of the same nature as in the bosonic case. 
The induced Hermitian form on the BRST cohomology is 
not positive definite. In order to have a positive definite inner 
product one has to choose a linear subspace of the BRST 
cohomology that is left invariant by the BRST observables. 
Using the special form of the BRST observables (Theorem 
4) we prove that such subspaces exist and that they all lead 
to unitarily equivalent theories (Theorem 5). By choosing 
the subspace we arrive at a positive definite inner product 
and, at the same time, remove the (unwanted) doubling. 

Our notation has been taken mostly from Refs. 2 and 3. 
We refer to Ref. 3 for an excellent review on the Hamiltonian 
BRST formalism. 

II. DEFINITION OF THE MODEL 

We start from a slightly modified version of the classical 
model of the relativistic particle of Galvao and Teitelboim. 1 

The classical variables fulfill the Dirac brackets, 

{xl',Pv} = 8:" 
{el',e v

} = irfV, 

{e 5,e 5
} = i, 

(1) 
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where (}I",(p are real Grassmann variables 
TJI"V = diag( - + + + ). The constraints are 

JY' = (}(pO)p2 + m2
, 

Y = (}(pO) (}I"pl" + m(}s. 

and 

(2) 

We have introduced the (}(po) in the constraints to get rid of 
the negative frequencies from the start, as in Ref. 4. In Ref. 1 
this () function is not included. Since () 2(pO) = (}(po) the 
constraint algebra does not change. As in Ref. 1 we have 

{Y,Y} = iJY', 

{Y,JY'} = 0 = {JY',JY'}. 
(3) 

The action is 

s= f' d1'{XI"PI" + ~ (OI"(}1" +OS(}5) -A a (1')Ga } 

(4) 

where AO (1') are Lagrange multipliers, a = 1,2, and Ga are 
the constraints G1 = Y, G2 = JY'. The surface terms are 
needed in order for the variational problem to be well de
fined (see Ref. 1). For the sake of simplicity we do not intro
duce the Lagrange multipliers and their associated momenta 
as additional canonical variables, i.e., we work in the so
called minimal sector. The ghosts and the ghost momenta 
satisfy 

{9 a,TJb} = - 8~. (5) 

The ghosts and ghost momenta have the opposite Grass
mann parity as the constraint to which they belong. The 
general formula for the BRST charge3 gives, using (3), 

n = TJ1Y + TJ2JY' + (TJI)2(i/2) 9 2, (6) 

To pass to quantum theory we substitute the Dirac brackets 
by ( - i) times (anti-) commutators. So 

[xl",pV] = iifV, 

[81",8 V] = - if v, 

[OS,OS] = - 1, 

[ .9 a' ~b] = - i8~. 

(7) 

A.ll the other (anti-) commutators vanish. We have to repre
sent this algebra on some space of wave functions. To this 
end we note that when we combine the anticommuting ghost 
~2 and its momentum .9 2 as g+ = ~2 + i.9 2 and 

A A A 

g- = ~2 _ i 9 2, then (}I" , () s, g+, and g- are the generators 
of a Clifford algebra with signature + - - - - + -. 
This algebra has exactly two irreducible (2[7/2] = 8 dimen
sional) representations.5 Thus we represent the operator al
gebra (7) on eight-component Dirac spinors ¢(p,TJ1). The 
operators are given as 

9 . a 
1 = - 1 aTJI' 

(8) 
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usual r matrices. [The other representation would be ob
tained by changing the sign of g-. Using this representation 
would lead to the same final result.] The BRST operator is 
[since no factor ordering ambiguities arise we may just insert 
carets in (6)] 

n = ~1((}(po)pI"81" + m( 5
) 

Introducing the abbreviations 

D = (}(po)PI" rY' + mir, G = (1I{l)TJ 1'1, 

we may write it as 

G
2 

) 

-DG' 

The nil potence of n is easily established. 
Remark: The "representation" 

. al 

9 2 =1-
2

, etc., 
aTJ 

(9) 

(10) 

(11) 

(12) 

on Dirac spinors ¢(p,TJi,TJ2) = ¢o(p,TJ i ) + ¢i(P,TJi)TJ2, for 
which ~2 acts by multiplication with a Grassmann number 
TJ2, does not work. It is true that all the relations written 
down in (7) are satisfied; however, for (12) ~2, .9 2 com
mute with fJ', Os, whereas they should anticommute. 

One can remedy this by introducing a Clifford algebra 
with six generators, 

r,s = 0,1, ... ,5, itS = diag( + - - - - - ). 
As the space of wave functions one then takes the Dirac 
spinors ¢(p, TJ t, TJ2) belonging to this Clifford algebra. The 
operators are then represented by 

01"= ~ t', Os= ~ r, 
(13 ) 

etc. 

They are 8 X 8 matrices. The representation is effectively 16-
dimensional and it is reducible. To see this choose 

t' = (r{ _ ~Y')' r = C~ -~r)' 
~ = i(~ ~), 

then writing ¢ = ¢o + TJ2¢1 as vector (*':) we get, for n, 

( 

GD 

n¢= ~ 
_ ;n2 

o 0 
-GD _iG 2 

_;n2 GD 

o 0 

with G = (1/{l)TJi, D = (}(po)PI" t' + mr. Making the 
change of basis 
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(~}(i}(~ : 
one gets, for .0: = BaB - 1, 

A _iG 2 GD 
n'= 

o 
o 
o 

o 
o 

(

-GD _iD2 

o 0 -GD 
o 0 - iD2 

all other operators are of a similar form. 
If we used this representation, we would get an addi

tional doubling as we shall see later. 

III. THE HERMITIAN FORM 

On the space of wave functions we want to define a Her
mitian form such that (a) the BRST observables are Hermi
tian w.r.t. it, (b) the BRST operator is Hermitian or anti
Hermitian w.r.t. it, (c) it induces a scalar product on the 
physical space. 

Condition (b) deserves some comment. In the literature 
it is usually stated that the BRST operator has to be Hermi
tian in order for the formalism to work properly. However, 
what one really needs is that a state of the form a tP satisfies 
(l/J,a,tP) = 0 for any physical state l/J (i.e., any l/JEKer a). 
This is also satisfied when a is anti-Hermitian. In fact, there 
is no (nonzero) Hermitian form such that a is Hermitian 
w.r.t. it. 

Theorem 1: For the representation (8) there is no non
zero Hermitian form such that a is Hermitian w.r.t. it. 
There are only two linearly independent Hermitian forms 
such that a is anti-Hermitian w.r.t. them, namely, 

(14) 

and 

where tPo' tPl denote the first and last four components of tP, 
respectively. 

Proof' The most general (formal) Hermitian form on 
the space of spinors tP(p, T] 1) is 

f 4 1 (A (tP,l/J) = d pdT] (~,t/Ir)\.n* 

A=A*, C=C*, (16) 

where tPo, etc., are four component spinors and A, B, Care 
4 X 4 matrices. 

The condition for a to be Hermitian w.r.t. (16) is 

(
GD G2 )*(A B) 
_D2 - GD \.n* c 

= (A B) ( GD 
\.n* C _D2 

G
2 

) 

-GD' 
which leads to the equations 
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GD*A - D2B* =AGD-BD2, 

GD*B-D 2C=AG 2 -BGD, 
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(17) 

G 2A - GD*B* =B*GD- CD 2, 

G 2B- GD*C=B*G 2 - CGD. 

They have to hold for any T]l, i.e., for any G. At G = 0 they 
reduce to (D 2 = D 2'1;60 in general) 

B* =B, C=O. 

Setting this back into (17) leads to (G = G'1) 

AD=D*A, 

BD+D*B=AG, 

BD-D*B=AG. 

Adding and subtracting the last two equations gives, respec
tively, 

2BD=2AG, 

2D*B=0, 

and this leads to B = 0 and A = O. So together 
A =}J = C = O. This proves the first claim. The condition 
for n to be anti-Hermitian is 

D2B* - GD*A =AGD-BD2, 

D 2C- GD*B=AG 2 -BGD, 

GD*B* - G 2A =B*GD- CD 2, 

GD*C- G 2B=B*G 2 - CGD, 

(17' ) 

at G = 0 we get this time B * = - Band C = O. Setting this 
in (17') gives 

AD+D*A =0, 

- GD*B= G 2A - GBD. 

Comparison of the coefficients of G and G 2 in the second 
equation leads to 

A =0 and D*B=BD, 

so together we have A = C = 0, B = - B *, D * B = BD. 
Now because D = (}(po)pJ1. 'It' + mir we must have 

B= -B*, 

-irB=Bir, 

(r~t')*B = B(rt')· 

(18) 

(19) 

(20) 

A basis of the space of 4X4 matrices is 1, yJ1., yJ1.yV ,ry J1., r. In order that ( 19) is satisfied we must have 
B = at' + f3rt'. Then (20) requires B = a'f + f3r'f 
and (18) implies aER, if3ER. • 

The decision between (14) and (15) is made by the 
above requirement (c). Equation (15) leads to the Dirac 
product sfi,l/J on the physical space, as we will see below, 
whereas (14) would lead to sWl/J. The latter is not a scalar 
w.r.t. the Lorentz transformations but a pseudoscalarj we 
thus have to use (15). 

With respect to this form X,jJ,;'I, 9 2 are Hermitian and 
fl, 9 1, (}U, 85

, and a are anti-Hermitian. In general, real 
even and imaginary odd variables are represented by Hermi
tian operators and real odd and imaginary even ones by anti
Hermitian operators. Since BRST observables are real and 
even,3 condition (a) above is thus satisfied. 

Remark: In the representation (13) we may define a 
Hermitian form by 
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(tf;,f/J) = f d 4pd1]1 d1]2 tf;*'if!f/J 

= f d 4p d1]1 (tf;r'if!f/Jo - tf;~'if!f/JI)' (21) 

With respect to this form, n in the representation (13) is 
Hermitian. However, when restricted to one of the invariant 
subspaces (21) is zero. Nevertheless one can calculate the 
BRST cohomology in the same way as in the main text. One 
finds that it is four times as large as the physical space of the 
Dirac theory. One doubling is the usual one, the other has its 
root in the reducibility of the chosen representation. Since, 
restricted to the BRST observables, this representation is a 
direct sum off our times the same irreducible representation, 
there are linear subs paces such that they are left invariant by 
the BRST observables, the observables act irreducibly, and 
the Hermitian form restricted to them is definite. These sub-

(0,0) test function 

. (1,0) distribution 
inp and a X( tf;j h=.XU) = (0,1) if tf;j is a 

test function 
(1,1) distribution 

This definition implies the following. 
Lemma: The Hermitian form (15) is well-defined iff 

X;(O) + x; (1)..; 1 (i= 1,2), 

i.e., whenever every distribution is paired with a test func
tion. 

As discussed in Ref. 2 one should choose X such that in 
the above inequality the equality sign holds. Then there are 
four possibilities: 

(i) X(O) = (1,0), X( 1) = (0,1), 

(ii) X(O) = (0,1), X( 1) = (1,0), 
(22) 

(iii) X(O) = (0,0), X(1) = (1,1), 

(iv) X(O) = (1,1), X( 1) = (0,0). 

Only (i) is sensible. Possibilities (ii)-(iv) lead to induced 

[from ( 15) ] forms on Ker n/Im n which are pathological. 
To prove this claim we first have to determine Ker n. To this 
end note that 

ntf; _ ( GDtf;o + G 2tf;1 ) 
- - D2tf;o - DGtf;1 

So for tf;EKer n we must have 

Dtf;o + Gtf;1 = C(p,1]I), 

where C fulfills the equations 

GC=O, DC=O. 

The solution of (25) is 

( 
G(Dtf;o + Gtf;I) ). 

- D(Dtf;o + Gtf;I) 
(23) 

(24) 

(25) 

C(p,1]I) =8(1]I)C(p) with DC(p) =0. (26) 

The solution of (24) is thus 

tf;o = GA + 8(1]I)B + E, 

tf;, = - DA + 8(1]')H - .j28'(1]')J, 
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(27) 

spaces are all isomorphic to the physical space of the Dirac 
theory. 

The form (15) would be well defined if both compo
nents (tf;O,tf;I' etc.) of the wave function were square integra
ble. This is not general enough, however. Since we want tf; to 
have something to do with the solutions of the Dirac equa
tion, which are D8(p2 + m2), we must allow for distribu
tions. On the other hand we have to require that ( 15) is well 
defined. 

To achieve this we use a similar method as in Ref. 2, 
where the bosonic case was treated. In contrast to the bo
sonic case where we had only one group of variables (the 
canonical momenta) to integrate over, here we have two, 
namely the canonical momenta and the commuting ghost. 
We therefore have to generalize the "characteristic func
tion" introduced in Ref. 2. 

Definition: The characteristic function X: {O, 1 F 
..... {O, 1 F is defined to be 

test function 

test function 
in 1]1. 

distribution 

distribution 

I 
withA(p,1]') andH(p) arbitrary;B(p) andJ(p) such that 
DB + J = C; and E such that DE = O. 

Next we calculate (tf;,f/J) for tf;,f/JEKer n. We obtain, set
ting (27) into (15) 

(tf;,f/J) = -if d 4pd1]'(GA:+8(1]')B: 

+ E:}rV)( - DAt,6 + 8(1]I)Ht,6 - .j28'(1]I)Jt,6} 

- (- (DA",)* + 8(1]')H: 

- .j28'(1]')J:}r'f(GAt,6 + 8(1]')Bt,6 + Et,6). 
(28) 

This is only a formal expression, of course; terms containing 
82

, etc., are not well defined. We have to go through the four 
possibilities listed in (22). 

(i) In order to have X(O) = (1,0) and X( 1) = (0,1), 
we must have A of the form A = Ao 
+ 8( 1]1 )A1/ + D8(()(pO)p2 + m2)Ap with Ao, A1/' and Ap 
test functions in both variables. Further we must have 
B = J = 0, E a test function in 1]1, and H a test function p. 
When we set this in (28) what remains is 

(tf;,f/J) = - i J d 4pd1]'(E:(p,1]')r'f8(1]')Ht,6(p) 

- 8(1]')H:r'fEt,6}. (29) 

(ii) The term A must be a test function both in 1] I and p. 
The term B is a test function in p with D 2 B = 0; this implies 
B = O. Further, we must have E = H = J = 0 and thus (use 
D *r'f = r'f D) 

11tf;1I 2 
= O. (30) 

(iii) The term A is of the form A = Ao + 8( 1]' )A1/ with 
Ao' A1/ test functions B = E = 0 and J(p) such that DJ = O. 
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This gives = - if d 4p[ Ao¢I'I' ~oryDDB¢ 
(ifJ,t/J) = -if d4pd1JI[.j2t5/(1JI)J~ryDGAo¢ 

- GA ~.p ryD .j2t5/ (1J I )J¢ ] 

= -i f d4p[A~¢I'I'~oryDJ¢ 
-J~ryDAo¢I'I'~o]. (31) 

- (DB¢)*ryDAo",I'I'~o]. (32) 

We are through for case (ii). For cases (iii) and (iv) we have 
to show that the induced Hermitian form on the BRST coho
mology has degenerate directions. Since n is nilpotent and 
anti-Hermitian we always have (ifJ,t/J) = 0 for ifJEKer nand 

A A 

¢Elm n and thus by adding sta~s of 1m n to ifJ we do not 

(iv) A = Ao + Dt5(()(pO)p2 + m2)Ap with Ao, Ap test 
functions and D 2 B = 0, DE = 0, H = J = O. This leads to 

change the norm. The image of n is given by 

(ifJ,t/J) = -i f d4pd1JI[t5(1JI)B~ryD( -DA¢) 
n = ( G(DXo + GXI) ). 

X _ D(DXo + GXI) 
(33) 

+ (DA¢)*ryDt5(1J I)B",] Case (iii): ifJ + nX is of the form 

(0) (I) (2) 

where X I = X I + X I 15 ( 1J I) + X 15/ ( 1J I) • We see that it is not possible to completely remove the H term by adding states in 

1m n. On the other hand, H does not appear in (31). So a state of the form ifJo = 0, ifJI = t5( 1JI)H represents a degenerate 
direction in the BRST cohomology. 

Case (iv): We have 

A (G(AO + Dt5(()(pO)p2 + m2)Ap + D;~ + Dt5(()(pO)p2 + m2)~~ + GX I) + t5( 1JI)B + E) 

ifJ+ nX= (0) , 

-D(Ao + DXo + GXI) 

(0) (I) A 

where Xo = Xo + t5(()(pO)p2 + m2)xo. This time E cannot be completely removed by adding states in 1m n. Comparing with 

(32) we see that states of the form ifJo = E, ifJI = 0 are degenerate directions. Together this proves the following theorem. 
Theorem 2: The choices (22) (ii)-(iv) lead to a degenerate induced Hermitian form on the BRST cohomology. 
We are thus left with the choice (22) (i). 
Corollary: The term ifJo is a test function in 1JI (and a distribution in p). The term ifJI is a test function in p (and a 

distribution in 1J I). 

IV. THE BRST COHOMOLOGY AND THE PHYSICAL SUBSPACE(S) 

We have to calculate the BRST cohomology for the choice (22) (i). We have already determined Ker n in (27), it is 

A {I ifJo = GAo + GDt5(()(pO)p2 + m2)Ap + E . Ao.Ap.A'I,H test functions in both } 
Ker n = ifJ I I with . 

ifJI = -DAo -t5(1J )DA'I +t5(1J)H variables,E testfunctionin1JI,DE=O 
(34) 

To compute the image of n we first have to specify the domain of definition, i.e., that subset of all (generalized) functions 

(22)(i) for which also nX satisfies (22)(i). These are the states that fulfill [see (22) and (33)] 

G 2X I test function in 1J1, D 2XO test function in p. (35) 

These states are given by 

Xo = Ro + t5(()(pO)p2 + m2)RI . hS R 
I / I Wit j' i test functions. 

XI = So + t5(1J )SI + 15 (1J )S2 
(36) 

So for 1m n we get [usingxt5/(x) = -t5(x) andxk t5(n) (x) =Ofork>n] 

A {!Xo = GDRo + GDt5(()(pO)p2 + m2)RI + G 2So } 
1m n = X 2 I R;.Sj test functions . 

XI = - D Ro - DGSo + D(1/.j2)t5(1J )S2 
(37) 
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In order to compute the cohomology, choose as a first step 

RI = - Ap and S2 = .,(2AY] to see that in every equivalence 
class there ~ a state with Ap = AY] = O. Now add another 
state ofIm n, namely, one satisfying 

Ao + DRo + D5((}(po)p2 + m2)RI = O. 

This equation always has a solution: with the R o term one 
can change Ao arbitrarily outside Ker D, with the R I term in 
Ker D. Together we can thus bring Ao to zero everywhere. 
Another indication that the A terms should be removable 
comes from the fact that they do not contribute in the in
duced form as seen from (29). By adding further RI terms 
one can change E at will except on the hypersurface ",I = O. 
So the only invariant information contained in E is 
E( ",I = O,p), which is in fact also the only part contributing 
in (29). Thus so far we have shown that in every equivalence 
class there are states of the form 

(38) 

Next we show that by adding terms (l1{i)5(",I)DS2 one 
can change H at will whenever Dr H # O. 

Choosing S2 = DS2 it is easily seen that H can be 
changed everywhere outside (}(pO)p2 + m2 = O. To see that 
in fact only solutions of Dr H = 0 have an invariant mean
ing is somewhat more difficult. The task is, however, simpli
fied by the fact that this is a Lorentz invariant statement and 
it therefore suffices to show it in the rest frame of the particle 
(po = m,p = 0). First, we choose an explicit representation 
for the r matrices 

0) ~ I 0 iT) (0 1) 
-1' r=\_iT 0' r= 10' (39) 

Transforming H away means solving the equation (1/{i) 
XDS2 + H =0, i.e., 

or written differently 

[(}(po)PI' ( _ iyl') + m ]S2 = i{ir H. 

In the rest frame pO = m, Po = - m, p = 0, using (39), this 
IS 

(~ 
o 
o 
o 
o 

o 
o 

2m 

o 

(41 ) 

This has solutions iff H 3 = H 4 = O. The equation Dr H = 0 
in the rest frame is (after multiplication with - ir from the 
left) 

(~ 
o 
o 
o 
o 

o 
o 

2m 
o 

and its solutions are H I = H 2 = 0, H 3, H 4 arbitrary. So our 
claim that the solutions of Dr H = 0 have exactly an invar
iant meaning emerges. We thus have the following theorem. 

Theorem 3: The BRST cohomology for the spinning 
particle is (isomorphic to) 
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Ker n/Im n~{tf!Itf!o = E(p), DE = 0, 

tf!1 = 5(",I)H, DrH = O}. (42) 

Now DE = 0 iff E is a solution of the Dirac equation [modi
fied by (}(po) ], and also for r H. So, as for the scalar particle, 
we have a doubling. The induced form on the BRST coho
mology is 

(tf!,¢;) = - i f d4p(E~ryOH4> - H~ryOE4»' 
or if we set 

rH=.F, 

(tf!,¢;) = if d4p(E~yOF4> + F~yOE4»' (43) 

where E and F are solutions of the Dirac equation [modified 
by (}(po)]. The norm of a state tf! is 

11tf!112 = f d 4p E*(iyO)F + F*(iyO)E. (44) 

If we expand E and F in plane waves and do the pO integra
tion we get 

1Itf!112 = f d/-l(p) at/*(p,a)e(p,a) + e* (p,a)f (p,a), 

(45) 

where d/-l(p) = d 3pl(21T)32po and e,fare the coefficients in 
the expansion of E and F, respectively. As one sees from 
(45), the induced Hermitian form (43) is not positive defi
nite. 

The situation we have is analogous to the bosonic case. 
Again we have a doubling and the induced Hermitian form 
on the BRST cohomology is not positive definite. Note that 
it is necessary (at least in our rigged Hilbert space approach 
to the BRST cohomology) to have the doubling in the coho
mology, because otherwise, as one sees from Theorem 1, 
there would be no nonzero Hermitian form on it which is 
induced from an admissible (see text before Theorem 1) 
form on the extended phase space. However, the cohomo
logy cannot be the physical space since the induced form on 
it is not positive definite. So as in Ref. 2 we try to find linear 
subspaces of it, which are left invariant by the algebra of 
BRST observables and restricted to which (43) is positive 
definite. 

According to Theorem 3, the BRST cohomology is the 
space of pairs, (E,F) of solutions of the Dirac equation. The 
linear subspaces of it with which we will be concerned are 

(46) 

where % is a linear map from the space of solutions of the 
Dirac equation to itself. We look for % such that 11% satis
fies the above two requirements. To this end we first prove a 
theorem on the form of BRST observables. 

Theorem 4: Any BRST observable A is of the form 
..... 0 . A A (g A) with [A, Ga ] = O. 

Proof' Any A is a matrix A = (; ~) acting on the (~") 
'" ' 

space. We demand that it ~aps Ker n into itself and is de-
fined on the whole ofKer n, i.e., using (26), 
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_ A (X(GAo + GD8((}(pO)p2 + m2)Ap + E) + y( - DAo - 8(1]I)DA., + 8(1]I)H)) 

t/J = At/J = z(GAo + GD8((}(pO)p2 + m 2)Ap + E) + u( - DAo - 8(1]I)DA., + 8(1]I)H) 

~ (GAo ~ GD8((}(pO)l!..2 + m2)Ap :::- E'\ . 
- DAo - 8( 1]1 )DA., + 8( 1]1)H ) 

A 

From this one sees immediately thaty = z = o. So, A is of the 
form A = (~ ~). The operator A must commute with ii, so 
with (11) we get 

A A ([ GD,x] G 2U - xG 2) 
0= [n,A] = UD2 _ D2X _ [DG,u] . 

Since x and u stand in the diagonal of A, and A has ghost 
number zero, so must x and u, i.e., they must be of the form 

L Xi(-ryI)i(9 1)i, 
i 

where the Xi do not contain any ghosts or odd products of 
(J's. (Since A is real and even, so must be x and u.) Thus 
Xi =xi(p,q,(iO). The order of (-ryI)i(9 1)i is ambiguous; 
different factor ordering changes the Xj for j < i by add!.!ive 
constants. Assume that all -ry's stand to the left of all the 9 'so 
Then we have 

0= [GD'~Xj(1]I)j( 9 1)j] 

= _1_ L {[ D,xj] (1]I)j+ I( 9 1)j 
..fij 

+ jXj (1]1)1( 9 I )j- ID} 

r>I[D,xj] + U+ l)xj+I D =O 

r>lXj+1 = [l/U+ 1)](xj -DxjD- I ). 

Next we use the fact that BRST observables are extensions of 
Dirac observables, i.e., AI.,"=o=.0"o =Ao = (~og) com
mutes with the constraints, so [xo,D] = 0 = [xo,D 2]. 
From the above recursion formula we thus get Xj = 0, 
Vj> 0, so x = xo. From the equation 0 = uD 2 - D 2X 
= (u -x)D 2, we get u =x::,:::A. • 

We note that although the representation (8) is irredu
cible for the whole algebra of quantum operators, it becomes 
reducible when restricted to the subalgebra ofBRST obser
vables. 

Using Theorem 4 we see that the condition for n h/ to be 
invariant under the action of the BRST observables is 
A A A • h D2 A% = % A for any A that commutes WIt D and . 

The most general form of a linear transformation on the 
space of four-spinors is 

(%E)a (p) = f % ap(p,p')Ep(p')dp', 
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but since A = A (p) is an observable for any A (p) it is clear 
that % ap (p,p') has to be of the form % ap (p)8(p - p') and 
we have to discuss only 

(%E)a (p) = % ap (p)Ep (p). 

Further % should map Ker D into Ker D so that we must 
A AA 

have [%,D] = RD. Since the Lorentz generators 
A A A A A 

Jp.v =pAv -pAp. + (i/2)((}p.()" - (}v(}p.) and the C, P, 
and T operations commute with D, the operator % ap (p) 
must be a scalar, and thus it is ofthe form % (p2 )8ap . 

However, not all % (p2) are allowed; we also have to 
fulfill the second requirement, namely that (35) restricted to 
II.r is positive definite. The situation is as in the bosonic 
case and, exactly as in Ref. 2, Sec. IV, one proves the follow
ing theorem. 

Theorem 5: On the subspaces IIx of the BRST coho
mology defined by lep,a) = %(p)2)e(p,a), with 
Re % > 0, the induced form (35) is positive definite and all 
the (n:.v ; (".) III r) are isomorphic scalar product spaces. 

A convenient choice for % is 

% =~, i.e., I = ~ e::,:::~ b 

as it leads to 

(t/J,t/J) =f d
3

; ° ± b~(p,a)b",(p,a) 
(21T) 2p a= I 

for the induced product on II 1/2' This is the usual Dirac 
product with the negative energy states removed. [There are 
no negative energy oscillators since we have included a (}(po) 
in the constraints. ] 
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A dynamical consequence of local gauge invariance is the existence of first class constraints 
that are linear in momenta. By studying finite-dimensional systems with this constraint 
structure one finds that, in order to quantize such theories, it is not enough to find a consistent 
factor ordering, rather, one must also maintain covariance under rescaling of the constraints, 
point transformations, and weak changes to the observables. Within the standard Dirac 
constraint formalism, covariance under these symmetries obstructs a full Hilbert space 
description. It is shown how this difficulty may be overcome by the use of ghost variables. In 
the present paper, I, an analysis of the Becchi-Rouet-Stora-Tyutin (BRST) structure of such 
systems is presented. The constraint rescaling is shown to be implemented by a canonical 
transformation on the super phase space that can be evaluated to a unitary transformation on a 
suitably defined state space. In the following paper, II [J. Math. Phys. 30, 487 (1989)] these 
techniques are used to solve the constraint factor ordering problem. 

I. INTRODUCTION 

Quantization involves the metamorphosis of a classical 
theory into its quantum version. Since we believe that, at 
some fundamental level, the quantum description is basic, it 
cannot then come as too much of a surprise if sometimes the 
quantization procedure appears to break down. Van Hovel 
was the first to show that, in finite-dimensional systems, one 
cannot expect to represent all the classical structures in the 
quantum theory. In particular, the classical invariance un
der canonical transformations is not compatible with quan
tum theory. On top of this type of problem, field theory has 
the additional requirement of renormalizability that can ren
der (at least perturbatively) many classical systems as un
viable in the quantum regime. 

Systems that have a local gauge, or reparametrization, 
in variance have the additional complication brought about 
by the occurrence of (first class) constraints. These imply 
the existence of unphysical modes that should not affect any 
physical result in either the classical or quantum descrip
tions. The most expedient way to deal with this problem is to 
remove all unphysical objects and deal directly with the true 
degrees of freedom. However, often one cannot or does not 
wish to implement this reduction prior to quantization and 
hence a constraint quantization procedure is needed. Obvi
ously, any such scheme will hit the Van Hove type ofprob
lem when the reduction to physical quantum states is imple
mented. But, one would hope that there would be no 
additional complications induced by the unphysical modes 
prior to the reduction. 

In the context of canonical quantization, Dirac2 devel
oped a general constraint quantization scheme whereby the 
constraints are turned into operators on the extended state 
space (including both the physical and unphysical states). 
The physical state space is then picked out using these opera
tors. The attraction of this approach is that a quantum de-

a) Supported by the Science and Engineering Research Council. 
b) Present address: Mathematics Institute, University of Warwick, Coven
try CV4 7AL, United Kingdom. 

scription is maintained at all stages, thus allowing many fa
miliar mathematical tools to be used in this generalized 
context. This philosophy can easily be extended to other ap
proaches to quantization, such as the path integral, where 
one finds that the constraints alter the measure used on the 
extended states (see Ref. 3 and references therein). 

There are, however, several types of problems associat
ed with Dirac's procedure. The most serious is the difficulty 
in finding a factor ordering for the constraints that will allow 
for a consistent description of the physical states and obser
vables. This has long been the bane of research into quantum 
gravity, where the (Hamiltonian) constraint is quadratic in 
momenta and there are structure functions instead of the 
familiar structure constants.4 What is more surprising is 
that, even in finite-dimensional systems one cannot guaran
tee that a consistent factor ordering of the constraints will 
imply that one can recover the correct physical description 
of the theory.5 

In a series ofpapers6
•
7 Kuchar developed an alternative 

constraint quantization procedure for finite-dimensional 
systems that have first class constraints linear in momenta. 
He was able to solve the factor ordering problem explicitly 
and reproduce the quantized physical theory while main
taining covariance under a wide class of transformations. 
These successes were, however, at the expense of a Hilbert 
space structure on the extended state space. Operators are, 
therefore, self-adjoint only after reduction to the physical 
Hilbert space and hence it is no longer appropriate to talk 
about the constraints being self-adjoint. 

This nominalistic solution to the ordering problems has 
its precursor in quantum gravity where there has been a long 
debate into the desired operator status assigned to the Ham
iltonian constraint (see discussion in Ref. 6). There one can 
argue, on physical grounds, that since the Hamiltonian con
straint is simply a manifestation ofa "many-fingered time," 
and we know that the time variable cannot be represented by 
a self-adjoint operator,8 we should not expect this constraint 
to be self-adjoint. However, that such a radical solution ap
pears to be forced upon us for constraints related to gauge 
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invariance (and hence linear in momenta) is much harder to 
understand. 

In Ref. 9 we presented a factor ordering prescription for 
the systems considered by Kuchar which, as well as satisfy
ing all Kuchar's requirements, maintained an (indefinite) 
Hilbert space structure on the extended state space. This was 
achieved by using ghost variables. In this and the succeeding 
paper 10 we shall present an improved version of these order
ings and give the details of how they work. 

Ghost variables were originally introduced into con
strained dynamics as a means for developing a path integral 
formulation for gauge theories when "covariant gauge fix
ing" was used. II We shall show that ghost variables can have 
a much wider use in canonical quantization. In the present 
paper, I, we shall concentrate on the classical aspects of 
ghosts and the structure of the quantum state space. In the 
following paper, II, the projection of physical states and the 
orderings for the physical observables will be derived. It will 
be shown that the ghost approach does not suffer from the 
failings pointed out in Ref. 5. 

II. CONSTRAINTS AND GHOSTS 

A. First class constraints 

We shall be dealing with phase spaces of the form T*Q, 
where Q is an extended configuration space of dimension N. 
It is expected that the methods presented in this paper can be 
extended to more general symplectic manifolds. However, 
since our constraints will always be linear in momenta it is 
sensible to keep a cotangent bundle as basic. Locally T *Q is 
described by 2N canonically conjugate coordinates Q A ,P A • 

Here we adopt the convention that capital latin indices will 
run over all the degrees of freedom on T*Q, while greek 
indices will run over the number of constraints, which we 
denote by k (k <N). Later we will have recourse to lower
case latin indices which will run over the true degrees of 
freedom. 

The k constraints will be denoted by fPa and they are 
assumed to be independent, linear in momenta, and first 
class. Thus, locally in T*Q, we can find smooth functions 
fPa A and C ra{3 ofthe QA'S such that 

fPa = fPa A(QB)PA, (2.1) 

and 

(2.2) 

Being independent implies that the constraint surface, given 
by fPa = 0, is a (2N - k)-dimensional submanifold of T*Q. 
Note that, in (2.2), structure functions are allowed rather 
than just structure constants; we shall return to this later. 

The dynamical objects of interest on T*Q are the phys
ical observables. These are represented by equivalence 
classes of weakly invariant functions on T *Q, where Fis said 
to be weakly invariant if 

(2.3 ) 

for some smooth function F/3• The equivalence class struc
ture is that of weak equivalence, i.e., equivalence when re
stricted to the constraint surface. So FI - F2 iff 
FI - Fz = L afPa for some La. 
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Since we cannot expect to quantize all classical observa
bles we shall follow Kuchar6 and restrict our attention to 
special physical observables. So we denote by Y,Z functions 
of the QA,S only; by U, V those functions linear in the PA's; 
and by H,K the functions quadratic in their dependence on 
the PA's. The equivalent lowercase letters will denote func
tions with the same momenta dependence, but now in terms 
of the physical degrees of freedom. 

The system described by (2.1 )-(2.3) has a number of 
symmetries that do not affect the true dynamical content of 
the theory. However, not all such transformations will pre
serve the linearity of the constraints and the classification of 
special observables. Since it is these structures that we wish 
to emphasize, we shall adopt Kuchar's philosophy of only 
concentrating on those symmetries that preserve these addi
tional structures. Thus, for example, we replace invariance 
under the canonical transformations on T *Q wi th in variance 
under point transformations. 

With these restrictions, there are four types of symme
tries that we wish to preserve in the quantization. These are 
(a) invariance under general point transformations on T * Q, 
i.e., 

(2.4a) 

A JQA 
where Q A' = -- " (2.4b) 

JQA' 

(b) invariance under general point transformations on the 
true degrees of freedom [which we can consider as a special 
case of (a)]; (c) invariance under weak changes to the spe
cial observables, i.e" 

H-H + HafPa , 

where Ha is at most linear in momenta; and (d) invariance 
under rescaling of the constraints that preserve their inde
pendence and their linear structure, i.e., 

(2.5 ) 

for any invertible Aa {3(QA). We note that, by requiring in
variance under this type of rescaling, we are forced to consid
er structure functions in (2.2). 

It is worth noting a slight generalization in the classical 
setup presented here over that in Ref. 9. There we assumed a 
Riemannian structure on the extended configuration space 
Q. This was used to construct a kinetic energy term 
GABPAPB, where GAB is nondegenerate. All one actually 
needs though and, in particular, all that Kuchar assumed, is 
that on the true degrees of freedom the kinetic energy be
comes g"bpa Ph, where g"b is degenerate. In practice, one is 
rarely given a degenerate GAB [see ( 1 ) in Sec. VII], but even 
if one is it is possible to exploit the weak invariance given in 
(c) above to remove the degeneracy (which, by assumption, 
is in the unphysical directions). Thus the Riemannian as
sumption in Ref. 9 corresponds to a privileged choice of ki
netic energy term from the equivalence class of physical 
Hamiltonians. At the end of the day, though, such a choice 
does not affect the physical results. Here we shall show that 
it is possible to proceed without such a decomposition of the 
Hamiltonian. There is a price to pay for this extension of the 
results presented in Ref. 9 since we shall find that the mea-
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sures used in the quantum state space will now depend on the 
choice of constraints. 

The problematic invariance is that given by (2.5). Al
though it is true that such a rescaling does not affect the 
physical results of the theory, it is not a manifest symmetry 
since it is not compatible with the Poisson algebra on T*Q. 
Hence there is no canonical transformation, giving (2.5), 
which we might try and extend to a unitary transformation 
in the quantum description. It is this fact that forced Kuchar 
to abandon the standard operator status of the constraints. 
One might argue then that we should simply drop this invar
iance from our list as it is not as natural on T * Q as the others. 
However, Kuchar's insistence on keeping it did lead to a 
correct physical quantization in contrast to Dirac's ap
proach, where the rescaling invariance is never conside~ed. 

We shall show that, by extending the phase space tn a 
fermionic direction, it is possible to implement (2.5) as an 
(even) canonical transformation and hence as a Hilbert 
space isomorphism in the quantum theory. If one accepts 
Kuchar's argument that such a rescaling invariance is essen
tial to a consistent constraint quantization scheme, then, 
since making symmetries manifest has always been the 
working philosophy in physics, one must accept the conclu
sion that ghost variables are not just an artifact of covariant 
gauge fixing, but are fundamental to any constraint quanti
zation formalism. 

B. Ghosts variables and constrained systems 

In the context of canonical methods, ghost variables 
were first introduced by Batalin, Fradkin, and Vilkovisky 
(BFV) in an attempt to derive the covariant path integral for 
an arbitrary constrained system. II The general use of ghosts 
variables in field theory has, however, a much longer his
tory. 12 

The essence of the BFV approach was to extend the 
phase space in a fermionic direction by adding, for each con
straint CPa' a ghost (Grassman) variable 1Ja and its conjugate 
Pa [see (2) in Sec. VII]. The BRST charge a is then con
structed where 

a = CPa 1Ja + ~CPrrf1JrPa. (2.6) 

The function a has ghost number one and is Abelian with 
respect to the graded Poisson algebra, i.e., 

{a,a} =0. (2.7) 

Using a we can construct a coboundary operator B 
where BF = {a,F} for any function F on this graded phase 
space. Equation (2.7) then implies that B2 = O. When the 
constraints are related to a group action on Q [i.e., structure 
constants in (2.2)] we can interpret 8 as the Koszul resolu
tion of the Lie algebra cohomology taking values in 
COO (T*Q).13 When structure functions are present one still 
has a foliation of the configuration space but now one can 
only interpret the cohomology of B as the cohomology of 
these orbits, when restricted to the constraint surface. Other
wise a more general Koszul resolution is needed. 14 

Given a physical observable F, satisfying (2.3), one can 
always construct an even, ghost number zero function, de
noted by F, which satisfies 
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8F = {a,F} = o. (2.8) 

If FI is weakly equivalent to F2 then FI and F2 differ by a 
coboundary term, i.e., 

FI = F2 + {a,x}, (2.9) 

from some Xer- I
. 

Sinceaer l
, we see that B: rr -+rr+ I and hence we have 

the ghost number complex, 

(2.10) 

One can show that the equivalence classes offunctions given 
by (2.8) and (2.9), that is, the zeroth cohomology of this 
complex, is equivalent to the algebra of physical observa
bles. 14 

It is clear that ghost variables have introduced a certain 
mathematical elegance into constrained dynamics. What we 
will show now is that this is not just a cosmetic facelift but 
represents a positive step forward in describing constrained 
systems within the symplectic category. In order to achieve 
this we need two results: the first of which is quite well 
known, the second is the sine qua non of our approach to 
constraint quantization. 

Theorem 2.1: Given T*Q, and a set of k first class con
straints CPa' there exists a rescaling matrix A such that, local
ly, the new constraints qJa are Abelian. Standard phase space 
methods then tell us that there exists a canonical transforma
tion that will make the qJ a into the first k momentum coordi
nates. 

So, locally the constraints can always be arranged to be 
pure momenta. We shall refer to this as local trivialization of 
constraints. This is proved in all generality in Ref. 15. How
ever, for linear constraints, there is a relatively simple geo
metric proof. The idea is to regard the constraints as generat
ing vector fields on Q, i.e., 

ffJa=CPaAaA' (2.11) 

where aA = a laQA. The first class nature of the CPa's im
plies that 

(2.12) 

where [ , ] is the Lie bracket on Q. This means that the ffJa 's 
are surface forming, i.e., they generate a foliation of Q by k
dimensional submanifolds. Any choice of basis vector fields 
on this foliation gives a valid choice of constraints on T *Q. 
The trivialized constraints are then obtained by choosing a 
coordinate basis for the foliation. This has to be done in local 
patches and so the theorem may fail globally. 

Theorem 2.1 is important because of the following re
sult. 

Theorem 2.2: Rescaling of constraints, as given in (2.5), 
can be interpreted as an even canonical transformation in the 
super phase space. 

This is discussed infinitesimally in Ref. 15 and given its 
general setting in Ref. 16. The essence of the proof is to con
struct a generating function. The relevant function is 

F3(QA,iia ,PB,pp) = - QAPA - (A -1)/JiiQpp. 
(2.13 ) 

This gives the active canonical transformation (A is a func
tion of the QA'S only), 
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QA = QA, 

FA =PA + (A-I)aP.AAya1,rpp, 

iJa = Ap art, 

- -(A-I)P Pa - a PP' 

(2.14a) 

(2.14b) 

(2.14c) 

(2.14d) 

where.A has its usual interpretation as a derivative with re
spect to QA. This transformation can be generalized to 
A( QA,PB). In this case (2.13) is still valid but Eqs. (2.14) 
pick up extra terms. We shall concentrate purely on the re
stricted case (2.14) as it is all that is required to deal with 
linear constraints. Indeed, the existence of a quantum form 
of this transformation, in the general case of A (Q A ,P B ), is 
far from clear and will be discussed in II. 

It is straightforward to show that the transformation 
(2.14) sends the BRST charge n, constructed from the old 
constraints f/Ja' to ii constructed from the new constraints 
ipa. To see that it also transforms the physical observables 
correctly it is most convenient to use the ghost number com-

I 

bR *F = {n,R *F}, by definition of b, 

plex (2.10). We now have two complexes, one constructed 
from the old constraints f/Ja' and one from the new con
straints q;a' The above canonical transformation, which we 
shall denote by R, is clearly invertible and provides a homo
morphism between these complexes via its pullback R *, i.e., 

!R * !R * !R * !R * 

Now, if R * is a chain mapping, that is, 

bR * = R *8, (2.15 ) 

then the cohomology, and hence physical observables, de
scribed by the two complexes are equivalent. The transfor
mation R is easily seen to induce the above chain mapping by 
the following argument. Let FErr; then 

= {R *ii,R *F}, 
= R *{ii,F}, 

=R *8F, 

since n transforms correctly under R, 
since R is a canonical transformation, 
by definition of 8. 

The super phase space also allows weak changes of ob
servables to be implemented as a canonical transforma
tion. 15 It is, however, the transformation R that is important 
to us. We shall show that R becomes a Hilbert space isomor
phism R in the quantum theory. The existence ofthis trans
formation makes it possible to elevate the symmetries (a)
(d) to the quantum theory without losing a Hilbert space 
structure in the process. 

This transformation, in conjunction with Theorem 2.1, 
also provides a direct and powerful means of obtaining the 
correct operator orderings. The strategy is to formulate the 
orderings in the trivialized coordinate system and then use 
R, and general coordinate covariance on Q, to undo the tri
vialization. This is a different, more direct approach than 
that of Kuchar and is only possible because of Theorem 2.2. 
This, in turn, is only true once ghosts are added to the theory. 

III. THE PHYSICAL QUANTUM THEORY 

After reduction to the true, independent degrees offree
dom on Q, we will be left with the physical configuration 
space q, and its associated phase space T*q. The term q has 
dimension n ( = N - k) and is endowed with a (nondegen
erate) Riemannian metric, gab' induced by the kinetic ener
gy part of the physical Hamiltonian h. 

It is useful here to recall the salient features of the quan
tum theory on such a space. The quantization of the theory 
will be carried out in the Schrodinger picture, i.e., the phys
ical quantum states will be the complex valued functions on 
q that are square integrable with respect to the pairing 

('I'IX) = f'l'*(qa)X(qa)lgII/2dql"'dqn, (3.1) 
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where Igl = det [ gab]' It is a standard result of Riemannian 
geometry that the integral in (3.1) is coordinate covariant. 
This follows from the well known fact that 

IgI I/2 _1g'11/2= Iqllgll/2, where Iql =det[qaa']' (3.2) 

under a general coordinate transformation qa_qa' on q. 
The quantum observables, corresponding to the classi

cal ones on T*q, must also satisfy coordinate covariance. In 
the quantum theory the transformation law (2.4) becomes 

A A l[ a A ] Pa -Pa' = 2 q a',Pa +, 

(3.3a) 

(3.3b) 

where [ , ] + denotes an anticommutator. This form of the 
classical transformation law is needed in order to keep the 
momentum operators Hermitian. In addition to coordinate 
covariance, the quantum observables must be Hermitian and 
they must give the correct classical limit. However, these 
three conditions do not uniquely determine the quantum 
theory. The standard quantization procedure, on a Rieman
nian manifold, amounts to choosing the simplest orderings 
of the classical observables that satisfy the above three re
quirements. We shall adopt this quantization which is 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

where au = a /aqQ. The coordinate covariance of these ex
pressions is easily checked using (3.2) and (3.3). 

Equations (3.4) implement the classical Poisson alge-
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bra as a commutator algebra, up to Van Hove obstructions. 1 

These obstructions appear only in the commutators of qua
dratic variables with either a linear or another quadratic 
variable. The details of this quantization procedure and its 
associated Van Hove problems can be found in Ref. 7 and the 
references therein. 

It is worth emphasizing that the Poisson brackets, not 
involving quadratic variables, do quantize according to the 
Dirac prescription, 

{ , } .... - (illl)[ , ]. (3.5) 

It will be shown in Paper II that this is the reason why the 
unphysical directions in Q do not give extra Van Hove ob
structions without our BRST approach. 

The task of constraint quantization is to find a practical 
quantization procedure on Q (in our case the BRST ex
tended Q) which reproduces the above physical quantum 
theory. By "a practical quantization procedure" we mean 
one that does not require the (very difficult) reduction, to 
the true degrees of freedom, to be carried out. 

IV. THE CONSTRAINED QUANTUM THEORY USING 
GHOSTS 

In this section, we will outline the basic philosophy be
hind the use of ghosts in quantization. The idea is to quantize 
the classical theory in the "ghost equivalent" of the Schro
dinger picture, i.e., the ghosts will become operators by the 
following prescription: 

( 4.la) 

h '.I! a 
P .... p = - In -- , 

a a art ( 4.lb) 

where a I art denotes right differentiation of Grassmann 
variables. 17 The quantum states upon which these operators 
act will be of the form 

k 

'II(QA,rt) = '110 + L 'IIa .... am '1]a, .. ''1]am. (4.2) 
m=l 

The'll a's are totally antisymmetric in their indices and are 
normally taken to be square integrable functions over Q. The 
meaning of the statement "square integrable" depends, of 
course, on the choice of integration measure for Q. In Ref. 9 a 
Riemannian integration measure was used. This metric is 
given to us, in a contravariant form, from the kinetic energy 
piece of the Hamiltonian (i.e., the quadratic part of 
H = GAB PAP B ). To construct the Riemannian measure, it is 
necessary to invert this metric, but there is no guarantee that 
GAB is nondegenerate. However, by the arguments present
ed in Sec. II, the metric can be made nondegenerate by add
ing a suitably chosen combination of the constraints. There 
is nothing wrong with this approach. It is essentially what 
was done in Ref. 9. However, it is all a bit clumsy, the point 
being that Q is not naturally a Riemannian manifold. It is 
instead a fiber bundle whose base space (the true physical 
configurations) is Riemannian. It would be preferable to 
have a covariant measure dJ-l for Q which did not force un
natural geometric structures on Q. We have found such a 
measure and will use it in this paper. This means that the 
solution being presented here to the constraint quantization 
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problem will be slightly different and, in fact, much neater 
than the one presented in Ref. 9. The details of this new 
measure will be dealt with in Sec. V A. 

The pairing on the quantum states (4.2) is traditionally 
taken to be 

('IIIX) = (i)(I/2)k(k~l) J'II*Xd'1]I"'d'1]kdJ-l, (4.3) 

where d'1]a denotes Berezin integration. 17 It is not a priori 
obvious that the Berezin rules are the correct way to pair 
such ghost states. Indeed, since the aim of this paper is to 
characterize the ambiguity inherent in such a constraint 
quantization, we shall look critically at this choice of pairing 
in Sec. V B. 

Expression (4.3) gives the states (4.2) the structure of 
an indefinite Hilbert space though, for brevity, we will refer 
to it (incorrectly) just as a Hilbert space. The physical states 
are then projected out of this space using the quantum BRST 
charge, i.e., the physical states are those satisfying 

a'll = O. (4.4 ) 

There is, of course, a redundancy in (4.4) due to the quan
tum analogy of (2.7), i.e., 

a2 = O. (4.5) 

This redundancy can be ignored if a is Hermitian because 
then all such states have zero norm and so never contribute 
to physical results. 

A problem with this cohomological description ofphys
ical states is that, although one can define a as a self-adjoint 
operator on the state space given by expression (4.2) (where 
the coefficients are square integrable on Q), one cannot dis
cuss cohomology on such a space since, in general, the spec
trum ofthe constraints will almost always have a continuous 
part. Hence the only states satisfying (4.4) will be the zero 
state. We will show, in Sec. V C, how this can be overcome 
using a procedure similar to that used in rigged Hilbert space 
theory. 

Having constructed a well defined extended state space, 
we will address, in Sec. VI, the problem of implementing the 
classical canonical transformation R, of Theorem 2.2, in the 
quantum theory. This will then complete our analysis of the 
quantum state space. 

The remaining problem of projecting out the correct 
physical states, and ordering the physical observables, will 

. be dealt with in Paper II. 

V. THE QUANTUM STATES AND THEIR PAIRING 

A. The measure on Q 

To construct this measure, we need to introduce a very 
important object 11<p " taken in a modified form from Ref. 7. 
Here 11<p " is defined by the following two equations: 

(5.1 ) 

and [see (3) in Sec. VII] 

II 11
-2 - (lin') GA,B""GAnBn <p - . <PA,"'An <PB .... B.' (5.2) 

where, in (5.1), we have contracted the constraints with the 
completely antisymmetric tensor density defined by {) I ... N 
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= 1. Here 1197 II is important because of the following three 
properties [these properties also guarantee that 1197 II is well 
defined, i.e., that the right-hand side of (5.2) is never zero]. 

( 1) In the trivialized coordinate system, i.e., when the 
constraints are the first k momenta, 

1197 II = Igl l12
, (5.3 ) 

where Igl is the determinant of the physical metric, i.e., the 
metric in the directions Q k + 1 to Q N. 

(2) Under general coordinate transformations on Q, 
1197 II transforms as a scalar density of weight 1, i.e., 

119711--+1197'11 = IQIII97II, (5.4) 

where I Q I = det [ Q A A' ] • 

(3) Under a rescaling of the constraints 1197 II has the 
transformation law 

(5.5) 

where IAI = det [AaP]. 
Here 1197 II can be interpreted geometrically in terms of 

the pullback, to Q, ofthe physical volume form. 7 It is there
fore not surprising that 1197 II is important and, in fact, it will 
playa central role in our solution to the constraint quantiza
tion problem. The covariant measure for Q is taken to be 

dp = 1197 IIdQ I .. 'dQ N. (5.6) 

Coordinate covariance of this measure is assured by (5.4). 
Having chosen this measure, the momentum operators 

on Q are forced to be 

P = - ifz[a +~klh]. 
A A 2 1197 II 

(5.7) 

This is analogous to the statement that (3.4b) is the momen
tum operator associated with (3.1). To make this clear we 
state the following result. A 

Theorem 5.1: Assume that PA must be of the form 

PA = -ifz[aA +j(QB>], 

for some functionj(QB). Then (5.7) is the unique choice 
that makes PA Hermitian with respect to (5.6). This opera
tor also reproduces the canonical commutation relations 
and is coordinate covariant. The proof is straightforward. 

We will now examine the measure on the ghosts and 
thereby construct the full pairing on the quantum states. 

B. The measure on the ghosts 

In a path integral formulation with ghost variables the 
Berezin rules for integrating fermionic variables are always 
assumed. In our canonical approach we are faced with the 
task of introducing some pairing (\IIIX) on the states of the 
form (4.2). Now consider the simple example where Q = ]RN 

and the constraints are P1,oo.,Pk • Then, 

a = Pa 7Ja
, 

and this projects out states, by (4.4), that are of the form 

\IIphys = \IIo(Qk+ t,oo.,QN) + higher ghost number terms. 
(5.8) 

The higher ghost number terms do not have any simple de
pendence on the physical directions Q k + 1 ,oo.,Q N. Thus it 
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appears to be \II 0 that contains the physical information in 
\IIphys and so it would be natural for the pairing (\IIIX) to 
contain a term of the form \110* Xo. Thus one might imagine a 
pairing of the form 

(\IIIX) = J [\IIo*Xo + \II1*X1 + ... + \IIfoo.kXloo'k ]dp, 

to be relevant in this operator language. However, the Bere
zin pairing has no such terms; instead, 

(\IIIX) = (i)(1I2)k(k-l) f k![ ( - 1)(1/2)k(k-I)\II~XI00'k 

+ \IIfoo. kXO] dp 

+ terms independent of \110 or Xo, (5.9) 

which makes it hard to see how the physical Hilbert space 
structure can emerge. 

What we shall do now is to show that, even in this gen
eral operator formalism, one is forced to take the Berezin 
pairing. The problem of extracting a pairing on the physical 
states will then be related to the correct usage of a rigged 
Hilbert space. 

To analyze the possible pairings we will start with the 
most general pairing and then impose Hermiticity relations 
for certain operators. This will restrict the possible choice of 
pairing and will, in fact, lead us uniquely to the Berezin mea
sure for the ghosts. The most general pairing can be parame
trized by, see Ref. 18, 

( I) ~ J · a OO'a P oo.p \II X = L... \II a,. 00 am Xp,oo 'P. 1 I m' I • dp, 
m~n=O 

(5.10) 

where the l's are arbitrary functions on Q that are antisym
metric in both their a and fJ indices. To get information on 
the allowed 1 's, we will require that a and all the physical 
observables can be made Hermitian with respect to (5.10). 
This is only possible if 

(5.11a) 

and, 

(5.llb) 

Condition (5.11a) follows from the first term in the classical 
expression (2.6). The ghost and constraints will commute 
with each other in the quantum theory and so 7Ja must be 
Hermitian for this term to be Hermitian (which is required 
for a to be Hermitian). Equation (5.11 b) follows because 
the BRST extension of most physical observables contain 
terms of the form 7Ja p P (a =1= (3). The corresponding quan
tum operators (4.1) will anticommute and so (5.11 b) must 
be satisfied if physical observables are to be Hermitian. 

Equations (5.11) impose very restrictive conditions on 
the allowed l's in (5.10) as we now show in the following two 
technical results. 

Theorem 5.2: 

( 7Ja) t = 7Ja ¢:i 1 P, 00 • Pm,aYI 00 • y" 

= ( _ l)mlPloo'Pma,y,oo 'Y", Vm,n. (5.12 ) 

Proof: It is easy to show that, using (5.10), 
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(X l71a \ll) = ± f X~" 'Pm \II y, .. yJ 13, . ·pm.ay,·· 'y" dfJ-, 
m,n=O 

and 

Therefore, 

(1t)t = 7la~ (XI71a\ll) = (71uXI'I'), VX,'I' 

= ( _ l)mI P,··· Pma. y ,"'y", Vm,n. 

Theorem 5.3: (71a )t=71a and (Pa)t= -Pa ~the 
pairing (5.10) is maximal in the sense that the only I's al
lowed are those with exactly k indices. 

Proof: The previous theorem excludes the possibility of I 
with greater than k indices (simply take all the indices to one 
side of the comma and then use antisymmetry). To eliminate 
the case of less than k indices observe that 

('I'IPa X ) = - ifz m.~o (n + 1) f 'I'~""Pm 
and 

k 

(p a \II IX ) = + ifz L (m + 1) 
m,n=O 

Thus 

(Pa)t= -Pu~(\IIlpuX)= -<fJa'l'IX), V\II,x 

~ m8Jj"/p", ·Pmj.y,· "y. 

_ nIP,·· ·Pm.[Y,·· 'y. i1Y.] \oJ 
- u a ' vm,n, (5.13 ) 

where [ ] denotes antisymmetrization of the enclosed in
dices. After some manipulation, the above condition reduces 
to, 

(Pa)t = - Pa ~ i (- 1)h+ 18~hI'p,··A···PmY'···y. 
h=1 

= i (- l)m+h8~hI'p,···PmY'···r.···y., Vm,n. 
h=1 

(5.14) 

The notation PI .. ·lJ h ••• (J m means that the hatted index lJ h 

is excluded from the list. Now, Eq. (5.14) must be satisfied 
for all possible choices of the P's and r's; thus let us take 
PI = a and all the other (J's and 1s different from a. With 
this choice (5.14) becomes 

(5.15 ) 

Now, ifm + n - l<k - 1 (i.e., the numberofindices on lis 
less than k) it is possible to choose all of P2, ... ,rn different 
and so (5.15) is a nontrivial equation. Thus if! has less than 
k indices, it must be zero. It is straightforward to show that, 
when I has exactly k indices, Eqs. (5.11) hold. 19 This con
cludes the proof. 
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Theorems (5.2) and (5.3) tell us that Hermiticity of the 
physicalobservables (and the BRST charge) is enough to 
force the Berezin measure upon us. This means that the full 
pairing on the states (4.2) is, 

('I'IX) = (i)(I/2)k(k- 1J 

X f '1'* X d71 I 
.• 'd71k 11'11 IldQ I .. 'dQ N, (5.16 ) 

and we shall use this for the rest of our work. 

C. The "rigged Hilbert space" 

We have seen that when ghosts are introduced into con
strained systems there are two immediate kinematical prob
lems to be resolved. The first is that the BRST invariant 
states are not in the Hilbert space upon which the BRST 
charge is defined. The second is that the pairing introduced 
above (which was forced upon us by quite general argu
ments) looks like it will miss the physical states and hence it 
is not clear how the physical states can be equipped with 
their expected pairing. What we shall find is that, by a judi
cious use of rigged Hilbert space theory, both of these prob
lems can be given a satisfactory solution. 

The necessity of a rigged Hilbert space formulation for 
operators with a continuous spectrum is well known but of
ten ignored in most discussions of constrained systems. Be
fore we discuss why this is so, let us first recap the idea of a 
rigged Hilbert space. 20 

The key observation is that when one is presented with a 
Hilbert space H, one must realize that H is the completion of 
some space S, and hence there is a natural triplet of densely 
nested spaces, 

SCHCS*, (5.17) 

where S * is the dual space to S (i.e., the space of continuous, 
linear functions on S). The rigged Hilbert space (5.17) is 
often called a Gel'fand triplet. 

The paradigm example of the application of these ideas 
to quantum mechanics already occurs in one-dimensional 
systems where H = L 2(R,C). The self-adjoint operator 
P = - i d / dx, which is defined on the subset of H consisting 
of all absolutely continuous functions in H whose derivatives 
are square integrable, has no eigenfunction at all in H. The 
function normally identified with the eigenfunction (eipx

) 

actually belongs toS*(R), whereS *(R) is thedualtoS(R), 
the space of smooth functions on R whose derivatives all 
vanish faster than any power of the coordinates at infinity. 

This example can easily be extended to a (trivialized) 
set of constraints Pa, where S = S( Q) are now the smooth 
functions on the extended configuration space with the ap
propriate fall off rate. Then, in the Dirac analysis, the solu
tions to Pu Iphys) = 0 do not give the physical Hilbert space 
but rather (Sphys) *, the distributional space in the physical 
Gel'fand triplet. However, one does not worry about this 
since one can identify SphYS as the dual to (SphYS) *, since 
these spaces are reflexive. Finally H phys , the physical Hilbert 
space, is constructed via the completion of Sphys . 

An implementation of the rigged Hilbert space ideas to 
the ghost formulation of constrained systems has been pre
sented in Ref. 21. The philosophy was to put the different 
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elements of the Gel'fand triplet into different parts of (4.2). 
Care is needed in this construction, though, since one needs 
fl, p, and n to be defined on the resulting state space. Now, 
these operators shift the ghost number of the states and 
hence, if the coefficient spaces are not all the same, these 
operators will take us out of the sta~ space. In Ref. 9 we used 
a modified form of Ref. 21, where n and the physical obser
vables were well defined though p was not. 

We now introduce the ghost Gel'fand triplet. Let H be 
the Hilbert space of L 2 functions on Q (with respect to the 
!lIP II measure) and let S be the nuclear space introduced 
above, so we have the extended rigged Hilbert space given by 
(5.17). We now use this triplet to define the coefficient 
spaces for the nested ghost triplet, 

SBFVCHBFVC(SBFV)*' (5.18) 

where IIJ belongs to an element of this triplet if it has an 
expansion (4.2) where all the coefficient functions are in the 
appropriate part of the Gel'fand triplet (5.17). Expression 
(5.18) is not itself a rigged Hilbert space since the pairing on 
H BFV given by (5.16) is not positive definite. 

All the operators introduced in this paper are defined on 
H BFV' Thus in order to define the mapping R we need only 
concern ourselves with its action on H BFV ' In the following 
paper (II) we shall show how the kinematical problems dis
cussed above are resolved in this setup via the use of self-dual 
embeddings of the physical Hilbert space into (SBFV )*. 

VI. QUANTUM RESCALING OF THE CONSTRAINTS 

We showed, in Theorem 2.2, that the classical rescaling 
of constraints is a canonical transformation in the super 
phase space. This result leads to the expectation that the 
rescaling transformation (2. 14) will become a Hilbert space 
isomorphism in the quantum theory. We will show, in this 
section, that this is indeed the case. It is this transformation 
that enables the factor orderings, for the physical observa
bles, to be worked out. 

Note that, because of (5.5), the pairing (5.16) is going 
to change when a rescaling transformation is applied. To 
deal with this properly, it is necessary to regard the extended 

I 

state spaces, before and after the transformation, as different 
(they contain the same states but have a different pairing). 
We will denote the initial state space by H BFV and final state 
space by (HBFV ) R' In addition, we denote the pairing on 
H BFV by (IIJIX) and the pairing on (HBFV)R by (IIJIX)R' 
With this notation the quantum version (2.14) will take the 
form ofa bijective mapping RfromHBFv to (HBFV ) R which 
satisfies 
A- A-

RQAR-I = QA, 
AA. A _ I _ A I _ I (3 a Y'" A r 
RPAR -PA +z(A )u ,AAy (1JPp-Pp1J), 

R1JuR - I = Ap u1Jf3, 
A- A-

D;>,. R- I = (A-I) p~ 
a~u U Pp, 

( 6.1a) 

(6.lb) 

(6.lc) 

( 6.ld) 

where R - I is the inverse mapping to R and ,A has its usual 
interpretation as a derivative with respect to Q A. On the 
right-hand side of (6.1 b) we have taken the commutator 
ordering of 1J y P p' This is necessary because this term must be 
Hermitian. It is also important to note that, because of (5.5), 
the momentum operators are going tQ change under a rescal
ing. This means that, in (6.tb), the PA on the left-hand side 
is constructed using the old IIIP II, whereas FA on the right
hand side is constructed u~ing the new II~ II, 

We also require that R be norm preserving, i.e" for any 
two IIJ,XEllBFv , 

(6.2) 

This is the generalization of a unitary mapping to a mapping 
between different Hilbert spaces. 

An operator satisfying all the above requirements does 
exist. It is most easily defined by its action on an arbitrary 
state of the form (4.2), 

R'I1 = ~ IIJ AU""A um'YIP '" ''YI
Pm

• (6.3) 
~ u.·· -am /3. Pm ·/ ./ 

m=O 

The mapping R - I is given by a similar expression but with 
A - I replacing A. This result is central to our method for 
constructing the quantum observables, so we will spend 
most of this section proving that (6.3) satisfies all the above 
statements. 

Proofof(6.1}: (6.ta) is trivial. To prove (6.tb) let '11 be 
an arbitrary state of the form (4.2) and observe that 

=R{ ~ (F'I1 ... )(A- I ) u''''(A- I
) u"'1Jf3''''1Jf3m

- ifz ~ 'I1u" [(A-I)U, '''(A- I ) am 
~ A u. am {3, 13m L I am f3 •• A 13m 

m=O m=O 

+ ... + (A-I) u''''(A-I)u", ]1Jf3""1JP"'} /3! f3m •A 

This expression can be reduced, via straightforward but technical manipulations, to give the following result: 
A-A- A- I A- 1 P 64 RPAR- =PA + (A- )a ,A AyUrlpf3· ( . ) 

In the above equations it is important to realize that FA is constructed, via (5.7), using the old IIIP II, Thus written more fully 
( 6.4) reads, 

RPA R- I = - Hi[ a A + !( IIIP II.A/IlIP II)] + (A -I )uf3,A Ay a1JYpf3. 
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This equation can be rewritten in the form 

RPAR- I = - Hi[ aA + ~(II~ II.A/II~ II)] + ~(A -1)a P,AAya(1]Y,op - ,op1]Y) , 

which is (6.1b). 
The proofs of (6.1 c) and (6.1d) are similar so we will only give one ofthem. As before, let 'I' be an arbitrary state of the 

form (4.2) and observe that 

RpaR'I'=Rpa{ ± 'l'a, ... a,'<A-')p,a""(A-I)Pmam~""1]Pm} 
m=O 

It is straightforward to show that 
k 

(A-I)aPpAa'l'= -ifz " m'l'a ... a (A- ' )aa'1]a''''1]am, 
/J ~ I In 

m=l 

and hence (6.1d) follows. 
Proofof(6.2): Let 'I',Xbe arbitrary states of the form (4.2). Observe that 

(R'I'IRx) =(_i)(1!2)k(k-I)J{(~ '1'* ... A a""A am) 
R L at am /3. 13m 

m=O 

x( ~ X ... A a""A a")d1]""d'YlkhldQ""dQN} 
n~o a. all PI /3" "' jAj 

where [ ] denotes antisymmetrization of the enclosed in
dices. This equation reduces easily to 

(R'I'IRx) R 

= ( _ i)(l/2)k(k-l) 

x ~ J'I'* X k' m... I m + I... k m£;:o 11"'m m+ I···k J.1] 1] 1] 1] 

Xd1]I .. ·d1]k IIIP IIdQ I •• ·dQN. 

By a similar method it follows that 
('I'IX) = ( - i)(l/2)k(k-l) 

Xd1]'" 'd1]kIIIP IldQ I .. ·dQN, 

and so (6.2) follows. 
Thus we have proved that (6.3) does, indeed, have all 

the required properties. We will now show that it is the only 
operator with these properties, apart form trivial modifica
tions. 

Theorem 6.1: R, defined by (6.3), is the unique solution 
of Eqs. (6.1) and (6.2), apart from a constant phase factor. 

A 

Proof: Assume that R satisfies (6.1) and (6.2). Then, 
Eqs. (6.1 a) and (6.1 b) can be written more conveniently as 

A A 

RQA = QAR, (6.5a) 

and 
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(6.5b) 

These relations can now be used to commute R through 
(4.2), i.e., 

where 1 is being thought of as the state with '1'0 = 1 and the 
other 'I"s zero. To determine the value ofR( 1) observe that, 
because of (6.1c) and (6.1d), R commutes with the ghost 
number operator [see (4) in Sec. VII]. This means that 
R ( 1) is, at most, a function of the Q A,S. Let 

R(I) =f(QA). 

The condition (6.2) puts major restrictions onfas we now 
show. Let 'I' k be an arbitrary state with ghost number k, i.e., 

'I' - 'I' 'Yla, . .. 'Ylak 
k - u.o··a,,·/ ./. 

Observe that 

and 

(R- I ('I'k) 10 = k !J'I'f"'k [R- ' ( 1)]* hl dQ I .• 'dQ k. 
IAI 

These two expressions must be equal, for all 'I' k' because of 
(6.2). We can thus conclude that 

f(QA)* = R- ' (1). 
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From which it follows that 

I/(QAW= 1, 

i.e.,/(QA) is a phase factor. We have already proved that 
/ = 1 satisfies all the required conditions. From this it can be 
seen that / must be a constant otherwise (6.1 b) will not be 
satisfied. This completes the proof. 

There is one final point that is worth making about the 
quantum rescaling operator. Compare (6.3) with the corre
sponding expression in Ref. 9. There the operator was exact
ly the same, apart from a rather surprising factor of 1 A 1- 1/2. 

This was due to the fact that a Riemannian measure was 
being used on Q and so, the pairing was invariant under 
rescaling transformations. Thus this pairing transformation 
property appears to be essential if the more natural expres
sion (6.3) is to give the correct rescaling operator. 

VII. NOTES 

(1) It might be argued that a degenerate kinetic energy 
term is the paradigm rather than a rarity. After all, in gauge 
theories, it is the inability to construct a free propagator that 
is the initial indication of constraints. However, this degen
eracy is caused by the primary constraints that can easily be 
remedied by imposing a temporal gauge condition. Alterna
tively, one could reinstate the primary constraints using a 
weakly equivalent Hamiltonian. For a suitable choice of H a 

this would correspond to a covariant gauge fixing. 
(2) We use the convention that {1]a,p(3} = - Da 

(3' The 
space of homogeneous functions containing p ghosts and q 
conjugate ghosts will be denoted by rpq

• A function is said to 
have ghost number r (written Err) if p - q = r. 

(3) Note that we have changed notation from Ref. 9. 
The Ilep \I defined in (5.2) is the reciprocal of the correspond
ing quantity defined in Ref. 9. 
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( 4) The ghost number operator is 

g = (ilfl)1]uPa . 
The eigenspace of g, corresponding to eigenvalue r, is P. 
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The aim of any constraint quantization procedure is to be able to recover the physical content 
of a system after quantizing on the extended state space (which will include both physical and 
unphysical configurations). Within the Dirac approach to such problems there is no guarantee 
that the resulting quantum theory will be equivalent to the quantized physical theory and one 
has to be content with a case by case analysis of its applicability. In this paper it is shown that 
for finite-dimensional systems with first class constraints linear in momenta, invariance under 
constraint rescaling and point transformations is sufficient to ensure a consistent quantization. 
As discussed in the preceding paper [J. Math. Phys. 30,477 (1989)], in order to become a 
manifest symmetry, constraint rescaling requires ghost variables. It is now shown how the 
associated Becchi-Rouet-Stora-Tyutin (BRST) charge is constructed and how it is used to 
describe the physical states and observables in the constrained system. The extension of this 
construction to more general constrained systems is also discussed. 

I. INTRODUCTION 

In the preceding paper I [hereafter referred to as (I) 1 we 
presented a detailed discussion of the new kinematical struc
tures present in constrained systems when ghost variables 
are used. We found that the introduction of these fermionic 
degrees of freedom enlarged the class of (even) canonical 
transformations, thus allowing for the construction of a gen
erating function implementing constraint rescaling. For sys
tems described by constraints linear in momenta we were 
able to elevate this in variance to the quantum theory. We 
now want to use these results to show how the constrained 
dynamics can be incorporated into such theories. 

The attraction to a formalism that naturally allows for 
the rescaling of the constraints reflects the fact that a con
strained system is kinematically characterized by a submani
fold Cin an extended phase space P. For a first class system C 
is coisotropic (see, for example, Ref. 2 for definitions from 
symplectic geometry). Associated with C is the ring of func
tions V( C) consisting of those smooth functions on P that 
vanish when restricted to C. Now if C is a smooth sub
manifold we can expect [see (1 ) in Sec. VI] to find k func
tions CPa (where kis the codimension ofCinP) such that Cis 
given by the zero set of these constraints. These functions 
will then generate the ideal V(C). Obviously, if A/3 is in
vertible then ifJa = A/3cpf3 is an equally good choice of gen
erators for this ideal. Thus we see that the ability to rescale 
constraints supports the view that it is the manifold C that 
should directly enter into the quantization and not a particu
lar parametrization of it. 

The introduction of ghost variables allows for a classical 
constraint formalism that is independent of the basis of 
V(C).1.3 Indeed, one can formulate the homological con
struction implicit in these methods without ever introducing 

a) Present address: Mathematics Institute, University of Warwick, Coven· 
try CV4 7AL, United Kingdom. 

b) Supported by the Science and Engineering Research Council. 

b · f . 45 a aSls 0 constramts.·' However, in the standard ap-
proaches to quantization these geometric methods are, at 
best, difficult to implement. One might thus question the 
need for such aesthetic considerations. 

In (I) we showed that a limited class of rescalings can be 
elevated to the quantum theory when the constraints are 
linear in momenta, where the rescalings being considered 
were those that preserved this particular momenta depen
dence. We now claim that for such systems this is a sufficient 
amount of covariance to ensure a consistent quantization. 
This is because one can now make use of the local trivializa
tion results discussed in (I) to make manifest the local con
sistency of the procedure. In this way we shall show that the 
use of ghost variables avoids the problems found in the Dirac 
approach.6 

The reliance on local trivialization does, however, open 
the door to the possibilities of global obstructions to these 
results (although not in our solution to the example dis
cussed in Ref. 6). Within our approach, global complica
tions can arise in both the characterization of physical states 
(which is cohomological) and the description of physical 
observables. Nontrivial global structures can be incorporat
ed into the isolation of states via more restrictive prescrip
tions, i.e., restriction on the state's ghost number. For obser
vables, though, one has to be more careful since, as well as 
giving a factor ordering that is Hermitian, one also needs to 
give the domain upon which the operator is self-adjoint and 
this cannot be done locally since often we will be dealing with 
unbounded operators. 

Indeed, if one is going to take global structures at all 
seriously then the very nature of the quantization needs to be 
looked at more critically since the use of, say, the Schro
dinger picture might be wholly inappropriate. We shall, 
therefore, just content ourselves with commenting on possi
ble global effects. However, even for globally trivializable 
systems the results presented in this paper will be an im
provement on the Dirac approach. 

Since nature has not been benevolent enough to allow us 
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to restrict our attention exclusively to theories with linear 
(in momenta) constraints, any constraint formalism must 
allow for an extension to more general systems. Even in this 
finite-dimensional quantum mechanical context, theories 
with a more complicated constraint structure are very diffi
cult to analyze. In particular, ordering prescriptions for qua
dratic functions are notoriously difficult to find. So, an inter
esting first step towards the study of such constrained 
systems would be to allow for more general rescalings of the 
linear constraints. However, in the conventional quantiza
tion procedures, even this extension is fraught with difficul
ties. Hence in order to develop some insight into such sys
tems it is therefore useful to work within the prequantization 
stage of geometric quantization. The potential usefulness for 
such a scheme in the study of constrained systems has been 
advocated recently by several authors. 7

•
8 Hence we shall dis

cuss the possible prequantization extensions of the con
straint rescaling construction and, in particular, the rel
evance of this to the choice of constraint polarization. 

The plan of this paper is as follows. In Sec. II we shall 
analyze in detail the characterization of physical states with
in the BRST formalism. Then, in Sec. III we shall address 
the dynamical problems and construct representations for 
the physical observables of the theory. Section IV will con
tain a discussion of the quantized Koszul complex that is 
used in the introduction of antighosts and the prequantized 
description of states. In Sec. V we shall discuss the possible 
extensions of these results to more general constrained theo
ries. Finally, in the Appendix, we shall present our solution 
to the "quantum well of Or vie to." 

II. THE BRST CHARACTERIZATION OF PHYSICAL 
STATES 

A. The ghost philosophy 

The need for a constraint formalism arose from the de
sire to avoid the classical reduction to the physical configu
rations. Thus the first task facing any constraint method is to 
give a prescription for recovering the physical results. 

In the Dirac approach the physical states are character
ized as those annihilated by the constraints. This is a very 
strong condition and reflects the belief that the physical 
states should be "gauge invariant." However, the actual im
plementation of this condition can be as involved as the origi
nal classical problem of reducing to the true degrees of 
freedom (this is especially true if structure functions are 
present) and, even then, one is not guaranteed to recover the 
expected physics. 

Ghost variables allow for a weaker prescription for the 
recovery of physical results which will, in turn, guarantee 
consistency with the classically reduced quantization. In this 
approach one restricts attention to the BRST invariant 
states, i.e., those which satisfy 

'" ow = o. (2.1 ) 

Such states are not directly equivalent to the physical states. 
In particular, since a is taken to be nilpotent, any state of the 
form aX satisfies (2.1 ). Since X is arbitrary it is, at first, hard 
to see any remnant of the physical states in this construction. 

488 J. Math. Phys., Vol. 30, No.2, February 1989 

The important additional condition that allows us to 
systematically ignore such problematic states is that a is 
taken to be self-adjoint. From this we can deduce that states 
of the form aX are "perpendicular" to the BRST invariant 
states and, in particular, they have zero norm. Hence in any 
particular calculation, we do not need to worry about them. 
So in order to see that the BRST methods can recover the 
physical states, we must show how the solutions to (2.1 ), not 
of the form aX, are directly related to the physical states. 

It is clear that the discussion given above is cohomologi
cal in nature. What we want is a description of the cohomo
logy groups of the complex described by (2.1 ). On top of this 
homological objective, we must also ensure that an expres
sion for n can be constructed that allows for such a descrip
tion. Thus we must find an ordering for the terms in a satis
fying the following four conditions: (1) at = a, (2) a2 

= 0, (3) a determines the correct physical states, and (4) 
a is covariant with respect to all the symmetries (a)-(d) of 
(I). Such an ordering for a will be derived in Secs. II Band 
II C and the nature of solutions to (2.1 ) will be discussed. 

B. The solution in the trivialized coordinate system 

In keeping with our general philosophy of first trivializ
ing the constraints, solving the problem in that simple setup, 
and then rescaling back to the original system, we shall now 
give the solution to the BRST description of physical states 
in a trivialized system. 

The pairing 1(5.16) and the momentum operators 
1(5.7) take on a simple form when the constraints are the 
first k momenta. These are 

(WIX> 

= (i){1i2)k(k-\) f W*Xd1JI···d1JklgII/2dQI···dQN 

(2.2) 

and 

Pa = - iii Ja (a = 1, ... ,k), 

Po = -iii [Jo +~(lglf/2.Jlglf/2)] 
(2.3a) 

(a = k + 1, ... ,N), 
(2.3b) 

where Igl is the determinant of the physical metric. Another 
simplification of the trivialized system is the absence of any 
ordering ambiguities in the BRST charge. We can thus write 

(2.4) 

~nd study the solutions to Eq. (2.1) with this expression for 
O. 

As pointed out in (I), the correct space upon which the 
solutions to (2.4) should be studied is (SBFY ) *, the distribu
tional part of the ghost triplet [see Sec. V C in (I)]. If we let 
r*r denote ghost number r states in (SBFY ) *, then (r*, a) 
defines a complex given by 

n n n 
r*()~r*I-+ ... ~r*k. (2.5) 

This complex is analogous to the de Rham (DR) com
plex familiar in differential geometry. If the coefficient space 
of distributions on Q was replaced by smooth functions then 
it is straightforward to read off the cohomology. One finds 
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that the only non vanishing cohomology group is H 0 DR' 

which describes those smooth functions on Q that are con
stant in the unphysical directions. Clearly Coo (Q) CS * (Q) 

and hence we would expect at least an injection of the de 
Rham cohomology into the distributional complex given 
above. In fact, the cohomologies are isomorphic (see, for 
example, Chap. 3 in Ref. 9). Thus we can deduce that the 
only nonvanishing cohomology in the complex (2.5) is H 0, 

which, for these trivialized constraints, are those elements of 
(SBFV ) * with ghost number zero and no dependence on Q I, 
Q2, ... ,Qk. Thus H O is isomorphic to (Sphy )*, the distribu
tional part of the physical Gel'fand triplet. As discussed in 
(I), given (Sphy)* one can construct the full physical 
Gel'fand triplet and hence the physical state space. 

In summary, for the trivialized set of constraints we can 
completely solvx Eq. (2.1). What we find is those solutions 
not of the form.ox are directly related to the physical states. 
This is an ideal situation to be in but one which we do not 
expect to hold for more complicated constraints since, in 
general, there will be non vanishing higher cohomology 
groups. In such a case we would need to restrict attention to 
the solutions of (2.1) with zero ghost number. We shall re
turn to this point in Sec. IV. So, for the rest of this discussion 
we shall assume that we are given a globally trivializable set 
of constraints. 

We have seen that in variance under the BRST transfor
mation allows us to identify the physical states ofthe theory 
(up to coboundaries). So, we can consider (Sphy)*' and 
hence H phy , as being embedded in (SBFV ) *. Then condition 
(2.1) just picks out this physical subset. However, there are 
many possible embeddings of H phy into (SBFV ) * and we now 
need to discuss which embedding we should take. 

There seems to be an obvious way to embed H phy into 
(SBFV ) *. Simply let 'II phy EHphy be represented by 'II = 'II 0 

:;: 'II phy [a ghost number zero element of (SBFV ) *]. Clearly 
.0'11 = 0 and hence we have apparently solved the above four 
conditions on the isolation of physical states for this trivial
ized system. There is, though, a serious problem with this 
identification since, using (2.2), any state of this form will 
have zero norm. This is simply a consequence of the Berezin 
form for the ghost measure which will not pair a ghost num
ber zero state with itself in a nontrivial way. 

This is in marked contrast to the similar normalization 
problem that arises in the Dirac approach, where one finds 
that the physical states have an infinite norm due to the fact 
that they are not square integrable over the extended config
uration space. What we shall do now is to show that between 
the Berezin result of zero and the Dirac result of infinity 
there is a halfway house where physical results can be calcu
lated. 

The problem in the above construction is that we only 
considered the set theoretic inclusion of H phy into (SBFV )*, 
whereas, what is needed is a full Hilbert space embedding. 
This obviously raises two immediate questions. First, how 
do we find such an inclusion and, second, what will it mean 
since (SBFV ) * is not itself a Hilbert space. Let us first address 
the problem of how subspaces of (SBFV ) * can be given a 
traditional Hilbert space structure, then we shall introduce 
the embedding needed to solve the above problems. 
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As we have seen, the space H BFV C (SBFV )*, with the 
Berezin measure, is not really a Hilbert space. The reason 
being that it always pairs a ghost number r state with one of 
ghost number k - r. A similar structure is seen in the study 
of differerttial forms on a k-dimensional orientable manifold, 
where one can use the volume element to pair r forms with 
k - r forms. There one is able to construct an inner product 
on the space of r forms by pairing it with its dual. 

Let us now proceed in a similar manner by defining the 
dual mapping on H BFV ' Let'llEHBFv have ghost number r; 
we define its dual'll' via 

where 

'II'a "'a = [U)(3/2)k(k-l)/rI]'IIa "'a ~ak···a'+la,,··a,. 
r+ 1 J.:. I r 

(2.6) 

We can now define an inner product ( , ) on the ghost 
number relements of H BFV by ('III' '11 2 ): = ('11'1' '11 2 ), Dual
it yon a mixed ghost number state is then defined by taking 
the dual of the separate ghost number terms. Obviously, if 
one has a self-dual state then its Berezin pairing will give its 
norm. So, if '110 is a zero ghost number element of H BFV its 
dual has coefficients 

'IIk"'1 = U)(3!2)k(k-I)'IIo' (2.7) 

We can thus construct a self-dual state'll by adding this 
(ghost number k state) to 'II o. The norm of the resulting state 
will be precisely the norm of'll 0 considered as a square inte
grable function on Q (up to a normalization constant). 

This is all well and good, but we really want to introduce 
a Hilbert space structure on the solutions to (2.1 ). Hence we 
need to extend the duality and pairing to such states. So, if 
'IIOEHphy , we define its (distributional) dual in (SBFV)* by 

'Ilk'" I = U)(3!2)k(k-I)O(QI)"'O(Qk)'IIo' (2.8) 

Hence we can embed H phys into (SBFV) * to construct the 
self-dual state'll, where 

'II = '110 + k !(i) (3/2)k(k - l)o( Q I) .. 'o( Q k) 'IIor/' . 'r{ 

(2.9) 

We can now extend the Berezin pairing (2.2) to include 
such states, e.g., if '110, XOEHphys the associated elements in 
(SBFV ) * pair to give 

which is, up to a normalization, the desired physical result. 
Thus the self-dual solutions to (2.1) correctly characterize 
the physical states of the system. 

It might be thought that this elaborate definition of self
dual embeddings of physical states into (SBFV) * has not 
solved anything since the ghost number k part of the self
dual state is also a solution to (2.1). Hence by the vanishing 
cohomology argument, this term must be of the form aX for 
some XEr*k - I (indeed X is easy to write down and will 
involve step functions). Therefore, such a term will give zero 
when RIlired with '110' This argument is false, though, be
cause .o.is not in general self-adjoint on (SBFV)* and, in 
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particular, for the term given above X gives a surface contri
bution that destroys the vanishing norm argument; we shall 
return to this important point in Sec. IV. 

In conclusion, for the trivialized set of constraints we 
have been forced to extend the Berezin pairing to allow a 
restricted class of distributional elements, on Q, to be paired. 
In doing this, care must be taken to ensure that the Hermiti
city properties of all the basic operators still hold. In particu
lar, the momentum operators will be Hermitian only if the 
distributions vanish at infinity. This requirement is satisfied 
by the self-dual states (2.9). In gen~al, (2.9) will also be 
supplemented by states of the form OX. In order for these 
states to decouple we must impose the condition that X van
ishes at infinity (i.e., n must be self-adjoint on these states). 

This completes the solution in the trivialized coordinate 
system. 

c. The general solution 

To turn the solution of the previous section into a fully 
covariant one there are two steps. First, keeping the con
straints Abelian, n and the self-dual condition must be writ
ten in a coordinate covariant manner. Second, the coordi
nate covariant solution must be boosted, using the operator 
R of (I), to give a covariant solution for non-Abelian con
straints. These two steps will now be carried out. 

The first step is almost trivial. In a general coordinate 
system the Abelian constraints will be of the form 

lPa = Qa AFA, 
... 

and n becomes ... ... 
.n = HQa A, FA] +1t. 

In a similar manner the duality condition becomes 

'I1
k
"' 1 = (i)W2)k(k- I)D(X I) .. 'D(X k )'I1o, 

where xa = Qa (of the trivialized coordinate system) is 
now being thought of as a general gauge fixing condition. 

The final step to non-Abelian constraints proceeds 
straightforwardly to give 

n = RHQa A, l>A] +ilaR-I, 
which expands out, using I (6.1), to give 

A- A-

0= H CPa A, PA ] + 1]a + !C a f3y (1]YPa 1]f3 - ~Pa 1]Y), 
(2.11) 

for a general set of non-Abelian constraints CPa = CPa APA • 

This expression is fully covarient under coordinate and re
scaling transformations and, by its method of construction, 
will project the correct physical states. 

Equation (2.11) can also be obtained directly from the 
classical expression I (2.6) by parametrizing all nossible or-

...-.... AA AA 

derings (e.g., the quantization of QPwould be E I QP + E2PQ, 
where EI + E2 = I) and then demanding Hermiticity and 
nilpotency, etc., to fix the parameters. 10 This method has the 
advantage of showing that (2.11) is the unique ordering of 
1(2.6) which satisfies Hermiticity, nilpotency, and coordi
nate covariance. 

The duality condition is boosted, using R, in the follow
ing way. Let '11 be a self-dual state for Abelian constraints, 
i.e., 
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'11 = '110 + k l(i) (312)k(k - I)D(X I) .. 'D(X k) 'I1oil k • •• ill, 

and observe that 

R'I1 = '110 + k l(i) (3/2)k(k - I)D(X I) .. 'D(X k) '1101 A l1]k .. '1]1. 

To write this in a coordinate covariant manner we use the 
following result: 

IAI = det [ {X a, cpf3}] = I{xa, cpf3}1. 

This alternative form of IAI is coordinate covariant. Thus 
the general form of the duality condition is 

'11 = '110 + k l(i) (3!2)k(k - I)D(X I) .. 'D(X k) '110 

x I{xa, cpf3}I1]k .. '1]1. 

It is interesting to note that the term 

D(X I) .. 'D(X k) I{Xa, cpf3}i. 

(2.12 ) 

(2.13 ) 

which enters into the duality condition, is familiar from the 
phase space path integral description of constrained sys
tems, II where it enters as a modification to the measure. By 
standard arguments it is easy to show that (2.13) is invariant 
under infinitesimal changes to the gauge fixing conditions. 
In this operator approach we are forced to put this term into 
the duality condition, as opposed to the measure, since we 
require the BRST charge to be self-adjoint with respect to 
the Berezin measure introduced in I (5.16). 

To summarize, Eqs. (2.11) and (2.12) are the solution 
to the kinematic aspects of constraint quantization. Togeth
er they project out the space of BRST invariant, self-dual 
states. When endowed with the pairing I (5.16) these states 
are isomorphic to the rigged Hilbert space of physical states . 
We will now discuss the dynamical parts of constraint quan
tization . 

III. THE QUANTUM OBSERVABLES 

A. The general approach 

The task now is to find ordering prescriptions for all 
the special physical observables. These orderings must, of 
course, give the correct physical results [i.e., those given in 
Sec. III of (I)] when applied to the BRST invariant, self
dual states. In addition, ifF is a general physical observable, 
we require it to satisfy the following: (1) [F, n] = 0, (2) 

Ft = F; and (3) F is covariant under all the symmetries (a)
(d). 

Condition (1) is essential for consistency of the theory. 
Ifit failed to be true F would map physical states to unphysi
cal states. For similar reasons, it is necessary for F to pre
serve the self-dual condition, at least up to zero norm states. 

Conditions (2) and (3) are not logically necessar¥.. as 
Kuchar pointed out. 12.13 It is only strictly necessary for F to 
be Hermitian on physical states and covariant under symme
tries that are lifts of symmetries from the true degrees of 
freedom. Having thefull properties (2) and (3) is, nonethe
less, very convenient and ghost methods allow them to be 
achieved. 

As with the classical observables, the quantum observa
bles have an equivalence class structure where F and G are 
equivalent ifthey differ by a coboundary term, i.e., 
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A A A A 

F= G+ [K, 0], (3.1) 

where K is some ghost number minus one operator. Such 
coboundaries never contribute to any physical result, i.e., 
they vanish when paired with BRST invariant states. This 
equivalence class structure is consistent with the commuta
tor algebra, i.e., if 

F = F' + [A, a J, 
and 

G=G'+ [B,a], 
then 

"'-
for some C. This is an important point to which we shall 
return shortly. 

The orderings of the physical observables will be ob
tained via the general strategy used in the discussion of the 
states, i.e., we start in the trivialized coordinate system 
where the constraints are pure momenta. In this coordinate 
system the special observables F can easily be split into their 
physical part plus a coboundary, i.e., 

F = Fphy + {F', o}. (3.2) 

The quantization procedure is then 
"'

Fphy -+Fphy ' 

{F', o}-+ ( - ilfz) [F', aJ, 
(3.3a) 

(3.3b) 

where F phy is the required operator taken from I (3.4) and F' 
is ordered to be anti-Hermitian. There are no Van Hove ob
structions to (3.3b) because F' and 0 are, at most, linear in 
the momenta. This is the reason why the unphysical direc
tions do not produce extra Van Hove type obstructions (it is 
interesting to note that the above argument would fail for 
quadratic constraints). 

The ordering (3.3) automatically guarantees F to be 
Hermitian, commute with the BRST charge, preserve the 
self-dual condition, and give the required answers when 
paired with physical states. Also, because the equivalence 
class structure (3.1) is preserved by the commutator alge
bra, this prescription guarantees an implementation of the 
physical Poisson algebra as a commutator algebra up to un
avoidable physical Van Hove obstructions. 

The final step that gives F in its general form, i.e., for 
non-Abelian constraints, is achieved by boosting (3.3) with 
the rescaling operator R. 

There does not appear to be any way of guaranteeing 
that (3.3) will give an ordering covariant under all the sym
metries (a)-(d). Fortunately, when the calculations are 
done for the special observables, the orderings are found to 
be expressible in a covariant form. This step depends crucial
lyon the existence of Iltp II and its three properties 1(5.3)-
1(5.5). 

The calculations will now be presented for each of the 
special physical observables. 

B. Configuration observables 

Let Y( Q A) be a general physical, configuration observ
able. The function Y, being physical, must satisfy 
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(3.4 ) 

for some Ya p. However, the left-hand side of (3.4) depends 
only on the QA'S whereas the right-hand side has momen
tum dependence. Thus, to avoid contradiction, Ya/3 must be 
zero, i.e., physical configuration observables must satisfy 

(3.5) 

This means that the BRST extension of Y is trivial, i.e., 

y = Y. (3.6) 

In the trivialized coordinate system (3.5) implies that 

Y = Y(Qk+ I, ... ,QN), (3.7) 

and so, following (3.3), 

y=Y (3.8) 

will give the correct physical results. The term R will not 
alter the ordering because of I (6.1 a). Thus the quantization 
of configuration variables is trivial. Equation (3.8) is true in 
all coordinate systems and for all choices of basis con
straints. 

C. Linear observables 

Let U= UA(QB)PA be a general linear, physical ob
servable. Then, it will satisfy 

{U, tpa} = UaPtpp. (3.9) 

The BRST extension of U is 

(3.10) 

In the trivialized coordinate system this takes the simpler 
form 

U = UAl' + uP 1/-ap-A .a /3 

(3.11 ) 

In this equation capital latin indices range from 1, ... ,N; 
lowercase latin indices range from k + 1, ... ,N; and greek in
dices range from 1, ... ,k. Equation (3.11) is now in the form 
(3.2) and so (3.3) can be applied to give 
~.e '" ~ 
U = H ua, Pa ] + + Ulli)[ UPP/3' 0]. (3.12) 

This expression expands out to give 
~ I [ A ~] 1 f3 -a Z Z-a U=z UA,PA ++2U ,a(1/P/3-P/31/)· (3.13) 

This form of U is fully coordinate covariant but is restricted 
to Abelian constraints. The boosting to non-Abelian con 
straints, i.e., the computation of RUR - I, is straightforward 
and gives 

U = H UA, PA ] + + ~Ua/3(1/ap/3 - p/31/a) , (3.14) 

for the ordering of (3.10). This expression gives the desired 
physical results and satisfies (1 )-(3). 

D. Quadratic observables 

Let K = K AB (Q c) PAP B be a general quadratic physical 
observable. Then, it satisfies 

(3.15 ) 

Unlike linear observables Ka/3 has momentum dependence. 
In fact, it is linear in the momenta and so can be written as 
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(3.16 ) 

for some function Ka f3A (Q B). This fact makes the BRST 
extension of quadratic observables more complex than that 
for linear observables. The BRST extension of K is 

( 3.17) 

The term Kaf3 yo is a function of the configuration variables 
only and is defined by 

{K, CYaf3 } - {Ka Y, IPp} + {Kf3 Y, IPa} + CYf3,Ka' 

+ CYmKf3' + C'af3K,Y = Kaf3YolPo' (3.18) 

The details of this can be found in Ref. 14. 
In the trivialized coordinate system K takes the simpler 

form 

K=KABPAPB + [2K aP,a Pa + Kyp,a Py]7'tpp. (3.19) 

This can also be written as 

K=Kabp)jb -{(2Karfjja +KYrfjjy)pp,ii}, (3.20) 

thereby enabling the implementation of (3.3) to give 

i. = Igl-1/4l>aKab Igl 1l2l>b Igl- 1I4 
A A A 

+ (i/2/7)[ (2[ KaP, Pa] + + [KYf3, Py ] +)Pf3' 0]. 
(3.21) 

This then expands out into the form 

K = Igl-l14l>AKABlgII/2l>Blgl-1/4 

- (/72/4) Igl-1/2[2K aa,a Igl l/2 L 
- (/72/4) Igl- 1/2 [ K Pa,a Igl l/2 ],13 (3.22) 

... 
+ !(2[ K of3,a' Pa ] + 

+ [KYf3,a' Py ] + )(itpp - p/it). 

Using Jlq5J1, and (3.16), this can be written coordinate covar
iantIyas 

K = Jlq5I1-I12PAKABJlq5I1PBIlq5J1-1/2 

- (/72/4)IIq5J1- I (Ka
aA Jlq5I/),A 

I[Kf3A-P"'] (-a~ ~ -a) + 4 a , A + 1] pf3 - Pp1] . (3.23 ) 

Finally, this expression is boosted, using R, to give the non
Abelian version. The result is 

K = IIIP 11-1/2PAK AB JlIP IIPBIIIP 11- 1/2 

- (/72/4) IIIP 11- I (Ka aA JlIP II) ,A 

(3.24 ) 

This ordering, of the classical expression (3.17), gives the 
desired physical results and satisfies (1 )-( 3). 

IV. ANTIGHOSTS, PREQUANTIZATION, AND THE 
KOSZUL COMPLEX 

A. Self-dual states of definite ghost number 

In Sec. II we showed how the BRST invariant states can 
be related to the physical states of a constrained system. For 
a trivializable set of constraints the identification was based 
on a vanishing cohomology result. In its turn, the cohomolo-
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gical input arose from the nil potency and Hermiticity of the 
BRST charge fl on H BFV ' However, we saw that the solu
tions to Eq. (2.1) required us to consider 'I' not onHBFV but, 
rather, on its distributional extension (SBFV )*. Now fl is 
still nilpotent on this space, but it is not in general Hermitian. 
Thus, in Sec. II we had to content ourselves with the identifi
cation of self-dual states of the form (3.: 9) with physical 
states, and then allow any coboundary fiX to be added as 
long as it is an element of H BFV ' So, if k = 2, a state of the 
form 'I' = D ( Qa ) 1]a is not allowed even though it is BRST 
invariant, normalizable, and a coboundary in (SBFV ) *. Ob
viously if there are any interesting global structures then this 
prescription can become even more complicated. 

In simple situations this analysis of physical states will 
suffice; it is clear what is meant by the solutions to (2.1) 
being physical. However, any field theoretic extension is at 
best problematic. What is more upsetting is that this descrip
tionjust is not very elegant. Somehow the rich cohomologi
cal structure implicit in the use of ghost variables is finding it 
difficult to survive quantization. What is needed is a more 
precise characterization of physical states that avoids the 
above implications. 

What we do know (even in the globally nontrivial situa
tion) is that it is the zeroth cohomology group of the ghost 
number complex (2.5) that describes the physical states. But 
restricting attention to the ghost number zero solutions to 
(2.1 ) will not do since the Berezin pairing forces us to look at 
self-dual states of the form (2.9) that have no definite ghost 
number. Also, if the Berezin pairing is used, it will evaluate 
states like the D( Qa )1]a ones, so they need to be excluded by 
hand. To overcome this we cannot just change the Berezin 
pairing since, in (I), we showed that it is the unique pairing 
giving the correct Hermiticity assignment to the ghosts and 
conjugate ghosts. 

In order to solve the problem that self-dual states do not 
necessarily have a definite ghost number we shall extend the 
definition of ghost number by introducing new constraints 
and their ghosts. The need for such an extension is already 
seen in field theory, although the motivation then is to main
tain covariance. There the ghost variables are associated 
with the secondary first class constraints (which encodes the 
non-Abelian Gauss law) while the antighosts are the conju
gate fields to the "primary" ghosts associated with the pri
mary constraints (which are the conjugate momenta to the 
time component of the gauge field). 

So let us now introduce the extra bosonic configurations 
(A a, 1Ta) and the ghosts (rt, Pa)' where the 1Ta (Pa) are 
conjugate to the A a ( 7ja). To avoid confusion, at this stage of 
our presentation, we shall refer to the ghosts 7j" as the pri
mary ghosts and 1]" as the secondary ghosts. Thus we have 
enlarged the classical phase space to one of dimension 
(2n + 2k; 4k). To recover the physical system we consider 
the momenta 1T a as additional constraints. Hence the new 
extended BRST charge fiext is 

(4.1 ) 

where we are using a trivialized set of "secondary" con
straints. The overall ghost number of any function will now 
be the difference between the number of ghosts (primary and 
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secondary) and conjugate ghosts (again, primary and sec
ondary). 

If we now quantize this extended system using the 
Schrodinger representation, or configuration polarization, 
as used in (I) for the system with just the secondary con
straints, then all the states will have positive ghost number 
and we will be no better off than before. To overcome this we 
shall use a different polarization for the primary constraints 
and their ghosts. So, in addition to I ( 4.1 ), we require 

1Ta--fra=1Ta' Aa __ la=ifl~ (4.2a) 
a1Ta 

and 

a r;a __ r;a = - fl--. 
OPa 

Quantum states will now be of the form 

'I'(QA, 1Ta, rt,Pa) 
k 

= '1'0 + L 'l'a .... a,P .. ··p'rt' .. ''TJapp, "'Pp,' 
r,s= I 

(4.2b) 

(4.3) 

Which can clearly be grouped into states of definite ghost 
number and, in particular, 'I' will have ghost number zero if 
r=s. 

The choice of the momentum polarization in (4.2a) is 
not central to this discussion; we could easily proceed with 
any other. The operator assignment for the primary ghosts 
in (4.2b) is unavoidable if the Berezin pairing is used (now 
extended to the 2k fermionic variables 'TJa, P a ) and flext is to 
be Hermitian. Note that this assignment is consistent with 
the discussion of antighosts presented above since the pri
mary conjugate ghostpa is anti-Hermitian, which is the Her
miticity assignment of the antighost field. 15 Thus from now 
on we shall simply refer to the Pa 's as the antighosts and the 
rt's as the ghosts. 

The quantized charge flext is easy to write down and we 
see that it is indeed nilpotent, Hermitian, and increases the 
ghost number of a state by I. Wh~t is more interesting is that 
the ghost ~umber complex for flext' which is analogous to 
(2.5) for fl, is now a double complex. To see this let p,s 
denote those states with r ghosts and s antighosts, so the net 
ghost number for such states is r - s. We can decompose the 
action of flext on rr,s by writing flext = 80 + 8 1, where 

a 80 = - fl1T -- (4.4) 
a i[ 'Pa 

and 

( 4.5) 

So 8
0

: rr.s __ rr.s - I and 81: rr.s __ rr + I.s. Hence (flext ) 2 = 0 
implies 

(4.6) 

The part of the complex given by 81 is clearly reflecting 
the contribution of the original ghost complex (2.5). The 
new part is that coming from 80 , From (4.4) and (4.6) we 
can identify 80 as the quantum version of the Koszul com
plex that was central to the classical analysis of ghost sys
tems. 3-5.16 In that case we had the strong result that 80 gave a 
resolution of the ghost complex, i.e., 80 F = 0 ~ F = 80G, 
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for some G. Later on we shall see what happens to this result 
after quantization. Let us first, though, show how a state of 
the form (2.9) can be modified to be invariant under fl ext' 

self-dual, and have zero ghost number. 
If we simply try to multiply the top term in (2.9) by k 

antighosts we will have a zero ghost number state, but it will 
not be BRST invariant or normalizable. The resolution to 
this is to consider the state 

'I' = '1'0 + (2k)!(i)3k(2k - 1)8( Q I). "8( Q k)8( 1T1)'" 

(4.7) 

This is normalizable, BRST invariant, and has ghost number 
zero. Later we shall discuss in what sense 'I' uniquely satis
fies these conditions. Before doing that let us first investigate 
another situation where the quantized Koszul complex 
arises. 

B. Prequantization 

Geometric quantization offers an effective first step in 
the general analysis of the transition from a classical to a 
quantum description of a system. This is because the process 
of quantization is now split into two steps. First, a system is 
prequantized; then, when possible, this is elevated to a full 
quantum description. 2 The intermediate step of prequanti
zation gives a faithful representation of the classical Poisson 
algebra as an operator algebra. The expected Van Hove type 
of obstruction is neatly sidestepped since the operator repre
sentation is now reducible. Indeed, the states are now taken 
as square integrable functions on the whole phase space. The 
transition to the full quantization then involves a selection of 
a suitable polarization and measure on these extended states. 
Although this last step is fraught with all the expected diffi
culties inherent in any quantization, various authors7

•
8 have 

suggested that a prequantum analysis of constrained systems 
is useful, especially related to any discussion of polariza
tions, Hence we shall discuss a possible extension of geomet
ric quantization to the ghost analysis of constrained systems; 
an independent motivation for this is that we can then allow 
more general rescalings to the trivial constraints, and hence 
some insight into the structure of systems with quadratic 
constraints might emerge. 

In geometric quantization the symplectic structure of 
the phase space plays an important role. On the bosonic 
part of the phase space we have the symplectic form [see (2) 
in Sec. VI] OJ = dQ A dP A' This allows one to associate a 
Hamiltonian vector field Xf with each smooth function f on 
the phase space via its inner product with OJ, i.e., 

IxfOJ = df (4.8) 

The Poisson bracket {J,g} is then defined by {J,g} = - Xfg 
and it is straightforward to show that 

[Xf' Xg] = - X{f,g}. (4.9) 

Prequantization involves the construction of a prequan
tum, Hermitian operator Of' acting on the Hilbert space of 
square integrable functions on the phase space, such that 

[Of,Og] = iflO{f,g}' (4,10) 

An expression for Of is 
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(4.11 ) 

where 0 = PA dQA is such that dO = -lU. Other choices for 
the symplectic potential () are possible and reflect the adapt
ability of Of to a particular polarization. 

The extension of this construction to a graded phase 
space is quite straightforward, 17 the only subtle point for us 
being that the use of the Berezin measure precludes the 
automatic assignment of a defined Hermitian structure 
to the prequantum operators. So, let us now take as our 
graded symplectic form [see (2) in Sec. VI] lU 

= dQA dPA + drt dpa' Then, given a graded function F, 
we define the graded Hamiltonian vector field X F just as in 
the bosonic case (4.8). Thus we find 

X = aF ~_ aF ~ 
F aPA aQA aQA aPA 

_(_I)F aF ~_(_l)F aF~, 
ap a art aTfa ap a 

(4.12 ) 

which can be used to define a graded Poisson bracket and 
will satisfy the graded version of (4.9). Then, just as in 
the bosonic case above, we can construct OF' the graded 
prequantum operator corresponding to the graded function 
F. Using the graded extension to (4.11 ), with () 
= PA dQA + dTfu Pa' we find 

. aF aF 
OF = -lfzXF + F-PA ---Pa--

aPA apu 
(4.13 ) 

and this operator satisfies the graded version of ( 4.10). 
Applying this prequantum prescription to the BRST 

charge (2.4), we get 

(4.14 ) 

Clearly, just as in (4.4) and (4.5), On can be decomposed 
into a 150 and a 15 1, Hence we will again get a double complex 
when acting on the prequantum states. Even though On is 
not Hermitian [cf. (4.4)] its zeroth cohomology group 
should still be used to describe the physical states since that 
was the classical use of the BRSTcharge. So again we see the 
need to address the effect quantization has had on the classi
cal Koszul resolution. 

C. The quantized Koszul complex 

Sections IV A and IV B have shown us that we need to 
understand the structure of the solutions to the equation 
t50F = 0 with with FEr'·s. So, in terms of the distributional 
coefficients, we are interested in the general solution to 

Fu,a,···a, = 0 
'Pa, ' (4.15 ) 

where 'Pais a set of k independent constraints that act on the 
distributional coefficients of F by multiplication (we are, 
without loss of generality, taking r = 0). 

In the classical version of this problem, when F is a 
smooth function on the phase space, all solutions to (4.15) 
are of the form F = t5oG. This result was important in the 
proof that the BRST charge could be used to recover the 
constrained dynamics. We shall now show that this result 
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does not hold in the quantum theory where the smooth func
tions are replaced by distributions. 

Just as in Ref. 16, we can study the solutions to (4.15) 
by an inductive argument on the number of indices s. We 
shall only give the first step in the inductive proof since it 
contains all the important steps; the extension to general s is 
then a matter of combinatorics. Consider the distributions 
Fa that satisfy 

'PaFU = O. 

We will prove that Fa must be of the form 

Fa = FU{3'P{3 + R at5('Pu)' 

( 4.16) 

( 4.17) 

where F a{3 is a distribution anti symmetric in its indices and 
R a is a distribution with no dependence on 'Pu [there is no 
summation in theR ut5('Pa) term]. As in Ref. 16, this result 
is proven by induction on the zero sets of 'Pu' Let Zr denote 
the zero set of ('Pr'''','Pk ); then, on Z2' (4.16) is 

'PIF1 = O. (4.18) 

We now make use of the following well known result for 
distributions (see, for example, Ref. 18 for a proof). 

Lemma: If g is a distribution and yg = 0, then g = ht5 (y) 
where h is a distribution independent of y. 

Applying this result to (4.18) givesFI = R It5('PI)' thus 
establishing (4.17) on Z2' Now assume (4.17) is true on Zr 
(r;;.2). Then, on Zr+ 1 we must have 

r 

FU= I F a{3'Pp +R at5('Pa) +Aa'Pr+1 +Ba, (4.19) 
{3=1 

for a = 1, ... ,k. In this equation F a{3 is a distribution antisym
metric in its indices. R u can depend on any of the 'P{3 's apart 
from'P a itself, A a is a distribution, as is B a, but B a cannot be 
written in the form ca'Pr+ 1 for some ca. On Zr+ 1 (4.16) 
and (4.19) give 

r r 

I A a'Pa'Pr+ 1 + I Ba'Pa + 'Pr+ IFr+ 1 = 0, (4.20) 
a=1 a=l 

which implies that Ba can be written in the form ca'Pr+ 1 

and hence it must be zero. Therefore we can write (4.20) as 

'Pr+ 1 Ltl A a'Pu + Fr+ I] = O. 

Using the lemma we can conclude that 
r 

F r+ 1 = - I A a'Pa + R r+ It5('Pr+ 1 ), (4.21) 
a=l 

where R r + 1 is any distribution that does not depend on 
'P r + 1 • Equations (4.19) and (4.21) can now be easily ma
nipulated to establish (4.17) on Zr+ 1 and so, by induction, 
(4.17) is the general solution of (4.16). 

Thus we see that t50F = 0 =:} F = t5oF' + t5('Pa )Fa and 
hence the Koszul complex has nontrivial homology. This 
means that the classical argument that the BRST charge 
picks out the physical states as the only nontrivial cohomo
logy is in need of modification in the quantum theory. Note 
that although the lack of a Koszul resolution holds irrespec
tive of any global properties of the constraints (such as 
trivializability), the obstructions are still trivial in the 15 1 co
homology. Hence, in the tri vialized case, the zeroth cohomo-
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logy group of the BRST charge is directly related to the 
physical states. 

As an example let us consider the situation when 
antighosts are being used, if k = 2, the state 
8(1T,)8(Q2)7}'P2 + 8(1T2)8(Q,)7}2p, is normalizable, invar
iant, and has ghost number zero. It is a coboundry via the 
triviality of the ghost complex but it has nonzero norm due 
to surface terms. It is not clear to us how to interpret such 
states. One might argue that we should just avoid them and 
treat this as an extra condition on the states. However, as the 
example above shows, they are not too wild as states go. In 
fact, duality seems to force them to be concentrated on the 
physical configurations. Also, they have no pairing with the 
more natural physical states (4.7) and this is preserved by 
the physical observables. So possibly they could be interpret
ed as giving another copy of the physical states. The example 
above could then be thought of as representing the constant 
(distributional) physical state. 

v. DISCUSSION AND CONCLUSIONS 

In these two papers we set out to solve explicitly, in a 
covariant manner, the constraint quantization problem for 
finite-dimensional gauge theories. Our solution to this prob
lem differs from that suggested by Kuchar in that we have 
maintained a full extended state space structure. Our ap
proach has relied on the ability to rescale constraints, via 
unitary operators, within the ghost description of such sys
tems. These rescaling transformations are known to exist 
classically for all possible rescalings. What we have shown, 
in the first of these papers, is that they also exist quantum 
mechanically, at least for rescalings that depend on the con
figuration space variables. In this second paper we have 
shown that the existence of this quantum rescaling, when 
coupled with the local trivialization theorem, led to a natural 
way of deriving the orderings for all special observables and 
the BRST charge. These orderings are coordinate and re
scaling covariant and avoid all Van Hove problems, except 
for the inevitable ones in the physical directions. The reli
ance on local trivialization can lead to global problems, in 
particular, the domains for these operators needs to be inves
tigated separately. Surprisingly, most of the difficulties we 
found in solving this problem were not in the ordering of 
observables, but in the construction of the state space. 

The standard approach to BRST methods has always 
emphasized the elegant and powerful cohomological aspects 
of its formulation. In practice we have found that these coho
mological ideas require extreme care in being implemented. 
This occurs first because one is forced to work with distribu
tional wave functions, which can cause the BRST charge to 
be no longer Hermitian, and, second, because one must work 
with the Berezin pairing that requires the introduction of 
duality in order to pair states. The general definition of a 
distributional dual is particularly tricky since, as is well 
known, products of distributions do not exist in general. 
However, for the BRST invariant states we have been able to 
define a meaningful dual. 

The above gives a summary of these two papers and, we 
feel, shows that ghost variables have an important role to 
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play in all aspects of constrained dynamics. Let us now dis
cuss possible extensions of the methods presented in this pa
per. 

There has been considerable debate as to whether 
1(3.4d) should contain scalar curvature terms in addition to 
the Laplace-Beltrami operator. There is no reason why our 
solution could not be extended to include such terms. The 
only difference would be in the ordering prescription, 
(3.24), for quadratic observables. 

There is also considerable physical interest in con
straints that are quadratic in momenta and we would like to 
see a similar ghost analysis of such systems. It is not clear, 
though, how the constraint rescaling argument should be 
used in this situation. If the philosophy is that the only re
scalings allowed should be those that preserve the momenta 
dependence of the constraints then we are again in the situa
tion covered in these papers with A = A (Q A). However, we 
cannot then expect to work initially in a trivialized system 
where the constraints are just a set of momenta, and hence 
have no factor ordering problems. This step in the argument 
needs to be replaced with some simple, generic form of qua
dratic constraints. The problem would then reduce to quan
tizing this simpler "canonical" set of constraints. Even if 
such a set could be found and quantized, the boosting is now 
going to hit possible Van Hove types of ordering problems. 
In particular, the step from (3.2) to (3.3) would almost 
certainly hit such an obstruction. 

An alternative approach would be to continue to use the 
trivialization to pure momenta, but now attempt to boost 
back to the original system via A ( Q A, P A ). It is known that 
such boosts exist classically, so it would be nice to know what 
happens quantum mechanically. We must expect, though, 
that any attempt to write such transformations down will 
encounter a whole new set of difficult ordering problems, 
especially since we need both A and A - I. For instance, if A 
depends linearly on momenta then A - I will be a rational 
function of the momenta. This isjust the Van Hove problem 
surfacing in a different guise. To get some insight into this 
approach the methods of geometric quantization seem at
tractive since the ordering problems are avoided initially. 

Within a prequantum description we can expect to com
pletely solve the problem of boosting with A ( Q A ,P A ).19 On 
top of this, we expect that the use of ghost methods will 
resolve a problem pointed out in Ref. 8 related to the choice 
of constraint polarizations. In Ref. 7 conditions were intro
duced which ensured that, at the prequantum level, a polar
ization would be compatible with a given set of constraints. 
Within these geometric methods, any construction that only 
works with a particular parametrization of the system is an 
anathema. Yet, since constraint rescaling is not normally a 
canonical transformation, the conditions on polarizations 
discussed in Ref. 7 are dependent on the particular bases of 
constraints chosen. This unsatisfactory situation is removed 
when ghost variables are used since, as we have stressed in 
these papers, now constraint rescaling is a canonical trans
formation. As an application of this one can give a construc
tive method for finding a suitable polarization for quadratic 
(or worse) constraints by simply trivializing, introducing 
the vertical polarization in the trivialized system, then boost-
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ing both the observables and the polarization. The details of 
this approach are currently under investigation. 19 

Another interesting extension of the methods presented 
in these papers is to formulate the solution using path inte
grals. 20 In particular, it would be instructive to see how the 
term (2.13), in the duality condition, relates to the Faddeev 
<;leterminant in the path integral measure. A path integral 
formulation of these methods would also assist in any at
tempts to extend this work to constrained field theories. 

Any extension of the ideas presented in these papers to 
field theory must address the pWblems ofrenormalizability. 
In particular, the ability to rescale constraints will most cer
tainly be severely restricted since manifest Lorentz invar
iance will be lost in general. A particularly interesting area in 
field theory where these ideas might have some importance 
is in the analysis of anomalous theories. As is well known, 
anomalies imply Schwinger terms in the constraint algebra. 
These extra terms are nontrivial in the sense that field rede
finitions cannot remove them. Thus it would be interesting 
to find out the effect rescalings can have on them and hence 
on the Ward identities ofthe theory. 

VI. NOTES 

( 1) If C can be identified as the zero map of an equivar
iant momentum map then we are guaranteed to find a set of 
globally defined set of constraints. Such a situation arises in 
Yang-Mills theory. 

(2) We always assume that when two differential forms 
are multiplied together then the product is the wedge prod
uct. The mixed grading between fermionic and differential 
form structures is such that if UJ (respectively, /-l) is a graded 
n- (m-) form then UJ/-l = ( - 1) nm ( - 1) WIl/-lUJ• The exterior 
derivative is the right exterior derivative. 
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APPENDIX: THE QUANTUM WELL OF ORVIETO 

We will now illustrate our solution by means of an ex
ample first suggested by DeWitt,21 and developed in detail 
by Kuchar. 6.12 The example consists of a nonrelativistic par
ticle moving in fiat, three-dimensional space subject to the 
gauge group of helical motions. That is, if (X, Y,Z) is the 
natural, global coordinate system for Q, then all points lying 
on the helices 

X(r) =X(O)cos(r) + y(O)sin(r), 

Y( r) = - X(O)sin( r) + Y(O)cos( r), 

Z(r) = Z(O) + r 

(TER) are gauge equivalent. In phase space language this 
problem is described by the Hamiltonian 

H= (PR )2+ (lIR 2)(Pe )2+ (PZ )2, (AI) 

and by one constraint 
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(A2) 

where we have expressed everything in cylindrical polar co
ordinates (R,8,Z). The BRST formulation ofthis problem 
is 

(A3) 

and 

H=H. (A4) 

To do the quantization it is necessary to compute 11'1' II. 
This is straightforward and gives 

IItpll=RI[I+R2]1/2. (AS) 

With this result the quantization procedure can be applied 
and gives 

and 

H= -1l2[(lIR2)a~ +a~ 
+a~ + (lIR [1 +R 2])aR ). 

The self-dual, BRST invariant states are of the form 

\11= \IIo(R,8, + Z) + 8(8)\11071, 

(A6) 

(A7) 

(A8) 

where 8 = 0 has been chosen as the gauge fixing condition. 
To confirm that this is the correct quantum theory let \III and 
\112 be two such states and observe that 

The true degrees of freedom for the quantum well is a 
curved manifold described by coordinates ql = Rand q2 
= 8 + Z, and with metric 

[gab] = [01 0] 
1 + l/(ql)2 

(AW) 

(see Ref. 6 for the details). From this it is easy to check that 
(A9) is the correct physical result. 
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The Higgs mechanism has a very natural global formulation: given a principal fiber bundle 
(P,M,G), with structural group G, a subbundle with the unbroken subgroup as structural 
group (with the aid of the Higgs fields themselves) can be constructed. In superstring theory, 
the fundamental E8 symmetry, as well as the grand unification symmetry, are broken in a very 
different way. The principal purpose of this work is to construct a global formulation of the 
superstring gauge vacuum, without Higgs fields. 

I. HIGGS FIELDS AND GLOBAL GAUGE STRUCTURE 

The Higgs mechanism is widely regarded as one of the 
least satisfactory elements of conventional gauge theory. In
deed, to answer the question, "Why are gauge symmetries 
broken?" with "Because the Higgs fields have nonzero vacu
um expectation values," is not very enlightening, since we 
have no other reason (theoretical or experimental) to intro
duce such fields. The principal objection to the Higgs mecha
nism, then, is that it requires the introduction of extraneous 
fields having no clear relationship to the basic ideas of gauge 
theory itself. 

Before we dismiss the Higgs mechanism, however, let us 
remind ourselves of its virtues, which-somewhat unexpect
edly-are particularly in evidence at the global level. Gauge 
fields are (pullbacks of) connections on principal bundles. 
To say that a gauge group G is "broken" to a closed subgroup 
H means that we are given a principal bundle (P,M,G), and 
we can find (or construct) a principal bundle (Q,M,H) in 
such a way that connections on these bundles are related to 
each other. The natural way to relate one principal bundle to 
another is via a bundle homomorphism,l that is, a pair of 
mapsifJ: Q-+P, t/J:H-+G, where t/Jis a group homomorphism 
and ifJ satisfies ifJ(qh) = ifJ(q)t/J(h), for all qEQ, hER. Evi
dently it is also natural to require that the induced mapping 
on Mbe the identity map, and that t/J should be a monomor
phism. Thus we obtain the usual formulation of symmetry 
breaking: Q is taken to be a subbundle of P. Later we shall 
argue that (in a certain context) this is not the only possible 
formulation; but let us retain it for the present. 

The interesting point here is this: given a principal bun
dle (P,M,G) and a subgroup H of G, it is certainly not the 
case that, in general, P will admit any subbundle with struc
tural group H. A decision on this point will often involve a 
careful investigation, making use of obstruction theory. 2 But 
the usual procedure is not to do this-rather, one simply 
assumes that the desired subbundle exists. In other areas of 
gauge theory (such as magnetic monopole theory) such a 
procedure would not work; why, then, is it permitted here? 
There are two main reasons. 

The first is that by postulating the existence of Higgs 
fields with non vanishing vacuum expectation values, we au
tomatically ensure the existence of the relevant subbundle. 
That is, the local symmetry breaking mechanism (scalar 

fields, etc.) itself takes care of the global structure-a re
markable result. Given (P,M,G) and H as above, the mani
fold P / H is an associated bundle of P with standard fiber 
G / H. A Higgs field ()" is essentially (see Ref. 3 for details) a 
cross section of P / H. The subbundle Q can then be defined as 
the set of all pEP that satisfy pH = oi 1T(p) ), where 1T: P -+ Mis 
the projection. The situation here is closely analogous to the 
problem of defining spinors in general relativity. To do this, 
one needs a Lorentz subbundle of the frame bundle; again, 
this subbundle does not always exist; but one of the funda
mental postulates of general relativity (the global existence 
of the metric tensor) automatically solves the problem, since 
it permits the construction of the bundle of orthonormal 
frames. (Note that the metric tensor, which plays the role of 
"Higgs field" here, is the canonical example of a field with 
nonzero "vacuum expectation value.") 

The second point to note is that even if the appropriate 
subbundle structure did not arise naturally, it could never
theless always be constructed. Let ( Q,M,H) be any principal 
H bundle, and let H be a subgroup of G. Then there always 
exists4 a principal Gbundle having Q as subbundle: we mere
ly define P = (Q X G) / H. Thus if-as is often the case-we 
are not particular as to the precise nature of the manifold P, 
then we can always choose our initial bundle in a way that is 
compatible with the requirements of symmetry breaking. 

In superstring theory,5 the fundamental E8 gauge sym
metry (actually E8 X E8, but we shall ignore the second E8 
henceforth) is broken in a very different way, as is the E6 
grand unification group. Here the base manifold is (Min
kowski space) X K, where K is a six-dimensional Ricci-flat 
Kiihler manifold. The E8 gauge curvature form is equated to 
the curvature form of K, which takes its values in Y W (3), 
the Lie algebra of SU (3). This breaks E8 down to E6. The E6 
gauge curvature form vanishes, but its holonomy group is 
nontrivial, and this further6 breaks E6 down to some strong 
+ electroweak group. 

Now what we have described here is the "local" symme
try-breaking structure. It has clear advantages over the 
Higgs mechanism: in particular, the objects that are nontri
vial in the vacuum are gauge field strengths and holonomy 
groups, and these are items that are implicitly present in any 
gauge theory. But now we must ask: how should we interpret 
all this at the global level? We raise this point for two main 
reasons. First, the theory of magnetic monopoles and ins tan-
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tons, and many subsequent developments, have shown the 
importance of global questions in gauge theory. Ultimately, 
for example, the study of monopoles (which involves global 
aspects of symmetry breaking) in the superstring context 
will require a global formulation of symmetry breaking by 
holonomy groups. Second, the method itself cannot be prop
erly implemented unless due attention is paid to global ques
tions, since it is indeed the holonomy groups, not the corre
sponding curvatures, that break symmetries. 

The Higgs mechanism gives rise to a definite fiber bun
dle structure for the gauge vacuum. What is the analogous 
structure here? The central technical question is: what does 
it mean to "equate" the linear curvature of K to the gauge 
curvature, when these forms are defined, a priori, on two 
different bundles? Initially we shall attempt to formulate this 
along the lines of the Higgs mechanism. The result is not 
very satisfactory, and so we shall subsequently propose a 
different approach. 

II. SYMMETRY BREAKING BY HOLONOMY GROUPS: 
SUBBUNDLE FORMULATION 

Let S be the E8 principal bundle over K, and let H K be 
the holonomy bundle of the linear connection on K. If we are 
to equate the curvatures on these bundles, we must relate 
them in some way. There are many ways of doing so, as we 
shall see later. Of these, the closest possible relationship is 
obtained by taking H K to be a subbundle of S. The process of 
"equating the curvatures" undoubtedly reflects some very 
deep property of gravitation in the superstring context, and 
so we may feel justified in making this assumption. Proceed
ing on this basis, we assume that the embedding of the hoI on
omy group of K (denoted <I> K ) in E8 has been specified. Now 
the linear connection of K is a connection on H K: so we must 
ask how this connection is related to the one on S. Again we 
must stress that there is no single way of establishing such a 
relationship. The simplest procedure (which we shall be 
compelled to modify later, however) is as follows. 

As stated earlier, subbundles are embedded in bundles 
by means of a particular type of bundle homomorphism. It is 
one of the fundamental properties of connections that they 
can be "pushed forward" by bundle homomorphisms. That 
is, if (P.,MI,GI ) and (Pz,Mz,Gz) are principal bundles, and 
if ifJ: PI-+PZ' t/J: GI -+ Gz define a bundle homomorphism that 
induces a diffeomorphism M I-+M2, then any connection 
form liJl on PI determines a connection form liJz on Pz, the 
two being related l by </J*liJz = IpliJ l , where Ip is the algebra 
homomorphism induced by t/J. Thus any connection on a 
subbundle automatically induces a connection on the larger 
bundle. Hence if H K is a subbundle of S, then the linear 
connection on K induces a connection on S, and it now 
makes sense to equate this induced connection to the E8 
gauge connection on S. This provides a very simple rigorous 
formulation of the breakdown ofthe E8 symmetry. 

Problems begin to arise, however, when we come to con
sider the residual gauge symmetry. As we shall explain later, 
this "unbroken" group is a group of vertical automorphisms 
(i.e., homomorphisms of S -+S that induce the identity map 
on K), isomorphic to the centralizer of <I> K in E8 [denoted 
C( <I> K ) ]. This group is our grand unification group,5 and so 
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we must have yet another gauge bundle, say (R,K, C( <I> K ») 
over K, and this bundle too should be related to S in some 
way. Again, we should prefer it to be a subbundle of S. But 
now we are in danger of burdening S with too many condi
tions. We have already assumed that S admits H K as a sub
bundle, for reasons explained earlier; this is relatively harm
less, since in the last resort we know that such an Scan 
always be constructed once the embedding of <I> K in E8 is 
specified. This method does not, however, allow us to con
struct a bundle with two different given bundles as subbun
dIes. Nor is it the case that, in general, a principal bundle 
(P,M,G) with a connection having holonomy group H must 
admit a C(H) subbundle. (As a counterexample, suppose 
that P is connected, that M is paracompact, and that 
dim M> 1. Then there exists· a connection on P with hoi on
omy group G. If the above statement were true, then every 
such bundle would admit a subbundle with structural group 
Z( G), the center of G; in particular, if G is centerless [i.e., 
Z (G) = 1, the group consisting of a single element], every G 
bundle would be trivial. Thus, for example, since E8 is cen
terless, all E8 bundles would be trivial over paracompact 
manifolds. This is nonsense.) In short, there is a price to be 
paid for dispensing with the Higgs fields: no longer can we 
guarantee the existence of the desired global gauge structure, 
at least not if we use the present formulation. 

For the moment, however, let us assume that the E8 
bundle S does admit both H K and R as subbundles, and that 
the gauge connection on S, liJs , is induced by the linear con
nection liJ K on H K' Then how is the gauge connection on R 
determined? Although connections can be "pushed," they 
cannot in general be pulled back; nevertheless, we can pro
ceed as follows. Let (P,M,G) be a principal bundle with a 
connection liJ p, and let (Q,M,H) be a subbundle. Let Y, dY 
be the corresponding Lie algebras, and express Y as 
Y = dY EB ~. Let liJQ be the dY component of the restric
tion of (JJp to Q. (Here, "restriction" means that (JJp is to be 
evaluated only on vectors that are tangential to Q.) Then we 
have the following result. 

Lemma 1: Let either G or H be compact. Then liJQ de
fines a connection on Q. 

Proof: It is easy to show I that (JJQ defines a connection on 
Q provided that Ad(H)~ =~. Suppose that G is com
pact. Then 7 G admits a bi-invariant metric, hence Y admits 
an Ad (G) invariant inner product. Define ~ as the orthog
onal complement of dY, and letfEJf', mEJi. Then if hEll, 
(f,Ad(h)m) = (Ad(h -I)f,m) = 0, hence Ad(h)mEJi. 
Suppose instead that H is compact. Then from the represen
tation theory of compact groups8 it follows that Ad(H) is 
completely reducible to a direct sum of irreducible represen
tations; this yields the stated result. 

Here, and in nearly all other applications, we use only 
compact groups, and so the above construction does yield a 
connection on the subbundle. (Probably the only physically 
interesting example of the failure of this construction is in 
the gauge theory of the Poincare group,9 which is neither 
compact nor semisimple.) 

Let us assume, then, that the (vacuum) gauge connec
tion on R is obtained as the C(f component of the restriction 
of liJs to R. [Here, C(f is the algebra of C(<I>K ).] Now, ac-
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cording to our general description of gauge symmetry break
ing in superstring theory, this connection (denoted (UR) 
should be fiat, i.e., it should have vanishing curvature. Let us 
attempt to prove this. 

Let pElf K and pER be two points in the same fiber of S. 
Then there exists gEEg such that p = pg. (Here, of course, we 
are identifying H K and R with their images in S, as usual.) 
Let X be any tangent vector (to R) at p, and let X be the 
unique tangent vector at p such that Rg"X = X, where Rg 
denotes the action of Eg on S. This X certainly exists, but it 
may not be tangential to H K-an important point. Now we 
have 

(UR (p)(X) = '1ff (Us (pg)(Rg*X) 

= '1ff Ad( g-I)(Us(p)(X), 

where'1ff denotes "<ti component of." Care is required at this 
point: (Us ( p) equals (UK ( p) only when acting on vectors 
tangential toHK , and we do not know whether this is true of 
x. The correct procedure is as follows. If ~ g denotes the 
algebra of E8, then we have a decomposition 
~ 8 = y~ (3) Ell <ti EIlff, where y~ (3) is the Lie algebra 
of the holonomy group cP K [which, as we shall see later, need 
not be globally isomorphic to SU (3) ], <ti is as above, and ff 
is the orthogonal complement (as in the proof of Lemma I). 
We now have the following lemma. 

Lemma 2: LetXbea tangent vectortoSatp. Then ifXo 
is the component of X that is tangential to H K' we have 
X = XO + A *( p) + B *( p), whereAE<ti,BEJY,andwhere 
the asterisk denotes the usual algebra homomorphism in
duced by the action of Eg on S. 

Proof Let {elL' J-l = 1, ... ,6} be a basis of the tangent 
space at x = 1T( P )EK, let {eo i = 1, ... ,248} be a basis of ~ g, 
and let IT be a local cross section of H K with IT(x) = p. Then 
{IT * (elL) ,er ( p)} gives a basis of the S tangent space at p. 
The result now follows by choosing {e j } in the obvious way. 

Using this lemma, we find 

(Us(p)(X) = (UK(P)(XO) +A +B, 

and so 

(UR (p)(X) = '1ff Ad( g-I) [(UK (p)(XO) + A + B ]. 

Now, in fact, Ad( g-I) (UK (p) (Xo) has no '1ff component. 
To see this, note that E8 is connected, hence it suffices to 
show that [U'(UK (p)(XO)] is orthogonal to '1ff (for all 
UE~ 8) with respect to the Cartan-Killing form k on ~ g. 
(Here k is nondegenerate and indeed negative definite, since 
E8 is compact and simple.) This is straightforward: 

k([ U'(UK( p) (Xo) ],c) = k(u,[ (UK (p)(Xo),c]) = 0, 

for any cE'1ff, since [Y ~ (3), '1ff] = a. (Note that Y ~ (3) 
and '1ff are in fact orthogonal with respect to k; this can be 
shown easily by noting that any semisimple Lie algebra 
equals its own derived algebra, so [Y ~ (3), 
Y~ (3)] = Y~ (3).) 

Thus (UK does not contribute directly to (U R; we have 
simply (U R (ij) (X) = <ti Ad ( g- I)(A + B). This might 
lead one to expect that (UR must be fiat. In order to compute 
the curvature of (U R' we need the following result. 

Lemma 3: Let the notation be as in Lemma 1. Let qEQ 
and let X,Ybe tangential to Qat q. If G is compact (so that 
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(UQ is a connection) let fiQ be the curvature of (UQ' Then, 
with an obvious notation, 

nQ(q)(X,Y) = 2fip (q)(X,Y) 

- ! 2[ JI (Up(q) (X),JI (Up (q) (Y)]. 

Proof A straightforward computation using the structural 
equation for (Up, together with [2,JI] ~JI [which fol
lows from Ad(H)JI = JI-see Lemma I]. 

Now, in our case, this lemma implies that (U R need not be 
fiat. For if we let X,Ybe tangential to Rat p = pg, then 

'1fffis (p)(X,y) = '1ff Ad(g-l)fis(p)(X,Y) 

= <ti Ad(g-I )ns ( p)(Xo,Yo), 

where we have used Lemma 2 and noted that curvature 
forms annihilate vertical vectors. But 
fis( p)(Xo,Yo) = fiK ( p)(Xo,Yo), which takes its values 
in Y ~ (3); hence by the reasoning used above, 
Ad(g-I)fis ( p)(Xo,yo) has no <ti component. Hence the 
term corresponding to 2n p (q) (X, Y) in Lemma 3 is indeed 
absent here. But the second term on the right-hand side may 
not be zero. It will simplify matters, without altering our 
essential point, if we takep = p (i.e., we assume thatHK and 
R intersect at this point). Then setting 

X=Xo+A~(p) +B~ (p), 

Y = yO + A ; (p) + B; (p), 

where A x,A yE'1ff , and B x ,ByEJY, we find that the object cor
responding to JI (Up (q)(X) is just (UK (p)(Xo) + B x, and 
so the term in question is 

-~ '1ff[(UK(P)(XO) + BX'(UK(P)(YO) +By ]. 

We know that, for all UE~8' [U'(UK(P)(XO)] has no '1ff 
component; so this reduces to -! <ti [Bx,By], and Lemma 
3 gives us n R (p )(X, Y) = - ~ <ti [ Bx ,By] , which is not zero 
in general. (We can certainly find n.,n2EJY such that [n l ,n2 ] 

has a nonzero <ti component. But, suppose the contrary. 
Then for all CE'1ff and n.,n2EJY, we would have 

k(c,[n l ,n2 ]) = a = k( [c,n.],n2 ) 

(where k is the ~ g Cartan-Killing form) so that [c,n I] has 
no ff component. Similarly it has no Y ~ (3) component, 
so it is an element of '1ff. But then [c,u] E'1ff for all UE~ g, 
which contradicts the fact that ~ g is simple.) 

We conclude, therefore, that fiat connections on bun
dles do not necessarily induce fiat connections on subbun
dIes. Of course, the induced connection may be fiat, but it 
does not seem to be possible to ensure this in any particularly 
natural way. Again we find that this feature of the vacuum 
has to be introduced as an additional assumption. 

It would seem, then, that the usual formulation of sym
metry breaking in terms of subbundles is not satisfactory in 
the present context. The assumption that the grand unifica
tion bundle is a subbundle of the E8 bundle is particularly 
troublesome. A more fiexible formulation will now be pro
posed. 

III. SYMMETRY BREAKING BY HOLONOMY GROUPS: 
BUNDLE SPLICING 

Before proceeding to our proposal, let us consider the 
following points. 
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(a) It is desirable that the formulation be constructive: 
we do not wish to make ad hoc assumptions as to the exis
tence of the structures to be employed. 

(b) The symmetry breaking proceeds in two stages: 
first, E8 is broken to the grand unification group C( <I> K ), and 
then C(<I>K) is broken by some (discrete) holonomy group. 
The transition from the first stage to the second will change 
the holonomy group of the connection on the E8 bundle, but 
should not disturb the "equality" of linear curvature with 
gauge curvature. During the first stage, the holonomy group 
of the grand unification bundle must be trivial, and the ho
lonomy group of the E8 bundle should be just <I> K. This is 
necessary for internal consistency, since we always suppose 
[see (d) below] that the grand unification group is C( <l>K). 

(c) We shall need some analog of Lemma 1 in order to 
relate connections on various bundles. 

(d) We state here some technical results that are used 
repeatedly below. 

Underlying all approaches to symmetry breaking of this 
type is the idea that if a gauge field is nontrivial in the vacu
um, then the symmetry is broken to the subgroup that com
mutes with the corresponding holonomy group. The formal 
statement is as follows. 

Proposition 4: Let (P,M,G) be a principal bundle with 
connection form w, having holonomy group <1>. Then the 
group of vertical automorphisms fl that preserve w (in the 
sense that fl *w = w) is isomorphic to the centralizer, C( <1», 
of <I> in G. 

Proof See Refs. 10 and 11. 
Thus the residual gauge symmetry is indeed C( <I> K) in 

our case, where as before C( <I> K) denotes the centralizer of 
<I> Kin E8. Note in particular that the formal result pertains to 
the holonomy group, not to the curvature. 

A second technical point, which cannot be fully ana
lyzed here, concerns the structure of <I> K' the holonomy 
group of K. As is well known, the connected component of 
<I> K (the restricted linear holonomy group of K) is isomor
phic to SU (3). But this information is not sufficient to com
pute C( <I> K ): we need the full global structure. The relevant 
result is as follows. 

Proposition 5: Let K be a compact n-dimensional Kahler 
manifold with nonzero Euler characteristic and vanishing 
Ricci tensor. Then the holonomy group of the linear connec
tion generated by the Kahler metric is contained in 

Sm U(n) = {uEU(n) such that det uElm }, 

where m is a fixed integer such that there exists a homomor
phism from the fundamental group of K onto lm . 

Proof: See Ref. 12. 
In our case, of course, the group will be S m U (3), with 

SU (3) as the special case m = 1. The distinction between 
SU(3) and SmU(3) as holonomy groups (over which we 
have no control-it depends on the structure of K) is of great 
importance because these groups have different centralizers 
in E8 • The computation of centralizers is an intrinsically glo
bal problem; elementary techniques for dealing with it will 
be discussed elsewhere. For the present the following will 
suffice. 

Proposition 6: If C( ) denotes centralizers in E8, then 
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C(SU(3») = E6 , 

C(SmU(3»)=U(1)xSO(1O), m#l, 

where equality means global isomorphism. 
Proof Reference 13. 
These, then, are our candidates for grand unification 

groups. Note that while SU(3) and Sm U(3) are locally iso
morphic-indeed, the former is the connected component of 
the latter, for all m-the same is not true of their centra
lizers. We shall continue to denote the holonomy group of K 
by <I> K' and its centralizer by C( <I> K ); bear in mind that 
C( <I> K ) may not be E6 , and that it may not be semisimple. 

One final technical point remains to be discussed; it is 
very elementary, but is so often neglected that a discussion 
may be justified. Let Gland G2 be any two groups, and let t/!: 
GI ..... G2 be a homomorphism with kernel Ker t/! and image 
t/!(G I ). Then the homomorphism theorem of elementary 
group theory states that Ker t/! is a normal subgroup of GI , 

and that G/Ker t/! is isomorphic to t/!(G I ), which is, of 
course, a subgroup of G2• To see the importance of this for 
our purposes, let G be any group with a subgroup H, and let 
C(H) be the centralizer of H in G [or any subgroup of C(H) 
containing the center of H]. Now the map t/!: H X C(H) ..... G 
given by t/!: (h,c) ..... hc is a homomorphism with kernel con
sisting of pairs (Z,Z-I) for all zEZ(H) , the center of H. This 
group is isomorphic to Z(H), and so we find that 
[H X C(H) ]/Z(H) is a subgroup of G. For example, the 
centralizer of SU (n) in U (n) is U (1 ). This U (1) has sub
groups, lmn' containing the center, In' of SU (n); hence, for 
all m, the groups [lmn X SU (n) ] Iln are subgroups of 
U (n). These are, in fact, precisely the subgroups denoted by 
Sm U(n) earlier. 

Now suppose that H X C(H) is connected and that 
Z(H) is finite (as is often the case when Hand G are Lie 
groups). Then H X C(H) is not a subgroup of G. For in that 
case H X C(H)and [H X C(H) ]IZ(H) are locally isomor
phic and are both connected, and one knows that a given 
subalgebra of the Lie algebra of a Lie group can be the Lie 
algebra of only one connected subgroup. 14 Thus, in general, 
if we wish to use Hand C(H) to construct a subgroup of G, it 
is not sufficient merely to take H X C(H): we must also fac
tor out the center. 

We may now begin to construct the global background 
for this approach to symmetry breaking. 

A. The construction 

One of the drawbacks of the subbundle formulation was 
the difficulty of constructing a principal bundle having two 
specified bundles as subbundles. As before, let H K be the 
linear holonomy bundle of K, and let (R,K,C( <I> K ») be the 
grand unification bundle. Then the product manifold 
H K X R is a principal <I> K X C( <I> K ) bundle over K X K. If we 
restrict ourselves to the submanifold consisting of pairs 
(u,r) E HK xR such that 1TH (U) = 1TR (r) (where 1TH' and 
1T R are the respective projections of H K and R), then we 
obtain l5 what is often called the "spliced" bundle, HK + R. 
This is a <I> K X C( <I> K ) bundle over the diagonal subspace of 
K XK, the set of pairs (x,x)EK XK, which is obviously dif
feomorphic to K. 
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Having manufactured a single bundle, H K + R, from 
H K and R, our objective now is to extend to an Eg bundle in 
the ordinary way. But this cannot be done directly, since, as 
we already know, <l>K XC(<I>K) is not usually a subgroup of 
Eg. (For example, [SU(3) xE6 ]1Z3 is a subgroup of Eg, but 
SU (3) X E6 is not.) We need the following lemma. 

Lemma 7: Let (P,M,G) be a principal bundle, and let Z 
beanyfinitenormalsubgroupofG. Then (P /Z,M,G /Z) isa 
principal bundle. 

Proof This P /Z can be constructed from its transition 
functions, defined as the composites of the transition func
tions of P with the projection G~ G /z. Verification of the 
cyclic condition on the transition functions is straightfor
ward. The action of G /Z on P /Z, given by gZ: pZ ~ pgZ, is 
free because the action of G on P is free. 

In our case, Z(<I>K) is always finite, and so if we de
note[<I>KX C(<I>K)]/Z(<I>K) by <l>K·C(<I>K)' and 
[HK + R ]/Z(<I>K) by H K' R, then by Lemma 7 we find 
that H K • R is a <I> K • C( <I> K ) bundle over K. This latter group 
is indeed a subgroup ofEg, and so we can now extend H K • R 
to an Eg bundle (S,K,Eg ) in the usual way (sothatHK'R isa 
subbundle of S.) This is how we propose to construct the 
gauge vacuum for superstring theory. 

Before moving on, we should point out that the admit
tedly convenient notation H K' R may be misleading if it sug
gests that H K and R are necessarily subbundles of H K • R . 
That is not the case. A full analysis of this question is not 
necessary here, but some discussion is required because the 
relationship between these bundles has a bearing on the cor
responding connection theory. 

Let F and H be commuting subgroups of a group G, and 
let fJ: H~Fbe a homomorphism; then the map h~hfJ(h) 
is a homomorphism from H into H·F. The kernel is a sub
group of the center of H consisting of elements z with 
fJ(z) = Z-I. Thus the homomorphism will embed H in H· F 
as a subgroup if and only if fJ(z) = z- I ~ Z = identity, for 
all zEllnF. There is always at least one such homomor
phism (the one that maps all elements of H to the identity), 
but usually there will be many others, since the restriction on 
fJ is rather weak. 

Now we can try to adapt this idea to show that, if 
(P,M,H) and (Q,M,F) are principal bundles over a mani
fold M, then P can be a subbundle of p. Q. Let fJ: P ~ Q be a 
bundle homomorphism with corresponding group homo
morphism also denoted fJ. Suppose that fJ is vertical (i.e., 
that it induces the identity map on M) and that fJ: H -+ F 
satisfies fJ(z) = Z-I ~ Z = identity for all zEllnF. Then 
the map h-+hfJ(h) is a monomorphism of H into H'F, as 
above. Define l: p ..... P + Q by]( p) = (p,fJ( p»), and let 

1T: P+ Q ..... p.Q= [P + Q]lHnF 

be the projection. Then the map f P ..... p·Q defined by 
f = 1To]is a vertical homomorphism. Thus P is a subbundle 
of p. Q, just as H is a subgroup of H· F. 

There is one major difference between the two cases, 
however: whereas a homomorphism from H to Falways ex
ists, the same is not true of homomorphisms from P to Q. 

Lemma 8: Let fJ: (P,M,H) -+ (Q,M,F) be a vertical ho-

502 J. Math. Phys., Vol. 30, No.2, February 1989 

momorphism. Then Q is reducible to a subbundle with struc
tural group fJ(H). 

Proof' Given xEM, let p be any element of P with 
1T p (p) = x. Then x ..... fJ(p )8(H) is a well-defined global 
cross section of Q /fJ(H), the associated bundle of Q with 
standard fiber F /fJ(H). Hence Qis reducible toa fJ(H) sub
bundle. 

Reducibility to a fJ(H) subbundle is a very severe re
striction on Q. In general, therefore, one cannot expect P to 
be a subbundle of p. Q. (The same applies, of course, to Q. ) 
Returning to the case of HK'R, take the simplest case, <l>K 
= SU (3), C( <I> K) = E6. Then it is not difficult to show that 

there exist no bundle homomorphisms from R to H K' since 
E6 is a simple group, and thus its only normal subgroups are 
E6, Z3 (its center), and 1 (the group consisting of one ele
ment). By the homomorphism theorem, then, the only ho
momorphism from E6 to SU (3) is the one that maps all 
elements to the identity [since obviously E6 and E~Z3 can
not be subgroups of SU (3) ]. But then Lemma 8 implies that 
H K is trivial. This is impossible, since we always assume that 
the Euler characteristic of K is nonzero (it is proportional to 
the number of particle generations), whereas all characteris
tic classes of the frame bundle of K would vanish if H K were 
trivial. Hence we certainly cannot expect R to be a subbundle 
of H K • R. On the other hand, the possibility that H K could be 
a subbundle of H K • R is not so completely obstructed, since 
there is nothing to prevent the gauge bundle from being (for 
example) trivial; indeed, an important example does occur 
later, in Proposition 12. However, this is a special case. In 
general, we must not assume that either H K or R is a subbun
dIe of HK·R. How, then, are connections on these various 
bundles related? 

B. Construction of the E. connection 

Let liJ K be the linear connection on K, and let liJ R be any 
connection on R. As we do not have homomorphisms from 
H K or R into H K + R, neither of these connections alone 
induces a connection on H K + R. However, we can use a 
combination of the two, as follows. Define 
fH: HK +R ..... HK by fH: (h,r) ..... h, and similarly 
fR: H K + R ..... R; these are bundle homomorphisms in an 
obvious way. Then it is easy to show l thatf1iliJK + f~liJR 
[where the + denotes addition in the Lie algebra of 
<I> K X C( <I> K )] is a connection form on H K + R. 

Now, as before, let 1T: H K + R ..... H K • R be the projec
tion; it, too, is a bundle homomorphism with corresponding 
group homomorphism 1T: <I> K X C( <I> K ) ..... <I> K . C ( <I> K ) . 
(This last is in fact a covering homomorphism, and so the 
algebra homomorphism ir is an isomorphism in our case.) 
Thus 1T "pushes" f1iliJ K + f~liJR to a connection liJHR on 
H K • R. Finally, H K • R is a subbundle of the Es bundle S, and 
so liJ HR induces a connection on S. 

To summarize, then, we have a well-defined procedure 
whereby the Eg gauge connection is generated by liJ K and liJ R; 

this procedure parallels the construction of S. In fact, the 
process works both ways, because, since Es is compact, any 
connection on S generates one on H K • R (Lemma 1). We 
now need the following result. 

Proposition 9: Let (P,M,G) be a principal bundle, let Z 
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be a finite subgroup of the center of G, and let cu be a connec
tion form on P 1 Z. If 1T: P -+ P IZ, 1T: G -+ G IZ is the projection 
homomorphism, and ir is the corresponding algebra isomor
phism, then (ij = ir- I 1T*CU is a connection form on P. 

Proof Taking the derivative of Ad(gZ)o1T = 1ToAd(g) 
(maps from G to GIZ), we obtain ir-IoAd(gZ) 
= Ad(g)Oir- l

. Now let Vbea tangent vector at pEP, and let 
gEG. Then 

(ij(Rg V) = ir-lcu( 1T * Rg V) = ir- lcu(RgZ 1T * V), 

since 1TOR g = R gZ 0 1T. Thus 

(ij(Rg V) = ir- I Ad(g-IZ)cu(1T* V) = Ad(g-I )ir- lCU(1T* V) 

= Ad(g-I )(ij( V). 

Next, let A * (p) be a vertical vector at p, where A is a 
tangent vector at the identity of G. If up: G -+ P is defined by 
up: g-pg, then (Ref. 1) A *(p) = up.A. Thus 

(ij(A *(p») = ir- lCU(1T*Up.A). 

But, for any gEG, 

1T(Up g) = pgZ = pZgZ = u 1r(p) (1Tg) , 

so that 

(ij(A *(p») = ir-lcu( (irA)*(1T(p»)) = A. 

Any algebra-valued one-form with these properties defines a 
connection on P, so this completes the proof. 

Returning to our case, we see that the connection on 
HK'R induces a connection onHK + R. Finally, the homo
morphismsfH andfR can be used to push this connection to 
H K and R separately. 

We conclude this section with a result on holonomy 
groups. 

Proposition 10: Let the connection CUs on Sbe construct
ed, as above, from cu K and CUR' Then the holonomy group of 
cu s is a subgroup of [<I> K X <I> R ] 1<1> K n <I> R' where <I> R is the 
holonomy group of CUR' 

Proof It can be shown I that the holonomy group of the 
connection on H K + R is a subgroup of <I> K X <I> R' while the 
holonomy group of CUHR is the image of this subgroup upon 
projection by 1T: <I> K X C( <I> K ) - <I> K . C( <I> K ), that is, it is a 
subgroup of 1T( <I> K X <I> R) = [<I> K X <I> R ] 1<1> K n <I> R' The re
sult now follows from the fact that, by its construction, CUs is 
reducible to cu HR . 

Remark: Note the word subgroup: one cannot, in gen
eral, prove that the groups are equal, though of course that 
can happen. (The problem, essentially, is that a disconnect
ed Lie group has proper subgroups locally isomorphic to 
itself. ) 

IV. THE SYMMETRY BREAKING "MECHANISM" 

As remarked at the beginning of Sec. III, the symmetry 
breaking proceeds in two stages: first Es -+ E6 [or 
U (1 ) X SO (10) ], and then down to the strong 
+ electroweak group. 

During both stages of symmetry breaking, the linear 
curvature of K is to be "equated" to the Es gauge curvature. 
What can this mean? Since the connection on S is reducible 
to cu HR' we can concentrate on this last. Its curvature form, 
o HR , is a form on H K • R. The linear curvature of K, OK is a 
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form on HK. Obviously OHR cannot be equated to OK' but 
we can proceed instead as follows. There are two homomor
phisms defined on H K + R, namely, 1T: H K + R -+ H K . R 
andfH: HK + R-+HK' The two-forms 1T*OHR andf1iOK 
now have the same domain, and they will also take their 
values in the same algebra [that of <I> K • C( <I> K )] if we con
sider irf1iOK instead off1iOK' We therefore propose to in
terpret "equating the linear curvature of K to the gauge cur
vature of Es" to mean 

1T*OHR = ir f1iOK' 

This equation has the following welcome consequence. 
Lemma 11: The above equation is valid ifand only if the 

connection on R is flat. 
Proof The curvature of the connectionf1icuK + f~CUR 

onHK + R isjustf1iOK + f~OR' Now, by definition, CU HR 
is induced by this connection via 1T; hence, in general, we 
have 1T*OHR = ir[f1inK + f~nR]' [It is worth noting at 
this point that, because .Y ~ (3) is simple, the algebra of 
<I> K X C( <I> K ) is the direct sum of the respective algebras, so 
that irf1i n K is the .Y ~ (3) component of the right side of 
this equation.] Suppose now that the stated equation holds. 
Then since ir is an isomorphism,J~ n R = O. Now fR is sur
jective: given any rER, let h be any element of 1Tii I (x), where 
x = 1TR (r). Then (h,r)EHK + R is projected torbyfR' Thus 
f

R
• is surjective, and so OR = O. The converse is obvious. 

Thus, within the present formulation, the process of 
"equating the curvatures" does indeed force the R connec
tion to be flat. On the other hand, any flat connection on R 
will be satisfactory, even if the holonomy group is not trivial. 
Proposition 10 shows that if the holonomy group of cu R is not 
trivial, then the holonomy group of CUs may not coincide 
with <l>K' even though the curvatures have been "equated." 

We may now describe the first stage of symmetry break
ing' in which Es breaks to the grand unification group. Here, 
the curvatures are "equated," and, in addition, <I> K is trivial. 
In this case, the holonomy group of CUs must coincide pre
cisely with <I> K-otherwise the whole method would not be 
consistent, since we have always assumed that the grand uni
fication group is C( <I> K ). Proposition 10 is insufficiently pre
cise to allow us to verify this; we need the following result. 

Proposition 12: If <I> R is trivial and K is connected and 
paracompact, then the holonomy bundles of CUs are isomor
phic to H K, and its holonomy group is precisely <l>K' 

Proof We begin by proving that, in this particular case, 
H K is a subbundle of H K • R (and therefore of S). Given any 
rER, let Pr be the submanifold of R consisting of all points 
which can be connected to r by a horizontal curve. Then I Pr 

is a principal bundle over K, with structural group 1 = the 
holonomy group of CUR' Then given any xEK, there exists a 
uniqueu(x)EPr with 1TRU(X) = x. Clearly, x-->u(x) defines 
a global cross section of R (which must therefore be trivial). 
If Vis any tangent vector at x, then a * V is horizontal; hence 
u*cuR = O. 

Now, as in the discussion before Lemma 8 above, define 
a bundle homomorphism l: H K -+ H K + R by fC u) 
= (U,U(1THU»), with corresponding group homomorphism 

<I> K -+ <I> K X C( <I> K ) given by g -+ (g,e), where e is the identity 
element of C( <I> K ). Then the homomorphism 1Tof = f em-
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beds H K in H K • R as a subbundle. Now the connection W HR 

on H K . R is induced by the connection f~CLI K + f~ CLI R on 
H K + R , and so we have 

'TT*WHR = -iT[f~CLlK + f~CLlR]' 
Applying]* to both sides, one obtains 

f*W HR = -iT[ (fHo])*WK + (fRo])*WR ]. 

The definition of]yieldsfHo] = identity map on HK , and 
(fR o])* = (UO'TTH ) * = ~ou*, which annihilates CLlR' 
Hence, noting that the algebra homomorphism correspond
ing to g_ (g,e) is just A - (A,O) = A + 0, where A is any 
element of the Lie algebra of <l>K' we obtain finally 
f*CLl HR =jCLIK• That is, if<l>R is trivial, then CLl HR is just the 
connection induced on H K • R by CLI K via the embedding of 
H K in H K • R as a subbundle. Hence the holonomy bundles 
of CLl HR are isomorphic to those of CLlK, that is, to H K. The 
result now follows from the fact that (by definition) CLls is 
reducible to W HR' 

One more point remains to be considered before we 
complete our description of the first stage of symmetry 
breaking. The bundle H K is "given" -it is a specific subbun
dIe of the unitary frame bundle of K. The same is not true of 
R, however; how can we ensure that it exists? This is easily 
answered at this point. From the proof of Proposition 12, R 
must be a trivial bundle, so we can simply take 
R = K X C( <I> K ). The connection with <I> R = 1 can be iden
tified with the canonical flat connection I on such a bundle, 
defined by taking the horizontal subspaces to be tangential to 
the submanifolds of the form K X {g}, gEC( <I> K ). 

We now turn to the second stage of symmetry breaking, 
in which C( <I> K) is broken to the strong + electroweak 
group. We need to construct an R with a connection W R 

which is still flat, but which no longer has a trivial holonomy 
group <I> R' The possibilities for <I> R are limited by the fact 
that, for any fiat connection, there exists I a homomorphism 
from the fundamental group 'TTl (K) onto the holonomy 
group; hence <l>R must have the form 'TTl (K)IN for some 
normal subgroup N of 'TTl (K). Henceforth we suppose that 
some definite choice of <I> R [and of its embedding as a sub
group of C( <I> K )] has been made-one does this, of course, 
bearing in mind that r (<I> R ), the centralizer of <I> R in 
C( <I> K ), is to be the strong + electroweak group. 

Clearly we should construct R in exactly the same way 
that we constructed the Es bundle S. For this, we need a 
principal bundle H2 with a connection having holonomy 
group <I> R' and another principal bundle R2 (the strong 
+ electroweak gauge bundle) which should be trivial and 

have a connection with trivial holonomy group. We can take 
R2 = K X r(<I>R)' but H2 requires some discussion (since, 
unlike H K , it is not "given"). It can be shown, from its as
sumed properties (nonzero Euler characteristic, etc.), that 
K is paracompact and has a finite fundamental group, and 
we may assume that it is connected. Let K be the universal 
covering space of K: it is (by definition) a connected 16 mani
fold which can be regarded as a principal bundle over K with 
structural group 'TTl (K). From Lemma 7 we now find that 
KIN is a principal bundle over K with structural group 
'TTl (K)IN, for any normal subgroup N of 'TT,(K). Now 
choose N so that 'TTl (K) IN is the selected group <I> R -as we 
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know, this can always be done. Set H2 = KIN. Then 
(H2,K,<I> R ) is a principal bundle such that (i) K is paracom
pact and dim K> 1, and (ii) H2 is connected. For any such 
principal bundle, it can be shown I that there exists a connec
tion having holonomy group equal to the structural group of 
the bundle. Thus, we have constructed a bundle with all the 
desired properties. (Note that we could not have taken H2 
simply as K X <I> R' for then H2 would not be connected.) 

The construction of R is now clear: we define it as the 
C(<I>K) extension of H 2 ' R2 • This completes our interpreta
tion of gauge symmetry breaking in superstring theory. (Of 
course, the electroweak group must again be broken, but 
that occurs in an entirely different way.) 

V. CONCLUSION 

The problem of understanding the relationship between 
gauge theory and gravitation-interpreted as (extended) 
space-time structure, not as "just another field" -is the cen
tral question for any unified field theory. Attempts have 
been made to regard gravitation as gauge theory (of the 
Poincare group) and to reduce gauge theory to gravitation 
(Kaluza-Klein), but neither approach has led to any con
spicuous success. One hopes that superstring theory repre
sents a new departure in this respect, but the position re
mains unclear as yet. There can be no doubt, however, that 
gravitation has new roles to play in this theory: for example, 
it is responsible for the breakdown of the Es symmetry. In 
this work, we have found that this development requires a 
radical reformulation of the global aspects of gauge theory, 
particularly in the description of the breakdown of the grand 
unification symmetry. We propose to construct the Es gauge 
bundle by (i) splicing the linear holonomy bundle of K with 
the grand unification bundle to obtain a principal bundle 
H K + R with structural group <I> K X C( <I> K ), then (ii) fac
toring out Z (<I> K ) to obtain a bundle H K • R with structural 
group <I> K • C( <I> K) which is a subgroup of Es, and finally 
(iii) extending to an Es bundle. The linear connection CLI K on 
K, combined with any gauge connection R, gives a well-de
fined connection on the Es bundle; the curvature of this con
nection can be "equated" to that of W K by pulling both back 
to HK + R, provided that the curvature of the R connection 
is zero. The bundle R can itself be constructed in a very 
similar way, though care must be taken regarding questions 
of existence. 

For the sake of concreteness, and because of its topical 
interest, gauge symmetry breaking in superstring theory has 
been the main subject of our discussion. Clearly, however, 
the above construction can be extended to a complete global 
formulation of symmetry breaking by holonomy groups. 
The principal peculiarity of the superstring case is the fact 
that the linear holonomy bundle is "given" -we do not need 
to construct it. In order to apply the method to (for exam
pie) a purely gauge-theoretic context, one would need to 
investigate a number of questions. If we wish to break a 
gauge group G down to a subgroup H, then we must first ask: 
does G admit another subgroup, say J, such that the centra
lizer of J in G is equal to H? Not every subgroup of a Lie 
group can be thus represented-for example, it can be 
shown'3 thatifG = SU(n) andH = SU(m), m <n, then no 
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such J exists. In such a case, "symmetry breaking by holon
omy groups" will obviously not work. But even if J does 
exist, we must still ask whether J can be regarded as the 
holonomy group of some connection on some principal bun
dle. (This is not trivial, particularly if, as is often the case, J is 
not connected.) We intend to return to these questions else
where. 

In conclusion, it should be said that Qur understanding 
of the holonomy group approach to symmetry breaking is by 
no means complete. Here we have been concerned almost 
exclusively with questions of construction-we have not ex
plained, for example, how the embedding of ct> R in C( <I> K ) is 
selected. This must be decided by physical considerations: 
see Ref. 17 for some work in this direction. 
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It is suggested that the factorization of the inverse partition function for 26-dimensional 
bosonic string theory can be interpreted as the existence of an II-dimensional membrane. 
The geometry of diffusion on trees is found to be especially useful, with the p-- 1 limit 
corresponding to ordinary diffusion in the plane. Finally, the interpretation of the 
cohomological information in the Weil conjectures in terms of supersymmetric quantum 
mechanics and the arithmetic of the semiclassical limit is outlined. 

I. INTRODUCTION 

In Ref. 1, the author suggested that p-adic analysis may 
lead to theories of membranes. These membranes would be 
described by geometrical p-adically complete membranes 
that correspond to the geometric rational or real membranes 
that are usually thought of as the observable world. In num
ber theory, one counts points in a space over a finite field. 
Assembling the number of points over all finite field exten
sions into the zeta function of Artin and Mazur leads to 
cohomological information about the space over the com
plex numbers. Z (This is the essence of the Weil conjectures as 
proved by Deligne.) Since the Artin-Mazur zeta function 
can be expressed as a fixed-point theorem for the Frobenius 
map (determined by an element of the Galois group of the 
finite-field extension), we conjectured that one can use a 
type of supersymmetric sigma model to calculate the coho
mology of spaces. These more exotic sigma models might be 
able to be interpreted as membrane theories. Moreover, the 
Artin-Mazur zeta function could be multiplied together us
ing the notion of adeles to obtain a modular form which 
satisfies a functional relation. (In the case of elliptic curves, 
the product of zeta functions is called the Hasse-Weil L 
function. The functional relation for the Hasse-Weil zeta 
function is still unproved for a general elliptic function over 
the relationals, although it has been proved for many such 
curves. ) 

Gervais3 then noticed that the fact that the algebraic 
completion of the p-adic numbers is infinite dimensional (as 
opposed to the complex one-dimensional extension of the 
real numbers) might be interpreted as the possibility of high
er-dimensional membrane theories with scattering ampli
tudes that are generalizations of the Virasoro-Shapiro am
plitude (which is analogous to the complex extension ofthe 
reals) . 

In this paper, we will link these two approaches by 
showing that the factors in the zeta function signifying non
trivial cohomology can be interpreted in terms of the repre
sentation of a p-adic group.4 Given a p-adic group [SLz (Qp ) 
will be our standard example], one can obtain arbitrarily 
high-dimensional cohomology by algebraic extensions, just 
as Gervais claimed to describe membranes by p-adic algebra
ic extensions. 

Furthermore, we will use p-adic group theory to under-

stand the factorization of the inverse bosonic string partition 
function. We interpret this factorization in terms of the exis
tence of an II-dimensional membrane. This factorization 
may be relevant for one-loop string amplitude. Our interpre
tation of this factorization depends on the use ofHecke oper
ators which generate p-adic trees. The generating functional 
for a tree becomes the Poisson kernel for two-dimensional 
electrodynamics in the p-- Ilimit.5 Therefore, propagation 
along a tree is analogous to the Green's function method for 
two-dimensional electrodynamics. Tree geometry is a new 
form of geometry analogous to the hyperbolic geometry of 
the upper-half plane. One can consider families of trees to 
define a supersymmetric theory on trees such that the fixed 
point of the family is given by the eigenvalue of an operator 
related to the Hecke operator, i.e., Frobenius operator. 

II. ALGEBRAIC EXTENSIONS3 

We first review the relation of p-adic numbers of mem
branes according to Ref. 2. Recall that the algebraic comple
tion of the p-adic numbers is an infinite-dimensional vector 
space over the p-adic numbers. This is in contrast to the 
complex plane, which is the algebraic completion of the real 
numbers and only a two-dimensional vector space over 
them. 

As a concrete example of a four-dimensional extension 
of the p-adic numbers, consider the equation X4 + 1 = O. De
note j as a primitive root, i.e., a root of the equation that 
cannot be written as another root raised to some integer 
power. Then an arbitrary element of the extension Qp (j) has 
the form 

Z=a+jp, 
a=x+/y, p=r+/s. 

The Galois group is generated by the permutations j --/, 
j--/, and j-/, which changes Z to Z3' Zs, and Z7' respec
tively: 

Z3 =a* +/P, 
ZS =a +/P, 
Z7 =a* +/p*, 
a* = x -/y , p * = r -is . 

Finally, we have a norm invariant under the Galois group: 
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Izl4 = ZZ3Z 5Z 7 = (XZ - yZ.+ 2rs)z + (r _ ~ _ 2xy)z. 

If Izl = I, we obtain that Z can be written in terms ofthree 
angles, a, (3, and (J: 

a = ~ [cos( (JI - (JZ)Icos ( (J3 - (JI)] e fO
J/2, 

{J = ~ [sine (J3 - (JZ) Isin( (J3 - (JI)] e fo",. 

This is the crux of the matter. The membrane obtained from 
the algebraic extension forms an irreducible representation 
of a continuous group as well as of the Galois group. A simi
lar phenomenon occurs in varieties over finite fields. 

Give a curve or variety over a finite field, like Zp, one is 
interested in those vectors x = (xl, ... ,XN ) that lie in a finite 
extension of the field, like Fq ~ pL' The points on the variety 
are obtained as fixed points of the L th iterate of the Froben
ius map FL, where 

F = (xl, ... ,XN) -+ (x f , ... ,x 'Iv) , 
FL = (xl, ... ,XN) -+ (xi , ... ,x'}.) . 

This follows from the definite of Fq as the set of points with 
Z q = Z. The ith cohomology elements are obtained from the 
i-dimensional irreducible representation of the Frobenius 
operator. They can be understood as something like the 
membranes we considered earlier. To see how these arise, we 
consider more aspects of number theory. 

III. THE WElL CONJECTURES: CALCULATING 
COHOMOLOGY BY COUNTING POINTS 

In number theory, if one is given a curve (or a variety of 
curves) defined by a polynomial (or set of polynomials) in 
several variables, with coefficients in a finite field Fq ~ pN' one 
is interested in counting points that lie on this curve. The 
points do not all lie in the finite field, but in an algebraic 
extension. It is interesting to consider all algebraic exten
sions FqN of Fq and count the number of points NL on the 
curve that lie in F L' One then forms the Artin-Mazur zeta 

q 

function 

Z(T) = exp( I NLT
L
). 

i~O L 

Then the Weil conjectures, which hold for an arbitrary 
smooth variety, as proved by Deligne, state that 

(I) Z( T) is a rational function; 

(2) Z (qnT) -I) = qnE/2T EZ( T), for some integer E; 

(3) Z(T) = (iII PZi - 1 (T») (~\ PZi(T») -I; 
where each Pi (T) is a polynomial over the integers 

Po(T)=I-T, P2n (T)=I-qnT, 

and 

Pi(T) = II (1- aijT), 
j 

laij) = q1/2, I <J<2n - I . 

( 4) Each Pi (T) detel'Il).ines the ith cohomology group 
of the variety over the complex number. Moreover, Pi (T) is 
the characteristic polynomial of a Frobenius operator acting 
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in the ith cohomology basis. The Frobenius operator is de
fined on the vector x = (x I'''''X N) mapped into (xi , ... ,x'}. ). 
The vectors x that lie in Fq are fixed points of this map. 

As an example, we look at the projective (N - I)-space, 
i.e., the space of all N vectors as above with xiEF'q, modulo 
multiplication by the nonzero elements AEF':. 

We would like to count the points in FN _ lover q = i 
for each integer L: 

NL = (qN - I)/(q - I) = I + q + ... + qN-1 . 

Notice that the cohomology of CpN- I is determined by a 
two-form x. The fact that the total Chern class is I + x 
+ ... + x N

- I is not a coincidental similarity with NL as 
we see below: 

( 
:IpLiTL) 

=exp I L 

=exp( - IIog(l-piT») 

N-I I 
=II 

i~O (1 - iT) 

thus PZi (T) = I - piT, PZi _ I (T) = I. Therefore there is 
cohomology in only the even dimensions, as is well known. 

We note that exactly the same zeta function is obtained 
by looking at the curve :I~~ IX7 - x~ = 0 over Zp. One can 
consider this calculation as similar to a covariant method of 
calculating the zeta function. It would seem that this would 
lead to a supersymmetry or BRST symmetry, just as the 
introduction of ghosts leads to this symmetry in gauge theo
ries. Namely, one can introduce a vector k so that k Z = 0 in 
the ( + + .. , + - ) norm. Then we define cohomology 
by those x so that k· x = 0 but x # ky for some y. For N = 2, 
we choose k = (O,I,!). Then for x we have (a,b,b) and 
( - a,b,b), which are not equal to O. This defines the two
dimensional space on which Tr F = p. That is to say, it de
fines an irreducible representation. 

Finally, we note that the zeta function for an elliptic 
curve over the rationals can be shown to have the following 
form for T = P - s: 

Z(s) = [1_a(p)p-s+pl-S]!(l_p-S)(I_pl-~), 
a(p) = ap + lZp = 2 real(ap ) , 

lapl=pllz. 

[Note that the expression a(p) as the real part of ap is like 
the separation of a string into right and left movers.] The 
denominator is rather trivial; as expected it is that obtained 
from pi (Zp)' However, the numerator is interesting. The 
inverse of the numerator can be expanded in a power series: 

where 

a(p)a(i) = a(i+ I) + pa(i- I ) . 
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If one takes the adelic product over all primes p (ignoring the 
subtlety of bad reduction), one obtains l:a (n) n - s. This 
function is conjectured to be the Mellin transform of a 
modular form. 2 We will need some definitions in order to 
proceed. 

IV. MODULAR FORMS, HEeKE OPERATORS,8 AND 
TREES7 

Let H denote the upper-half plane of the complex plane 
C. Then PSL2 (R), which is SL2(R) mod( ± 1) is the group 
of all analytic automorphisms of H with discrete subgroup 
PSL2 (Z), called the modular group. Let k be an integer. 
Then j is a modular form of weight 2k if j is a holomorphic 
function of Hand 

j(z) = (cz + d) - 2kj(az + b)/(cz + d») 

forall(~ ~)ESL2(Z).SincetheelementsS=z-+ -lIzand 
T = z -+ z + 1 generate the modular group, one must only 
check that 

j(z+l)=j(z), 

j( - liz) = ~Y(z) . 

If j vanishes at infinity, it is called a cusp form. 
We can identify modular functions of weight 2k with 

lattice functions of weight 2k as follows: given a lattice, for 
example, the two-dimensional lattice 

r(W I,W2 ) = ZW I Ell ZW2 , 

with basis {W I,W2}, we define a lattice function 

F(WI,W2) = (w2) -Zkj(WI1w2)' 

where j is a modular function of weight 2k. Then 

F(liw l ,liw2) = Ii - 2kF(WI,W2) . 

Given two cusp forms of weight 2k, k> 0, then there is a 
measure, called the Weil-Peterson measure, 

fL( f,g) = j(z)g(z)yZk(dx dy )/y2, Z = x + iy, 

that is invariant under SL2 (Z) and bounded on H ISL2 (Z). 
This measure defines a Hermitian, positive definite inner 
product on M ~, the vector space of cusp forms of weight 2k. 
Note that one can define a graded algebra 

Within the Hilbert space L 2(H ISL2 (Z») defined by the 
Weil-Peterson metric, there exists a class of Hermitian oper
ators, called Hecke operators. These operators play an essen
tial role in breaking up the Hilbert space into p-adic spaces 
which are simpler. The Hecke operators are best described in 
terms of lattice correspondences. We then use the relation 
between modular forms and lattice functions to define the 
Hecke operators on modular forms. 

Consider the set oflattices in the complex plane. Given a 
lattice r, the Hecke operator T(n) denotes a correspon
dence that transforms r to a sum of its sub lattices r' of index 
(r:r') = n: 

T(n)r = I r'. 
(r,r') 
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The number of such lattices r' is equal to the number of 
subgroups of order n in (Z"IZ)2. Ifn is a primep, this num
ber is p + 1, the number of points on the projective line over 
a field of p elements. This last result can be seen by consider
ing r as generated by (1,0) and z = (x,y). Then r' is of 
indexp if it is generated by (lip) (alx,a l y + a2) and (1,0) 
with (a l ,a2 ) an element of the projective line over Z IpZ. The 
projective line contains p + 1 points corresponding to ( 1, j), 
j = O,I,oo.,p - 1, and (0,1). We also need to define the ho
mothety operators R;. r = lir. We then have the following 
algebra: 

R;.R/l =R;'/l' 

R;. T(n) = T(n)R;. , 

T(m)T(n) = T(mn), (m,n) = 1, 

T(p) T(p") = T(pn+ I) + pT(p" - I )Rp , 

for p prime. 
Consider the set of integral matrices S", (~ ~ lad = n, 

a> 1, O,b < d. Then there is a one-to-one onto map of the set 
r(n) of sub lattices ofindexn in r with thematricesS" given 
by a mapping of the basis (W I ,W2 ) for r to the basis ofr(n), 
(awl + bw2,d(2). 

Once we have the isomorphism between sublattices and 
matrices, the relation between the Hecke lattice correspon
dences and Hecke matrix operators is immediate. If j(z) is a 
modular form of weight 2k, then 

T(n)j(z) = nZk - 1 I d _Z"j(az+ b), 
a,d. ad= n d 

O<b<d 

so that, for p prime, 

T(p)T(pn)j(z) = [T(p"+I) +p2k- IT(p"-I)]j(Z), 

where T(n) is a Hermitian operator with respect to the 
Weil-Peterson metric. 

We define new correspondence operators 0(p"), which 
makes immediate the relation to the underlying tree geome
try: 

0 0 = 1, 

0(p) = T(p), 

T(pn) = I 0(p" - 2;) = O(pn) + T(p" - 2) . 
0<;<"/2 

Thus, when k = 1, we have 

[0(p)]2 = 0(p2) + (p + 1)00 , 

0(p)0(p") = 0(pn+ I) + p0(p" - I), n>2. 

One can then define a p-adic tree, where each vertex corre
sponds to a lattice. If it is the lattice corresponding to a 
choice origin, 0(p) gives a correspondence to the (p + 1) 
lattices contained in r with indexp, and 0(p") gives acorre
spondence to those vertices with ultrametric valuation n. 

Just as there is a hyperbolic geometry defined in the unit 
disk X

Z + yZ,1 with respect to the metric (dx2 + dy)1 
(1 - x 2 

- y)2, so that geodesics through a point do not in
tersect, so, too, the geodesics through the vertex represent
ing r, for example, either coincide or never intersect.s 
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The tree also makes clear the relation of Hecke opera
tors to representations of p-adic groups. Just as the integers 
label the cosets of the circle within the real numbers by the 
winding number, so, too, do the p-adic valuations, i.e., the 
integers n given by thep-adic normp - n, labelcosets ofthep
adic integers Zp with Qp. However, for PGL2 ( Qp), one has 
the double cosets 

GL2(Zp)\ (~n p~n)/GL2(ZP) 
with the GL2 (Zp) operating on two different vertices (lat
tices) that are separated by 2n ultrametric lengths. We can 
then describe the tree as PGL2 (Qp )/PGL2 (Zp), the p-adic 
analog of the upper-half plane. The Hecke operators 0(pn) 
denote correspondences between vertices separated by n ul
trametric lengths. Hecke operators are in GL2, not SL2, 

since they have non unit determinant. 

v. SPHERICAL FUNCTIONS4 

In a disconnected space, like a tree, there are not differ
entialoperators. However, the Hecke operator plays the role 
of a Laplacian. It generates a diffusion process along the 
tree.8 It is interesting to construct the analog of spherical 
harmonic and radial functions. We will construct in this sec-

(fl,h)= f iI(t,1) h(t,1)dt, 

tion the analog of radial functions. These are called spherical 
functions, invariant under the operators representing 
SL2 (Zp) in the double-coset representation. 

In the two-dimensional space (X I,X2 ) =x we define the 
norm 

Ixl =max(lx l l,lx2 1)· 
Every function invariant under the compact subgroup 
SL2 (Zp) is of the form F( Ixl). We can represent the total 
group in the space of function Ix I S - I corresponding to the 
character 1T(X) = Ixl s

• Ifwe define 

/o=~p/(p+ 1) Ixl s
-

I
, 

then an irreducible representation T,., (g) invariant under 
SL2 (Zp) is determined by the spherical function 

¢J(g) = (T(g)/o,fo) 

= ¢J(t», 

if g = u It)U2 in the double coset representation where 

(
p-n 0) 

t) = n>O. o pn 

If s = ip, an imaginary number, we can determine the 
representation of the principal series 

¢J(t» = -p-f [max(pnlt I,p - n)]s- I [max( It 1,1)] -s- I dt 
p+l 

= _p_{p- n(s-I) ( dt + pn<s-I) ( dt + pn(S-I) { It 1-2 dt} 
p+l )ltl<p-2. )p-2·<ltl<1 )ltl>1 

=_P_{p-ns-n+ O_p_I)p_npns_p-ns +pns-n-I} 
p+l I_p-s 

_ _ n{ 1/2 sin(n + pO - p-I/Z sin(n - !)O} -p p , 
sin(O /2)(pI/Z + p-I/Z) 

Moreover, the spherical function is related to the eigen
function of 0(p) with eigenvalue 2pl/Z cos 0, namely, the 
function that, at the nth level in the tree, is given by 

Fn (2pll2 cos 0) = p + nlZ {p sin(n + 1)0.- sin(n - l)o}. 
psm 0 

Note that the limitp- 1 leads to the Chebyshev polynomial 

Cn (cos 0) = (I/2n - I )cos(nO) 

with generating functional that is essentially the Poisson ker
nel9 for two-dimensional electrostatics: 

1 - t 2 

------=-Z = L Cn (cos 0)(2t)n. 
1 - 2tcos 0 + t 

We, therefore, see that the p- 1 limit defines a continuum. 
The generating functional for Fn(2pl/z cos 0) is 

O-tz)/(l_2tpI/ZcosO +pt z). 
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If we replace t by p - s, we recover the Euler factor in the 
Hasse-Wei! zeta function discussed earlier. The numerator 
is just a trivial Euler factor related to the Riemann zeta func
tion. We, therefore, see that the characteristic polynomial 
for the Frobenius operator in the one-dimensional cohomo
logy of an elliptic curve, i.e., loop space, is a generating func
tional for particular angles 0 p for a p-adic tree. This yields 
the simplest example of a modular form whose Mellin trans
form factorizes over the primes and satisfies a functional 
relation 

XII(l-a(p)p-s+pl-S)-I= ±L(2-s). 
p 
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VI. FACTORIZATION OF MODULAR FORMS 

A necessary and sufficient condition for a cusp formJ to 
have a Mellin transform that factorizes over the primes is 
that the Fourier series 

00 

J( r) = L anqn, q = ei1TT
, 

n=1 

be an eigenfunction of all the Hecke operators T(n) with 
eigenvalue an' If n is a cusp form of weight 2k, then, as a 
consequence of the multiplicative properties of the Hecke 
operators, one has that the Mellin transform ofJis 

L ann -s = II(1 - 2a(p)p-S + p2k- I -,)-1. 
P 

As an example, we consider the inverse of the partition 
function in bosonic string theory. This is a cusp form of 
weight 12 in a space M?2 of dimension 1. We, therefore, have 
that the inverse partition function (21T) - 12ll. is an eigenfunc
tion of T(n) for each n with eigenvalue T(n) 

00 

(21T)- 12ll. = qII(l- qn)24 = L r(n)qn, 
n n=O 

r(n)r(m) = r(nm), for (n,m) = 1, 

r(p)r(pn) =r(pn+l) +pllr(pn-I), for prime p. 

Moreover, the Mellin transform 

i r(n)n- s =II(1-r(p)p-S+pll-2S)-I. 
n=O p 

It has been proved that there exists a variety whose zeta 
function has a PI I ( T) divisible by the right-hand side. By the 
Weil conjectures, Ir(p) I <2pll12. That is to say, the eigenval
ues of the Hecke operators are obtained by taking the trace of 
the Frobenius operator on the cohomology of the variety, 

(
exP(iO ) 

r(p) = Tr F = Tr 0 p 
( 0 'n »), for Op' exp - lop 

that give the Ramanujan numbers r(p). If we are to express 
the polynomialpll (s) = (1 - r(p)p - S + pll - 2')-1 in terms 
of a tree-generating function (1 - a (p ) p - S + i -')- 1, we 
need to solve an II-order integral polynomial equation re
quiring an II-dimensional vector space over the p-adic tree. 
We need to express 2pll/2 cos Op as an 11th-degree polyno
mialin terms of2pl/2 cos(Op )/11, which is possible by defi
nition ofthe Chebyshev polynomials. Moreover, the inverse 
partition function behaves as if there is an II-dimensional 
membrane. We can relate the inverse partition function to 
string theory by considering it as a partition function for 
ghosts. It is, therefore, suggested that an interesting phe
nomenon, perhaps an II-dimensional membrane conden
sate, can occur in such a theory. This would be described p
adically in terms of an II-dimensional tree structure. [To 
give another indication of the existence of this membrane, we 
notethatr(p) =ull(p) mod69I,whereull (p) = 1 +pll. 
Moveover, 691 is the numeration of i B6, where B6 is a Ber
noulli number. This number divides the order of the number 
of diffeomorphism classes of exotic 23-spheres which bound 
parallelizable manifolds and is therefore associated with a 
global anomaly.] 
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We mention incidentally that the Einstein series 

( 
2k 00 ) Ek (z) = 1 - - L Uk_1 (n)qn 2{;(k), 
Bn n= I 

where Bk is the k th Bernoulli number and 

Uk_1 (n) = L d k
-

I 

din 

has a Mellin transform that factorizes with factor (1 - Uk _ I 

(p)p - S + pk - I - 2')-1. This is interesting because the anom
aly-generating functional for superstrings is given in terms of 
the Ek (z). Nontrivial cohomology occurs in dimensions 0 
and 2 (k - 1) corresponding to the factors (1 _ P - S) - I and 
(1 _ pk - I - S) - I. 

VII. SUPERSYMMETRY, INDEX THEOREMS, AND THE 
WElL CONJECTURES 

We now return to the idea mentioned at the beginning. 
The Artin-Mazur zeta function for an arbitrary smooth var
iety over a finite field can be expressed as a fixed point 
theorem for the Frobenius operator, where 

Pi(T) =det(1-FTIHn· 

Where the cohomology group Hi defines an i-dimensional 
irreducible representation. By our recently developed 
knowledge of the index theorem in terms of quantum me
chanics, it would seem that there should exist a p-adic form 
for quantum mechanics that yields the polynomial Pi ( T). 

While we have not yet succeeded in defining the above 
conjectural quantum mechanics, we will use this section to 
suggest some ideas about the matter. First, the definition of a 
quantum mechanics requires a time. This time is a parameter 
for a loop because the boundary conditions that request su
persymmetry are periodic for bosons and fermions. For the 
Hasse-Weil zeta function, there is a natural definition of 

time, that is, the angle in ap = pl/2e
il
\ This angle defines a 

dual to a lattice, the lattice associated with the elliptic curve. 
As one rotates Op' one considers arbitrary characters for the 

treefunctionsJo = ~ [p/(p + 1)] Ixl s
-

I
. The quantum me

chanical time is then a circle in the Hilbert space of tree 
functions. The bosons are scalar functions and the fermions 
are one-forms on this loop space. The supersymmetry 
between the bosons and fermions is a Parisi-Sourlas lo type 
supersymmetry, and therefore associated with SL2• 

The theory should be independent of the parametriza
tion of the loop space. We, therefore, should include in the 
quantum mechanics a delta function 

o(iU) + 7]) I 07] I = o(i<t) + 7])det!.., 
& at 

where 7] is some source, with a distribution, that needs to be 
integrated over. In such a way, we can obtain a supersym
metry theory !i<t)2 + t/J*(at/J/at) (for Gaussian noise). 
This method has lead to a consideration of the arithmetic 
content of semiclassical quantum mechanics. II 

In brief, the semiclassical limit of quantum mechanics is 
defined in terms ofintegral cohomology, i.e., the Bohr-Som
merfeld quantization rule counts the number of orbits. 12 One 
can, therefore, consider this limit arithmetically. 

Bernard Grossman 510 



                                                                                                                                    

One possible application for the future is to calculate the 
cohomology of vector bundles over a Rieptann surface. Us
ing equivariant Morse theory, Atiyah an&Bott13 have calcu
lated the Poincare series for stable vector bundles 

P,{Map(M-+BU(n»)} = CIt (1 + t 2k
- I )2

g
) 

X([~:(l- t2k)2}(1_ t 2n») -I. 
Amazingly enough, they have also calculated the number of 
vector bundles over Riemann surfaces over finite fields using 
number theory and the Weil conjectures. The formula for 
this number is 

q(n
1 

- l)(g-lJZM(s = 2)" 'ZM(S = n) 

for a genus g Riemann surface M over finite field Fq , whose 
zeta function is ZM (s). Atiyah and Bott noticed that if they 
replaced t - 2 by q and - t - I by Ct) i (a zero of the zeta func
tion) in the Poincare series, they recovered the number theo
retical quantity. This suggests a future direction. Namely, 
one tries to find a topological Lagrangian like that used to 
calculate the Floer groups and Donaldson polynomials. 14 

Then define this Lagrangian for Riemann surfaces over fi
nite fields to calculate number theoretical quantities. We 
have suggested that the topological Lagrangian for elliptic 
curves should be defined over loop space on trees. In this 
case, the eigenvalues of the Frobenius operator F are the 
periods of the elliptic curve. This becomes topological if we 
consider it as the holonomy for the loop space of a tree. 
Notice that the really interesting quantity is the numerator, 
because this contains the holonomy. The denominator cor
responds to periodic even-dimensional cohomology. 

A natural choice for the topological Lagrangian is a gen
eralization of the Lagrangian of Frampton and Okada IS that 
leads to the operator 

pDF. 
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The characteristic polynomial 

det(1-pDF) 

is what occurs in the Weil zeta function. 
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A mathematically rigorous analysis is given on supersymmetric embedding of a model of a 
one-dimensional quantum harmonic oscillator interacting with infinitely many bosons moving 
in the s-dimensional space RS

• The model is exactly soluble. By a rigorous explicit construction 
of supersymmetric quantum field theories, it was proven that the Hamiltonian of the model is 
supersymmetrically embeddable if it is non-negative. The index of the Dirac-Kahler-type 
operators associated with the supercharges of the supersymmetric quantum field theories is 
computed. 

I. INTRODUCTION 

In the course of developing supersymmetric quantum 
mechanics, as initiated by Witten, 1-3 it has been found that a 
number of quantum mechanical Hamiltonians have super
symmetric extensions. 1-14 In particular, in Ref. 5 a general 
formalism for constructing supersymmetric quantum me
chanical Hamiltonians was given, from which it is seen that 
some classes of quantum mechanical Hamiltonians of the 
Schr6dinger type have supersymmetric extensions. 

In view of a generalization of these results, it is natural 
to ask the following question: Given a quantum mechanical 
Hamiltonian, under what conditions does it have a super
symmetric extension? We shall say that a Hamiltonian is 
supersymmetrically embeddable if it has a supersymmetric 
extension (for a mathematically precise definition, see De
finition 2.2). 

The problem of supersymmetric embedding is interest
ing both physically and mathematically: It has been hoped 
that supersymmetry may give a fundamental framework for 
a unification of elementary-particle interactions. From this 
point of view, it may be natural to ask if the usual quantum 
theoretical models have something to do with supersym
metry. Namely, this leads to the question of super symmetric 
embedding. On the other hand, the Hamiltonian of a super
symmetric quantum theoretical model is given as the square 
of a Dirac-type operator (a "supercharge"), while the Ham
iltonian of a usual (bosonic) quantum theoretical model is 
an operator of the Schr6dinger type. Therefore, from a 
mathematical point of view, the problem of supersymmetric 
embedding may be regarded as one that investigates a "hid
den" structure (i.e., the supersymmetric structure) associat
ed with a Schr6dinger-type operator. This is also interesting 
in relation to index theorems (e.g., Refs. 15 and 16). 

In Ref. 17, Gozzi showed that the one-dimensional 
Schr6dinger Hamiltonian - d 2/ dx2 + U(x), xER, is super
symmetrically embeddable if it has a nodeless ground-state 
wavefunction. This result was extended to the three-dimen
sional case in Ref. 18 and to an arbitrary n-dimensional case 
in Ref. 19, where it was shown that every n-dimensional 
scalar Hamiltonian of the form 

n a2 
h= - I-2+U(X), x=(x1, ... ,Xn)ERn , (1.1) 

j~ 1 aXj 

is supersymmetrically embeddable ifit has a strictly positive 
ground-state wave function. (In Ref. 19, the boundedness 
from below of h is assumed. However, this is not necessary; 
in fact, one can deduce it from the assumption that h has a 
strictly positive eigenfunction. This is easily seen by tracing 
the "proof" of the supersymmetric embeddability of h.) 
Thus, as far as quantum mechanical Hamiltonians of the 
form (1.1) are concerned, the problem of supersymmetric 
embedding has been entirely solved, at least on a formal lev
el. [From a mathematically rigorous point of view, in addi
tion to the existence of a strictly positive eigenfunction n, 
some regularity conditions have to be imposed on n for the 
formal scheme of supersymmetric embedding to be justified. 
A mathematically rigorous analysis of the problem has been 
given in Ref. 20 as an application of an abstract mathemat
ical theory, with a class of symmetric operators acting in 
L 2 (M, f1-), where (M, f1-) is an abstract measure space.] 

As a next stage, it is interesting to study supersymmetric 
embedding of Hamiltonians in quantum field theory. In a 

• 21 h prevIous paper, t e present author considered n-compo-
nent quantum real scalar field Hamiltonians of the form 

n i tj2 H=-I dx+U(cp) 
j~1 R d (jCPj(X)2 

(1.2 ) 

in the Schr6dinger representation of the canonical commu
tation relations,22 where cp(x) = (CPI (x), ... ,CPn (x»), xERd

, is 
the time-zero field on the d-dimensional space Rd and U( cp) 
is a real-valued functional of cP denoting a potential, and 
formally showed by an infinite-dimensional extension of the 
method used in Ref. 19 that His supersymmetrically embed
dable if it has a strictly positive eigenfunctional. 

However, the question of how to give a mathematically 
rigorous basis to the formal scheme has been left open. [A 
class of models in which Uis a polynomial type with a special 
form23 was discussed rigorously in Ref. 24 in the case n = 1 
and d = 1,2. However, this is a rather tractable case once one 
employs results of constructive quantum field theory on 
P(CP)d models (e.g., Ref. 25 and references therein; cf., also, 
Ref. 26).] 

In this paper, we start a mathematically rigorous analy
sis on supersymmetric embedding of quantum field models. 
As a first step, we consider an exactly soluble model, which 
describes a quadratic interaction of a one-dimensional quan-
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tum harmonic oscillator with infinitely many scalar bosons 
and has been discussed in quantum statistical physics (e.g., 
Ref. 27 and references therein; in this context, the model is 
called the R WA oscillator). The Hamiltonian of the model is 
not exactly of the form (1.2) [see (3.9) in Sec. III]. There
fore, the method of Ref. 21 does not apply in its original 
form. The method taken in the present paper is as follows. 
We first "solve" the model exactly. The key to this is to find a 
canonical transformation28 by which the Hamiltonian is di
agonalized and its spectrum completely determined. This 
has been done in a previous paper.29 Then, by employing a 
method for supersymmetric extensions of a free scalar field, 
which consists of a direct infinite-dimensional extension of 
the method for supersymmetric extensions of the harmonic 
oscillator,30.31 we construct a supersymmetric quantum field 
theory (SSQFT) in which a reduction of the supersymme
tric Hamiltonian to a subspace of state vectors yields the 
Hamiltonian of the model. In this way, it is proved that the 
Hamiltonian of the model is supersymmetrically embedda
ble ifit is bounded from below (non-negative as a matter of 
fact). In fact, under the condition, we shall construct two 
kinds of SSQFT depending on the range of the parameters 
contained in the Hamiltonian. (It is known that a supersym
metric extension of a given Hamiltonian is not necessarily 
unique. See, e.g., Refs. 6-13, 30, and 31.) A big difference 
between the two theories is in the spectrum of the Hamilto
nian and, related to it, in the fermionic degrees of freedom 
(see Secs. V and VI). However, in both of the SSQFT's the 
bosons and the oscillator do not interact with the fermions. 

We remark that the method in the present paper applies 
also to other exactly soluble models with quadratic interac
tions (e.g., Ref. 32-39). 

This paper is organized as follows. In Sec. II, we first 
recapitulate an abstract axiomatic mathematical formula
tion of super symmetric quantum theory (SSQT) for a rigor
ous approach, which was proposed first in Ref. 40 and then 
in Ref. 41 with a reformulation in terms of sequilinear forms. 
Then we give a mathematically precise definition of super
symmetric embeddability of quantum Hamiltonians. In Sec. 
III, we define the model by giving its Hamiltonian. In Sec. 
IV, as preliminaries to Secs. V and VI, some technical facts 
taken from Ref. 29 are presented and some additional for
mulas are proved. In Secs. V and VI, we construct explicitly 
SSQFT's and prove the supersymmetric embeddability of 
the model. In Sec. VII, some remarks are given. In particu
lar, we discuss index problems related to the supersymmetric 
quantum field models constructed in Secs. V and VI. 

II. DEFINITION OF SUPERSYMMETRIC QUANTUM 
THEORY AND SUPERSYMMETRIC EMBEDDING 

Following Refs. 40 and 41, we first give an axiomatic 
mathematical formulation of SSQT, which applies to both 
supersymmetric quantum mechanics and SSQFT. 

Definition 2.1: Let N;;.l be a fixed integer. A SSQT with 
A;-supersymmetry is a quadruple {JY,{Q)~ I,Hss ,NF } 

consisting of a Hilbert space JY, a set of self-adjoint opera
tors {Q)f= I (supercharges), self-adjoint operators Hss 
(supersymmetric Hamiltonian), and NF (fermion number 
operator) satisfying the following properties. 
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(a) The Hilbert space JY is decomposed into two mutu
ally orthogonal closed subs paces JY ± : 

JY=JY+E9JY_ 

and, for all 'I' ± &W' ± ' 

NF'I'± = ±'I'± . 

(b) The operator Hss is related to Qj' j = 1,oo.,N, by 

Hss = Q i = Q ~ = ... = Q 7v . 

(c) The operators Qj' j = 1, ... ,N, satisfy the anticom
mutation relations in the sense of sesquilinear form: 

(Q;'I',Q/I» + (Qj'l',Q;<I» = 0, i=lj, 

'1', <l>ED (Q; ) (lD( Q) , 

where ( , ) is the inner product of JY and D(A) denotes the 
domain of operator A. 

( d ) For all 'I' and <I> in D ( Qj ) , 

(NF'I',Qj<l» + (Qj'l',NF<I» =0, j= 1,2,oo.,N. (2.1) 

Some remarks are in order. Condition (a) is equivalent 
to the fact that N F has a purely discrete spectrum with eigen
values ± 1. The subspaces JY + and JY _ are called the sub
spaces of bosonic and fermionic states, respectively. Condi
tion (b) implies that the supersymmetric Hamiltonian Hss 
is non-negative and 

D(QI) = .. , =D(QN)=D(H~~2), 

which follows from the spectral theorem for a self-adjoint 
operator. Since N F is bounded and self-adjoint, Eq. (2.1) is 
equivalent to 

(Qj'l',NF<I» = - ('I',NFQj<l», 'I',<I>ED(Qj)' 

Hence, for every <l>ED( Qj)' NF<I> is in D( Q), that is, NF: 
D(Q) ...... D(Q) and 

QjNF+NFQj=O, j=l,oo.,N, 

on D( Qj)' For some abstract results derived from the above 
definition of a SSQT, see, e.g., Refs. 40-42. 

Definition 2.2: LetA be a self-adjoint operator acting in a 
Hilbert space. We say that A is supersymmetrically embed
dable if it is unitarily equivalent to a reduced part of the 
supersymmetric Hamiltonian of a SSQT. 

Remark: Since a supersymmetric Hamiltonian is non
negative [condition (b) ], every supersymmetrically embed
dable operator is non-negative. This implies that an operator 
that is not non-negative is never supersymmetrically embed
dable. However, for a self-adjoint operator A that is bounded 
from below, the "renormalized" operator A - Eo may be 
supersymmetrically embeddable, where Eo is the infimum of 
the spectrum of A. 

III. DEFINITION OF THE MODEL 

In this section we define the model mentioned in Sec. I. 
For a mathematical generality, we assume that the bosons 
move in the s-dimensional Euclidean space RS. Further, in 
this paper we shall confine ourselves to the case with a cutoff 
interaction. Thus the Hilbert space Y of the state vectors is 
given by the tensor product of L 2(R) and the Boson Fock 
space Y B(L 2(RS») over L 2(RS): 

Y=L 2 (R)®YB (L 2 (RS »). (3.1) 
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Let lUI be a non-negative, strictly monotone increasing, 
and continuously differentiable function on (0,00) satisfy
ing the condition that lUI (t) -+ 00 as t-+ 00. Then we define 
the rotation invariant function lU on R' by 

(3.2) 

which physically denotes the energy of one free boson with 
momentum k. Regarding lU as a non-negative self-adjoint 
multiplication operator in L 2(RS

), we define the boson-free 
Hamiltonian HOB acting in:7 B(L 2(RS») by 

HOB = dr(lU) , (3.3) 

where dr(lU) is the second quantization of lU (see Ref. 43, 
§X.7, p. 208); the formal expression is given as 

HOB = J lU(k)b(k)*b(k) dk, (3.4 ) 

where b (k), kER" is the operator-valued distribution kernel 
of the boson annihilation operator acting in:7 B(L 2(RS»). 

The free Hamiltonian ho of the harmonic oscillator, 
which acts in L 2(R), is given by 

h i ( d
2 

2 2 ) * R o = - - -2 + lUo q - lUo = lUoO a, qE , 
2 dq 

(3.5) 

where lUo > 0 is a constant parameter denoting the frequency 
and a is the annihilation operator for the harmonic oscillator 
defined by 

a = ~ ,JQi;;q + ---- . 1 ( 1 d ) 
H .J% dq 

(3.6) 

We denote by b ( I), IEL 2 (R'), the (smeared) boson 
annihilation operator: 

b(/) = J b(k)/(k) dk. (3.7) 

The Hamiltonian H that defines the model is given by 

H=I®HoB +ho®I+a®b(p)*+a*®b(p), (3.8) 

where pEL 2(RS) denotes a cutoff function and I denotes 
identity. We shall assume that 

Then we have the following proposition. 
Proposition: The Hamiltonian H is essentially self-ad

joint on every core for I ® HOB + ho ® l. 
Proof See Ref. 29, Proposition 2.l. 0 
Remark: By passing to the Schrodinger representation 

of the canonical commutation relations22
•
25 (or the Q-space 

representation43
), where the time-zero field 

¢(x) = J (2(21T)SlU(k»)-1/2(b(k) + b( - k)*) eikx dk 

is realized as a distributional multiplication operator, one 
can see that H can be regarded as an infinite-dimensional 
Schrodinger operator. In fact, H has the following formal 
expression: 
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H=J..{ -J~dx+J [¢(x)L(x-y)¢(y) 
2 8¢(x) 

- 8(x - y)M(x - y)] dx dY} 

1 ( a2 
2 2 ) +- - -+lUoq -lUo 2 aq2 

+,JQi;;q f ¢(X)(@I/2p)(X) dx 

1 a f (A_I/2A)() 8 d ----- lU P X --- x. 
,JQi;; aq 8¢(x) 

(3.9) 

Here 

L(x) = J lU(k)Vkx dk, M(x) = f (j)(k)eikx dk, 

/ denotes the Fourier transform of J, and the operator @ 
acting in L 2(RS) is defined by 

(@/)(x) = (21T) -s/2 J lU(k)/(k) e-ikxdk. 

The spectral property of H is analyzed in Ref. 29. 

IV. SOME TECHNICAL FACTS 

In this section we summarize some of the technical facts 
discussed in Ref. 29, which are needed in Sees. V and VI. 

Let lUI be as in Sec. III, 

m = inf lUI (t»0, (4.1 ) 
1>0 

and put 

Cm=C,\[m,oo). (4.2) 

In the cut plane Cm , we define the function 

D(z) = -- z + lUo + r /p(k) /2 dk, ZEC
m

• (4.3) 
JR' Z - lUCk) 

Henceforth, throughout the paper, we assume the fol
lowing (A2)-(A4) in addition to (Al): 

(A2) sup ID(t ± iE) + t ± iE - lUol < 00 , 
S>O 

/Elm,,,,, ) 

(A3) inf ID(t ± iE) 1>0, 
S>O 

/Elm."" ) 

(A4) lU;(lkl)-1/2Ikl<s-I)/2pEL""(RS). 

It follows from (4.3) that D(z) is analytic in Cm and 

D'(z)= -1- r Ip(kW dk, ZEC
m

• (4.4) 
JR' (z-lU(k»2 

In particular, we have D(t) <0 for all tEe - oo,m). 

Therefore, D(t) is monotone decreasing in tEe - oo,m) and 
hence the limit 

(4.5) 
11m 

exists. It follows from (A2) and (A3) that am #0, - 00. 

(In Ref. 29, am is denoted asdm .) We shall denote the inner 
product and the norm of L 2 (RS) by (. , ')2 (linearin the left 
vector) and 1I·11z. respectively. 
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Lemma 4. 1: (a) Ifam > 0, thenD(z) has no zeros in Cm. 
(b) If am <0, then D(z) has a unique simple zero 

VE( - oo,m). 
In particular, if m > 0 and mo>lIm-I/2pll~ (resp. m>O 

and mo< Ilm-I/2pll~), then O";;v<m (resp. v<O). 
Proof· An elementary exercise. (In Ref. 29, v is denoted 

asmA .) 0 
Remark: The spectral property of H drastically changes 

according to the sign of am (see Ref. 29, Theorem 3.2). We 
shall see that this fact is related to the nonuniqueness of a 
SSQT into which His embedded (see Secs. V and VI). 

Let 

u
l
(t)=mi(t)1I2(-<s-I)!2, (>0, 

and define 

u(k) = U 1 (Ik I), kERs. 

For E> 0, we define a linear operator GE by 

(4.6) 

(4.7) 

(G f)(k) =J u(k)u(k')f(k') dk'. (4.8) 
E m(k) _ m(k') + iE 

It is proved that for every € > 0, G E is a bounded linear opera
tor on L 2(RS) and that the strong limit 

(4.9) 

exists. One can easily see that the limits 

lim D(t ± IE) =D ± (t) 
EIO 

(4.10) 

exist for a.e. (E(m, 00 ) and are not zero by (A3). Hence we 
can define the function 

F(k) =p(k)ID+(m(k»). ( 4.11) 

[In Ref. 29, F(k) is denoted as Q(k).] 
As already seen, we have D' (t) < 0 for all « m. In the 

case am < 0, for convenience we define the constant Co > 0 by 

c6 = - liD '(v) . (4.12) 

Further, we introduce the function 

fo(k) = cop(k)/[m(k) - v] . (4.13) 

[In Ref. 29, Io(k) is denoted as "'A (k).] 

In Ref. 29, it is proved that the operator T given by 

Tf=f-Fu-1Gu-1p/, fEL 2(RS) , (4.14) 

is bounded on L 2(RS
). By OCt) we denote the Heaviside 

function: O(t) = I for (> 0 and O(t) = 0 for ( < o. 
Lemma 4.2: The following formulas hold: 

T*T=I-O( -am )(· ,10)210, (4.15) 

TT* + (. ,FhF=I, 

IIFII~ = I - O( - am )c6 , 

T*F+O( -am)colo=O, 

Tp + (m - mo)F = 0 , 

[T*,m]f= - (J,Fhp, fED(m) , 

( 4.16) 

( 4.17) 

(4.18 ) 

( 4.19) 

( 4.20) 

where D(m) denotes the domain of m as a multiplication 
operator in L 2(RS

). Also, 

Tio + Co F = 0 , ( 4.21 ) 

111011~ + c6 = I . (4.22) 
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[Equations (4.21) and (4.22) are meaningful only for the 
case am <0.] 

Proof See Ref. 29, Corollary 4.9 and Lemmas 4.11 and 
~IL 0 

We shall need more formulas. 
Lemma 4.3: The following formulas hold: 

T*mTf = mf - O( - am )v( J,fo)21o, fED(m) , (4.23) 

T*mF+O(-am)covlo= -p, (4.24) 

Ilml/2FII~ + O( - am )vc6 = mo. (4.25) 

Proof We first note that (4.20) implies that T: 
D(m) --.D(m). Then, by replacing fin (4.20) by Tf and 
using (4.15) and (4.18), we have 

T*mTf= mf - O( - am )(J,fo)2(mlo - cop) . 

On the other hand, it is easy to see that 

mlo - coP = vlo. (4.26) 

Thus (4.23) follows. 
Equation (4.19) implies that F is in D(m). Then, by 

putting f = F in (4.20) and using (4.17), (4.18), and 
(4.26), we obtain (4.24). 

To prove (4.25), we take the inner product of (4.19) 
with F. Then, using (4.17) and (4.18), we have 

Ilml / 2F112 = m - O( - a )c2(m + J Ip(k) 12 dk). 
20m 0 0 V _ m(k) 

Since D( v) = 0, we see that 

mo + J Ip(k) 12 dk = v. 
v -m(k) 

Thus (4.25) follows. 

v. SUPERSYMMETRIC EMBEDDING OF H
THE CASE am >0 

o 

Before discussing the supersymmetric embedding of H, 
we remark that if am > 0, then we have 

up (H) = {O}, Using (H) = ¢ , 

U ac (H) = {m(k) IkERs} = [m,oo) , 

where up (resp. USing,Uac) denotes the point (resp. singular 
continuous, absolutely continuous) spectrum and the multi
plicity of the eigenvalue zero is 1. In particular, H is non
negative. These results are proved in Ref. 29. 

We first construct a SSQFT. In order to do so, we need 
to introduce fermionic degrees of freedom. 

Let Y F (L 2 (RS ») be the Fermion Fock space over 
L 2(RS

): 

Y F (L 2(RS»)= ; An(L2(RS») , (5.1) 
n=O 

where An(L 2(RS») is the n-fold antisymmetric tensor prod
uct of L2(RS) (e.g., Ref. 44, Sec. 11.4) [AO(L 2(RS»)=C]. 
Let "'(f), fEL 2(RS), be the (smeared) Fermion annihila
tion operator on Y F(L 2(RS »), so that the anticommutation 
relations 

{"'(f),"'( g)*} = (J,g)2' {t/J(f),"'( g)} = 0, 

J, gEL 2(RS) , 
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hold, where {A,B}=AB + BA. 
Let 

(c) The following anticommutation relations hold on 
JYo: 

JY=Y®YF(L 2(RS»). (5.3) {d,¢(/)*} = 0, IEL 2(RS) , (5.14) 

This will be the Hilbert space of state vectors for the SSQFf. 
Let 

and 

JY + = EB JY(2n) , JY _ = EB JY(2n+ I) • 

n=O n=O 

Then, JY is identified as 

JY=JY+EBJY_ . 

Let 

¢o(q) = (cuohr) 1/4 e - w"q'12, qER, 

(5.4 ) 

(5.5 ) 

(5.6) 

(5.7) 

which is the normalized ground-state function of ho in 
L 2(R) (i.e., ho¢o = 0). We denote by fiB and fiF the Fock 
vacuum in Y B(L 2(RS») and Y F(L 2(RS»), respectively. We 
define the vector fiEJY by 

fi = ¢o ® fiB ® fiF . (5.8) 

A closed linear operator A in L 2(R) [resp. 
Y B (L 2 (RS

) ),Y F(L 2 (RS
) )] can be exte~ded to a closed lin

ear operator in JYasA ®I ®I (resp. I ®A ®I,I ®I ®A). We 
shall denote the extension by the same symbol. Henceforth, 
we shall omit the symbol ® in operator tensor products if 
there would be no confusions. 

Let JYo be the subspace in JY spanned algebraically by 
vectors of the form 

'I' n (II'''''/;'; gl>· .. ,gr) 

=a*nb(/I)* ... b(lp)*¢( gl)* '" ¢( gr)*fi, 

n,p,r;;>O, II''''/;'' gl, ... ,grED(cu) . (5.9) 

It is easy to see that JYo is dense in JY. We define the opera
tor d on JYo by 

d'I' n (II'''''/;'; gl, .. ·,gr) 
P A 

= L ¢(cu I/2 Tfj)*'I'n(/I, ... ,fj , .. ·,/;,;gl, ... ,gr) (5.10) 
j~ I 

and extending by linearity to all vectors in JYo, where the 
operator T is given by (4.14) and findicates omission of f 

We denote by HOF the second quantization of w (the 
fermion free Hamiltonian) in Y F (L 2 (RS »). We put 

Ho=HoB +HOF' (5.11) 

which is a non-negative self-adjoint operator in JY. 
Lemma 5.1: (a) For every r:>O, d maps JY(r) nJYo into 

JY(r+ I) with 

(5.12) 

(b) The operator d is closable and the adjoint d * is given 
by 
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{d,¢(/)} = b(T*w1l2/), IED(cu I/2 ) , 

{d,d *} = Ho - ¢(cu I/2F)*¢(WI/2F) . 

(5.15 ) 

(5.16 ) 

Proof (a) The first assertion is obvious from definition 
(5.10). To prove (5.12), we see that 
d 2'1' n (II'''''/;'; gl, .. ·,gr) 

_ ~ A A • 1/2 1/2 
- 4,; 'I' n (/I, .. ·/;, .. ·Jj, .. ·/;"cu T/;,w Tfj, gl, .. ·,gr)· 

i#j 

On the other hand, 'l'n(/I, ... ,/;,;gl, ... ,gr) is symmetric 
(resp. antisymmetric) in (II''''/;') [resp. (gl, ... ,gr)]' 
Hence the rhs of the above equation must vanish. Therefore 
we obtain (5.12). 

(b) Equation (5.13) follows from definition (5.10) and 
the anticommutation relations (5.2). This shows at the same 
time that D(d*), the domain of d*, is dense with 
JYoCD(d*). Hence, by a general criterion (e.g., Ref. 44, 
Theorem VIII. 1 ), d is closable. 

(c) We have, from definition (5.10), 
{d,¢( I) *}'I' n (I. , ... , /;,;g I, .. ·,gr ) 

p 

= L {¢(cu I/2 Tfj)*,¢(/)*} 
j~ I 

X 'I' n (/1, ... ,}j, ... ,/;,; gl, .. ·,gr)· 
By (5.2), the rhs vanishes. Hence (5.14) follows. 

Using (5.2) and the fact 

¢(/)fi=O, IEL2(RS) , (5.17) 

we have 

{d,¢( I)}'I' n (II'''''/;'; gl, .. ·,gr) 
P A 

= L (T*cu I/2J,fj )2'1' n (/1, ... Jj, .. ·/;,; gl, .. ·,gr) . 
j~ I 

(5.18 ) 

On the other hand, by the canonical commutation relation 

[b(/),b( g)*] = (J, g)2' J, gEL 2(RS) , (5.19) 
and the fact 

(5.20) 

we see that the rhs on (5.18) is equal to 
b( T*cu I/2j) 'I' n (II'''''/;'; gl, .. ·,gr)' Hence (5.15) follows. 

By direct computations, we have 

{d,d *}'I' n (I., ... ,/;,; gl,· .. ,gr) 
r 

= L 'I' n (II'''''/;'; gl, .. ·,WI/2TT*CUI/2go .. ·,gr) 
;=1 

p 

+ L 'I' n (/1, .. ·,T*CUTfj, ... ,/;,; gl,· .. ,gr) . 
j~ I 

(5.21 ) 

Then (4.16) and (4.23) give (5.16). D 
Based on (b) of Lemma 5.1, we shall denote the closure 

of d t JYo by the same symbol. 
Let 

Q = d - a¢(w I/2F)* . (5.22) 

Lemma 5.2: For every r:>O, Q maps JY(r) nJYo into 
JY(r+ I) and 
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Q2 ~ &,,(r) n&"o =0. (S.23 ) 

Further, Q is closable and 

Q * = d * - a*¢(wI/2F) (S.24 ) 

on &"0' 
Proof' The first halffollows from Lemma S.l (a), the 

fact that 

¢( f)*: A (r)(L 2(KS) )-+Ar+ I(L 2(KS»), 
(S.14) and (S.2). It is obvious that D(Q*) ::J&"o with 
(S.24). In particular, D( Q *) is dense and hence, by a general 
criterion (e.g., Ref. 44, Theorem VIII. 1 ), Q is closable. 0 

We shall denote the closure of Q ~ &"0 by the same 
symbol. 

Lemma 5.3: The operator Q (resp. Q*) maps D(Q) 
[resp. D( Q *)] into itself with 

Q Z = 0 , Q *z = 0 . (S.2S) 

Proof: We need only to prove that, for alII{! in D( Q) and 
<I> in D ( Q *), 

(QI{!,Q*<I» = O. (S.26) 

For this purpose, we first consider the case I{!EKo' Then 
(S.26) follows from (S.23). Since &"0 is a core for Q by 
definition, we can extend the result to all I{! in D( Q) by a 
limiting argument. 0 

Let 

QI=Q*+Q, 

Qz = i( Q * - Q) . 

(S.27) 

(S.28) 

Lemma 5.4: For each j = 1,2, Qj is closed symmetric on 
D(Q) nD(Q *). Further we have 

{QI,Q2} = 0 (S.29) 

in the sense of sesquilinear form on D( Q) nD( Q *). 
Proof: The symmetricity of Qj is obvious. For the closed

ness, we need only note that 

IIQjl{!II z = IIQ*1{!11 2 + IIQI{!I1 2
, I{!ED(Q)nD(Q*) , 

since we have (S.26). Equation (S.29) follows from 
(S.26). 0 

The operator 

Ho= ho +Ho (S.30) 

is a non-negative self-adjoint operator and &"0 is a core for 
Ho (cf. Ref. 44, §VIIl.lO). 

Proposition 5.5: For each j = 1,2, Qj is essentially self
adjoint on every core for Ho, in particular, on &"0' 

Proof: The operators Qj' j = 1,2, are given explicitly as 
follows: 

QI = d + d * - a*¢(wI/2F) - a¢(wl12F) * , 
Qz = i(d * - d) - ia*¢(wl12F) + ia¢(wI/ZF) * 
on &"0' By (S.12) and (S.16), we have 

(S.31 ) 

(S.32) 

Cd + d *)2 = [i(d * - d) ] 2 = Ho - ¢(WI/ZF) *¢(WI/ZF) 

on &"0' It follows from this relation and the boundedness of 
¢( f), fEI. z(KS), that Qj is Ho bounded (in fact, it is H 612 

bounded). Further, one can show by direct computations 
that 
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I (Qjl{!,Hol{!) - (Hol{!,Qjl{!) I 
<ell (Ho + I) 1/

21{!112, I{!EKo, 
with a constant e> O. Therefore, by the Glimm-Jaffe-Nel
son commutator theorem (Ref. 43, §X.S, Ref. 2S, §19.4), we 
obtain the desired result. 0 

Let P + (resp. P _ ) be the orthogonal projection from &" 
onto &" ± and put 

NF =P+ -P_. (S.33) 

Lemma 5.6: For each j = 1,2, NF maps D( Qj) into it
self and 

(S.34 ) 

onD(Qj)' 
Proof: We first prove (S.34) on &"0' Then, by a limiting 

argument using the fact that &"0 is a core for Qj (Proposition 
S.S), we obtain the desired result. 0 

Lemma 5. 7: We have 

Qi=Q~=H+HoF (S.3S) 

as the operator equality. 
Proof: By (S.27), (S.28), and (S.2S), we have 

Qi = Q~ = {Q,Q*} (S.36) 

on &"0' On the other hand, by (S.lS), (S.16), and (S.2), we 
have 

{Q,Q*} = Ho - a*b(T*wF) - ab(T*wF)* 

on &"0' Hence (S.23) and (S.24) give (S.3S) on &"0' Since 
&"0 is a core for the self-adjoint operator H + HOF and Q J is 
self-adjoint, we obtain the desired result. 0 

Let 

Hss = H + HOF . (S.37) 

Then (S.6), (S.29), and Lemmas S.6 and S.7 immediately 
give the following proposition. 

Proposition 5.8: The quadruple {&",{QI,Qzl,Hss,NF} is 
a SSQT with N = 2 supersymmetry. 

Further, we have the following lemma. 
Lemma 5.9: The supersymmetric Hamiltonian Hss is 

reduced by every &,,(r), r;;;.O and we have 

H=H~~), (S.38) 

where H ~~) is the reduced part of Hss to &,,(r). 
Proof' Let P (r) be the orthogonal projection from &" 

onto &,,(r) and I{I be in D(Hss )' Then, by the definition of 
H + HOF [which is the closure of H ® I + I ® HOF on 
D(H) ® D(H OF ) ], there exists a sequence {I{! n} 
eD(H) ® D(HoF ) such that I{I n -+ I{I and Hss I{! n -+Hss I{!. 
Hence p(r)l{!n ..... p(r)1{! and p(r)Hss I{!n -+p(r)Hss I{!. On the 

other hand, it follows from the reducibility of HOF by 
Ar(L z(KS») that P (r)1{! nED(Hss) and 

P (r) Hss I{I n = HssP (r)1{! n . 

Hence, by the closedness of H ss , we have P (r)I{!ED(Hss ) 
and P (r) Hss I{! = HssP (r)l{!. Thus, Hss is reduced by &,,(r). 
Then using the fact 
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HOFOF = ° 
and (5.37), we obtain (5.38). 0 

Proposition 5.8 and Lemma 5.9 yield the following 
theorem. 

Theorem 5.10: Let am > 0. Then the Hamiltonian H giv
en by (3.8) is supersymmetrically embeddable into the 
SSQT {K,{Q"Q2},Hss ,NF}. 

As seen from (5.37), the bosonic and fermionic degrees 
of freedom are uncoupled in Hss. Therefore, in the SSQT 
constructed above, the bosons do not interact with the fer
mions. 

VI. SUPERSYMMETRIC EMBEDDING OF H
THE CASE am < 0 

We first note the following proposition. 
Proposition 6.1: Let am <Oandwo< IIW-'/2pll~. ThenH 

is not supersymmetrically embeddable. 
Proof It is proved in Ref. 29 that under the assumption 

of Proposition 6.1, the spectrum of His the whole real line JR. 
Thus the assertion follows (see the Remark after Definition 
2.2). 0 

Henceforth we consider the case am < 0, m > 0, and 
wo> Ilw-'/2pll~. In this case, it is proved in Ref. 29 that 
O<v<m and 

up (H) = {nv}:=o, Using (H) = ¢, 

uac(H) = [m,oo), 

where the multiplicity of each eigenvalue nv is 1. In particu
lar, His non-negative. We shall show that His supersymme
trically embeddable into a SSQFT. Since the method is quite 
parallel to the preceding case am> 0, we shall give only the 
outline. 

In the present case, the Hilbert space of state vectors for 
the SSQFT is taken as 

K=Y®YF(CEElL 2(JRS»), (6.1) 

where Y F(CEElL 2(JRS ») is the Fermion Fock space over 
CEElL 2(JRS) [cf. (5.3)]. We shall denote by 'II(A,J), 
(A,J)ECEElL 2(JRs

), the fermion annihilation operator on 
Y F(CEElL 2(JRs») and put 

t/J(/) = 'II(O,J) , 

aF = 'II ( 1,0) . 

(6.2) 

(6.3 ) 

Then t/J( . ) satisfies (5.2) and the following anticommuta
tion relations hold: 

{aF ,a~} = I , a~ = 0 , (6.4 ) 

{t/J( I) ,aF} = ° = {t/J( j) ,a~}, IEL 2(JRs) . (6.5) 

Let OF be the Fock vacuum in Y F(C EElL 2(JRS») and 
define the vectoor 0 inKby therhs of (5.8). LetKo be the 
subspace spanned algebraically by vectors of the form 

a*nb(/,)* ... b(1;,)*t/J( g,)* ... t/J(gr)*a~qO, 

n,p,r>O, q = 0,1, 1""",1;,, g,,···,grED(w) . 

Then, as in the preceding case am > 0, we define the opera
tors Q, and Q2 on Ko by (5.27) and (5.28) with 

Q = d - at/J(w'/2F) * + v'/2a~(b(fo) - coa), (6.6) 

where d is defined by (5.10). One can show that Q t Ko is 
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closable (cf. Lemma 5.2); we shall denote the closure by the 
same symbol. Further, in the present case also Lemmas 5.3 
and 5.4 hold. 

Let 

Ko = ho + Ho + va~aF . (6.7) 

Then we have the following proposition. 
Proposition 6.2: Each Qj' j = 1,2, is essentially self-ad

joint on every core for Ko, in particular, on Ko. 
Proof Similar to the proof of Proposition 5.5. 0 
Let A;(L 2 (RS»), j = 0,1, r>O, be the closure of the sub

space generated by vectors of the form 

t/J(/,)* .. , t/J(/,)*a~jOF' 1" ... ,JrEL 2(JRs) . 

Then we have 
00 

Y F(CEElL 2(JRs»)= EEl [A~(L2(JRS»EElA~(L2(JRS»)] 
r=O 

and hence 

JY=JY+EElJY_ 

with 

(6.8) 

K + = EEl Y ® [A~r(L 2(RS») EEl Ai r + '(L 2(JRs)j], (6.9) 
r=O 

K_ = ; Y® [A~r+'(L2(JRs»)EElAir(L2(Rs)j]. (6.10) 
r=O 

We denote by P ± the orthogonal projection from JY onto 
K± and put 

(6.11 ) 

Then one can show in the same way as in Lemma 5.6 that 
NF: D(Qj) -+D(Q), j = 1,2, and that (5.34) holds. 

Lemma 6.3: We have 

Qi = Q~ = H + HOF + va~aF (6.12) 

as the operator equality. 
Proof As in the proof of Lemma 5.7, we have (5.36). By 

direct computation, we have 

{Q,Q*} = Ho - a*b(T*wF + vColo) 

- abe T*wF + vColo)* 

- V'/2aF t/J(W'/2(Tlo + coF»* 

- v'/2a~t/J(w'/2(Tlo + coF» 

+ (1Iw'/2F II~ + vc~ )a*a 

+v(lIfoll~ +c~)a~aF 

on JYo. Then by (4.21), (4.22), (4.24), and (4.25), we ob
tain (6.12) on JYo. Since JYo is a core for the self-adjoint 
operator H + HOF + va~aF' the result can be extended to 
operator equality. 0 

Let 
Hss = H + HOF + va~aF . (6.13) 

Then the above results show that {K,{Q"Q2},Hss ,NF} is a 
SSQTwith N = 2 supersymmetry. 

Let 

jIt1°)=Y®{OF}CJY'+. (6.14) 

Then, in the same way as in Lemma 5.9, one can prove that 
Hss given by (6.13) is reduced by jIt10) and 

H = Hss t jIt10), (6.15) 
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the reduced part of Hss to ~O). Thus we conclude that H i~ 
supersymmetrically embeddable. 

As seen from (6.13), in the SSQT constructed above, 
the bosons do not interact with the fermions. 

VII. CONCLUDING REMARKS 

A. A renormalized case 

Let us consider the case where a parameter is renormal
ized so that H is always non-negative. Namely, let 

Wo = wo + m + J Ip(k) 12 dk 
w(k) - m 

and H ren be H with Wo in place of wo. Then it is shown29 (or 
easy to see) that H ren is always non-negative. Further, we 
see, by replacing wo in everything by wo, that the discussion 
in Sec. V works and that H ren is supersymmetrically embed
dable independent of the range of the parameters. 

B. Exceptional cases 

For a complete analysis of supersymmetric embedding 
of the present model, it still remains for us to consider the 
two exceptional cases: the case with am = ° and the case 
where am < 0, m > 0, and wo = IIw-l/2pll~. In both cases, H 
is non-negative29 and, in the same way as in Secs. V and VI, 
we can show that H is supersymmetrically embeddable. 
Thus we have proved that H is supersymmetrically embed
dable if it is non-negative. 

C.lndex problem 

Let {JY', {Q)J"= 1 ,Hss ,NF} be a SSQT (Definition 2.1). 
Then one can show4o

,41 that Hss is reduced by JY' ± . Let 
Hss. ± be the reduced part of Hss to JY' ± . Then the Witten 
index Iw (Hss ) is defined by 

Iw(Hss) = dim ker Hss, + -dimkerHss,_, (7.1) 

which physically means the number of bosonic zero-energy 
states minus the number of fermionic zero-energy states 
(e.g., Refs. 1-3 and 15 and 16). It is well known2 that 
Iw (Hss) is the index of an operator: Since Qj maps 
D( Qj) nJY' ± into JY' +' [property (d) in Definition 2.1], 
one can define the operator Qj+ : D( Qj ) nJY' + --+ JY' _ by 

Qj+ = Qj ~ D(Q) nJY' + . (7.2) 

The index of Qj + is defined by 

index Qj+ = dim ker Qj+ - dim ker Qj+, (7.3) 

provided that at least one of dim ker Qj + and dim ker Q j + 
is finite (ifboth are finite and Ran Qj+ is closed, then Qj+ is 
called Fredholm; in this case, index Qj + is the Fredholm 
index of Qj + (e.g., Ref. 45) ]. Then it is easy to see2 that 

Iw(Hss) = index Qj+' j= 1, ... ,N. (7.4) 

The supercharges defined by Sees. V and VI may be 
regarded as infinite-dimensional Kiihler-Dirac-type opera
tors. It is interesting to compute their indices as a special case 
of the index problem in infinite-dimensional manifolds26

•
46 

as in the following proposition. 
Proposition: (a) Let am> ° and let JY' ± and Qj' 
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j = 1,2, be given by (5.5), (5.31), and (5.32), respectively. 
Then 

index Qj+ = 1, j = 1,2. (7.5) 

(b) Let am < 0, m > 0, w> IIw -1I2p 11L and let JY' ± be 
given by (6.9) and (6.10). Let Q}, j= 1,2, be defined by 
(5.27) and (5.28) with Q given by (6.6). Then 

index Qj+ = 1, j = 1,2. (7.6) 

Proof' (a) By (5.37) and the non-negativity of Hand 
HOF (see the beginning of Sec. V), Hss'l' = ° ['I'ED(Hss)] 
implies 

(7.7) 

(7.8) 

It is well known that, in Y F(L 2(]Rs»), every vector annihi
lated by HOF is a constant multiple of the Fock vacuum fiF. 
Therefore Eq. (7.8) implies that 

(7.9) 

On the other hand, it is proved in Ref. 29 that, in y, H<I> = ° 
if and only if <I> is a constant multiple of l/Jo ® fiB' Combining 
this fact with (7.9), we obtain 'I' = const .0., with fi defined 
by (5.8). Thus we have proved that 

dimkerHss.+ = 1, dimkerHss._ =0, (7.10) 

which, together with (7.4), give (7.5). 
(b) In this case also, we can prove (7.10) in the same 

way as in part (a). Thus (7.6) follows. 0 
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In the event space the electromagnetic tensor eigenvectors generate two sets of invariant 
baselines, which are tangent to these eigenvectors. In the case of a slowly changing 
electromagnetic field the charged particles are shown to move along a helix around these 
baselines (the guiding center approximation). In the case of strong radiation damping (a 
strong field and a small mass) the helical motion of the particle transforms into the motion 
along the baseline (the massless approximation). In the self-consistent electromagnetic field 
the gas of charged massless particles can contain two-phase regions (the capture regions). 
Inside the capture regions the gas can consist of two phases: (1) a dynamical phase (DP) 
moving with the speed of light, and (2) a statical phase (SP) moving with speed less than that 
of light. An understanding of the two-phase character of the ultrarelativistic electron-positron 
gas is very important for investigation of magnetosphere processes in pulsars. 

I. INTRODUCTION 

In this paper the case of a charged particle in the strong 
electromagnetic field is considered when the particle Lor
entz factor is very large and the effect of the radiational de
celeration is essential. Such a situation arises in some astro
physical problems. For instance, it takes place in the pulsar 
magnetosphere, I where the magnetic field H, the electric 
field E, and the electron Lorentz factor r achieve values of 
the order H_1012 G, E_lO lO V /cm, and r-IOIO. 

In the strong slowly changing electromagnetic field the 
direction of the four-velocity vector ui (i = 0,1,2,3) of the 
charged particle tends asymptotically (time t -> 00 ) to one of 
eigenvectors (eigendirections) of the electromagnetic tensor 
F ik • At large t the particle velocity is directed along one of 
the eigenvectors, and the particle moves along some base
line, determined by the electromagnetic tensor only. The 
baseline is tangent to one of eigenvectors at each point. 

The electromagnetic tensor eigenvectors are used as a 
natural basis for decomposing velocity and other vectors. 
Different versions of this idea were used in many papers 
dealing with the relativistic particle motion in the electro
magnetic field. 2

-4 Bertotti2 used the decomposition of the 
electromagnetic tensor in two simple bivectors for describ
ing the relativistic plasma in the strong magnetic field. In 
Ref. 3 the eigenvectors of the electromagnetic tensor were 
used for numerical calculation of the particle motion in the 
pulsar electromagnetic field. Fradkin4 showed that the four
space is separated into mutually orthogonal two-flats 
spanned by the field eigenvectors associated, respectively, 
with real or imaginary eigenvalues. He used this circum
stance for describing the charged particle guiding center mo
tion. Vandervoort5 obtained equations for relativistic guid
ing center motion. Practically, he also used the properties of 
eigenvectors of the electromagnetic tensor, although in not 
as explicit a form as Bertotti or Fradkin. Littiejohn6 used the 

eigenvector properties for calculating the magnetic moment 
of the charged particle. 

In the present paper the motion of relativistic charged 
particles (electrons) in the guiding center approximation 
and in the massless approximation is considered. The rdati
vistical equation for the guiding center motion are consid
ered in a series ofpapers.4-7 Our contribution to this field is 
the derivation of equations that take into account the radi
ation damping. It is essential for ultrarelativistic particles 
moving in the strong electromagnetic field. The case where 
the strong radiation damping suppresses the particle gyra
tion is especially interesting. In this case the equations sim
plify essentially, and the massless approximation arises. The 
simplicity of equations in the massless approximation en
ables us to describe effectively the ultrarelativistic charged 
particle moving in the self-consistent electromagnetic field. 
It is done in application to the pulsar magnetosphere. 

In Sec. II the algebraic structure of the electromagnetic 
tensor is considered. Section III is devoted to derivation of 
the guiding center motion equation. The particle motion in 
the strong electromagnetic field is considered in Sec. IV. In 
Sec. V the massless particle motion in the self-consistent 
electromagnetic field is considered. In Sec. VI the estab
lished motion of the massless charged particles in the pulsar 
magnetosphere is considered. 

II. THE ALGEBRAICAL STRUCTURE OF THE 
ELECTROMAGNETIC TENSOR 

The classical motion of the particle of the mass m and 
charge e in the given electromagnetic field is described by 

dx
j 

_ j . _ ° 1 2 3 dr - u, ] - , , , , 

du j e·. k . 
-d = --F'kU +g', j=0,1,2,3, (2.1) 

r me 
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where x j = (xO,X I ,X
2
,X

3
) are the particle coordinates in the 

event space, e is the speed of light, 1" is the proper time, 

(2.2) 

gjk is the metric tensor, u j is the four-velocity of the particle, 
. . k 2 

UjUJ = uJgjk U = e , (2.3) 

Fjk =gjIFlk , gjlglk ={jjk (2.4) 

is the electromagnetic tensor, and gj is the radiational decel
eration. It is defined by the expression 

(dF~1 e k ,) I 
X ----F.,F.I u, j=0,1,2,3. 

d1" me 
(2.5) 

Here and later on the summation is made on like Latin su
perscripts and subscripts from 0 to 3. 

In the Galilean coordinate system, where XO = t is the 
time, and x = (X I ,X

2
,X

3
) is the position vector of the particle, 

one has 

eZ 0 0 0 

0 -1 0 0 
gjk = 

0 0 -1 0 

0 0 0 -1 
e-2 0 0 0 

gjk= 0 -1 0 0 

0 0 -1 0 

0 0 0 -1 

g = detllgjk II = -2, (2.6) 

ui = {y,yv}, ( V2) - 1/2 dx (2.7) y= 1-- , v=-, 
CZ dt 

Fjk = gjlFlk 

0 -EI/e -E2/e -E3/c 

-eEl 0 -H3 H2 
-eE2 H3 0 -HI 
-eE3 -Hz HI 0 

(2.8) 

where E = (EI,E2,E3) and H = (HI,Hz,H3) are the electri
cal field and the magnetic one, respectively, and v is the par
ticle velocity. 

Let us decompose the four-vector ui over eigenvectors 
u ~ I) (I = ± 1, ± 2) of the electromagnetic tensor F fk : 

FjkUZI) = AU) u(l), 

1= ±1,±2, j=0,1,2,3. (2.9) 

Here indices in parentheses number eigenvectors u~1) and 
their eigenvalues A(/). There is no summation on (/) in 
(2.9). Later on the summation over indices in parentheses 
will be denoted by the symbol of summation, whereas for 
summation on like Latin superscripts and subscripts from 0 
to 3 the symbol of summation will be omitted. 

Using decomposition over basic vectors u{l), 
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Uj = L ealu{I)' j = 0,1,2,3, 
1= ± 1.±2 

(2.10) 

one can express the Lorentz force acceleration and the radia
tional deceleration in the simple form 

e Fj' k 
-- 'k U 

me 

eA(/) j 

= L --alu(/), j=0,1,2,3, 
1=±1.±2 me 

(2.11 ) 

X uZI) (~-~ AU») A(/) ale, (2.12) 
d1" me 

and transform the system (2.1) to variables (x,a), where the 
system becomes more simple. 

The eigenvalues AU) have the form 

-A(I) =A(_I) 

=A 

=~![~(HZ_EZ)z+4(E,H)2 _ (Hz_E2)], 

-A(2) =A(_2) 

= iv 

= i~![ ~(HZ - EZ)Z + 4(E,H)Z + HZ _ EZ] , 

(2.13 ) 

and depend only on the electromagnetic field invariants 
H2 _ EZ, (E,H)z. The four, generally speaking, different 
eigenvalues arise as a result of different combinations of 
signs of the two radicals, which enter into the first of expres
sions (2.13). 

The eigenvectors u(1) (/ = ± 1, ± 2) are defined by the 
equation (2.9) to within the constant factor. As far as all 
eigenvectors are null, 

. k 
U(l)gjkUU) =0, 1= ± 1,±2, (2.14) 

they cannot be normalized routinely. Let us normalize them 
as follows: 

. k 
U(l)gjkU(_/) =BI, 

1= 1,2, u~1) = u~ _I) > 0, 1= 1,2, 

B I =!, Bz = -!. (2.15 ) 

Then 

u(1) ={(l/2e)~0'1/1/IL,U/}' 1= ± 1,±2, 

UI = (l/2~0'J/1 )(I(A E + slvH) + EXH), 1= ± 1, 
(2.16 ) 

UI = (1/2~O'zIL)(i(//III)(vE-sIAH) + EXH), 

1= ±2, 

where 

IL = ~ (HZ - E2)2 + 4(E,H)Z , 

SI = (E,H)/I (E,H) I, 

0'1 = !(EZ + HZ + IL), O'z = ~(E2 + H2 -IL)' 

Yu. A. Rylov 
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One can see from (2.16) that u, and u _ , are real, but U2 and 
U_2 are complex conjugate each to other: 

u!=u_ 2, (U{2»*=U{_2)J j=0,1,2,3, (2.18) 

where an asterisk means complex conjugation. According to 
(2.16) the scalar product b kl has theform 

bkl = U{k)gjsUs(/) = B I1I 8k, _I' k,1 = ± 1, ± 2. (2.19) 

In the case J1- = A 2 + V t= ° the vectors (2.16) are linear 
independent and form a basis in the event space. If 
..1 2 + V = ° [E2 = H2, (E,H) = 0] then the four eigenvec
tors are degenerate into one, 

u{o) = {l/c,(EXH)/IExHI}, (2.20) 

and do not form a basis in the event space. 
In the case A 2 + V = ° the electromagnetic tensor rep

resents a simple bivector (a skew product of two vectors) 

F jk = ufo) uZs) - u{s) uZo), 

..1 2 + V = 0, j,k = 0,1,2,3, (2.21 ) 

where 

u{s) = (0, - E). (2.22) 

In the general case ..1 2 + vt=O, Fjk can be represented 
as a sum of two orthogonal real simple bivectors F,j;" and 
'F!J, which will be referred to as the magnetic bivector and 
electric one, respectively: 

Fjk = F,j;" + F!J, j,k = 0,1,2,3, 

where 

F jk _ 1ejk _ A ~ I .. i k 
iff - /I. iff - - -B £.. -III U'(/) u( - I) , 

, 1= ±' 

'k 'k iv I, k 
F/II = ve,'11 = - - L - u{i)u( -I)' 

B2 1= ±2 III 

(2.23 ) 

(2.24 ) 

Here e~k and e!;" are unit simple bivectors, which determine 
two mutually orthogonal two-dimensional directions; e!J 
and e,!;" will be referred to as the 1f direction and J/ direc
tion, respectively. Orthogonality of e,j;" and ef:, follows from 
(2.19) and (2.24): 

(2.25) 

The decomposition (2.23) and (2.24) is invariant with 
respect to coordinate transformations. It follows from the 
representation (2.24) ofbivectors through the eigenvectors 
and eigenvalues of the tensor Fjk. 

It should be noted that the transformation properties 
undertheLorentztransformationoftheu{i) (l = ± 1, ± 2) 
defined by (2.9) and (2.15) are not those of the vector. One 
can define the u{i) (l = ± 1, ± 2)as vectors under proper 
Lorentz transformations, substituting the gauge (2.15) by 
the gauge 

. k 
U{s)gjkU( _ s) = B 1s1 , s = 1,2, B, =!, B2 = -!, 
u~i) > 0, 1= ± 1, (2.26) 

where the U Is) are real for s = ± 1 and complex for s = ± 2. 
In this case the expressions (2.23) and (2.24) remain valid. 
In the case A t=0, vt=O, (2.9) and (2.26) determine the u{S) 
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(s = ± 1, ± 2) only to within the gauge transformations 

u{S) -+u{S) = U{S) las, 

U{_S)-+u{_S) =asu{_S)' s= 1,2, (2.27) . 
where a, is positive, a 2 is complex, a, > 0, and a 2t=0. In the 
case, when A = ° or v = 0, the class of gauge transforma
tions (2.27) becomes wider. 

The noncovariant gauge (2.15) will be used further, and 
the u{S) (s = ± 1, ± 2) will be referred to as vectors, al
though each of them determines only direction in the event 
space. 

The substitution of the two-dimensional direction by the 
orthogonal one is realized by means of dual conjugation: 

d ij ijkl ,-----:: 
F =!£ Fkl , £0'23 = - v - g = - c, 

(2.28) 

where £ijkl is the Levi-Civita pseudotensor, which is antisym
metric over all indices. 

If one of tensors Fij, F.ijll' or F~ is not equal to zero, 
then others can be expressed through it and its dual tensor. 
For instance, 

d 

F.j;" = cos t/J(F jk cos t/J + F jk sin t/J), 

d 

F!J = - sin t/J( - Fjk sin t/J + Fjk cos t/J), (2.29) 

d d 

F!J = - tan t/JF.j;", Fjk = Fi;" - tan t/J F/;" , (2.30) 

where t/J is an angle that determines the contribution of the 
two-dimensional directions F/;" and F!J to F jk. The t/J is 
defined by the expressions 

(FF) H2 - E2 
cos(2t/J) = -- = , 

J1- J1-
d 

(FF) 
sin(2t/J) = __ = 2(E,H) , (2.31) 

J1- J1-

J1- = ~ (FF)2 + (F;')2 = ~(H2 - E2)2 + 4(E,H)2, 

(FF) =2FjkF jk = H2 _ E2, 
d d 

(FF) =2FjkFjk = 2(E,H). 

The angle t/J is an invariant, and it is a function of the invar
iantsE2 - H2, (E,H)2. The magnitudes of the bivectors F/;" 
and F ~~ are described by the relations 

(F_II F..#) = J1- cos2 t/J, (F iff F iff ) = - J1- sin2 t/J. (2.32) 

TheeigenvaluesA(/) 1= ( ± I, ± 2) of the tensor Fjk can be 
represented as analytical functions of the angle t/J: 

..1(/) = - * vii sin t/J, 1= ± 1; 

A(/) = - ivli * cos t/J, 1= ± 2, (2.33) 
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i.e., A(/) are analytical functions of 1/I,J.l at finite values of 1/I,J.l 
everywhere except the point J.l = o. 

Let us refer to the real eigenvectors u{s) (s = ± 1) as 
base vectors. The base vectors determine two invariant direc
tions at each point of the event space. Let us refer to lines 
tangent to field of the base vector u{S) (s = ± 1) as the base
lines L(s) (s = ± 1). 

The coordinate system whose coordinate lines Xl and x 2 

coincide with baselines L(I) and L( _ I) is the coordinate 
system distinguished by the electromagnetic field. 

If the electromagnetic field is stationary, then the spatial 
components U I and U_ I of the base vectors do not depend on 
time. In this case the lines I(s) (s = ± 1) tangent to the field 
of the vector u(s) (s = ± 1) can be built into the configura
tion space. Such a line will be referred to as the base trajec
tory f(s) (s = ± 1). 

The world line of the particle moving along the base 
trajectory I(s) with the velocity 2C(U/J.l)1/2us realizes the 
base line L(s) • It is worthwhile to remember some ambiguity 
of the baseline definition, which is connected with ambiguity 
of numerating the baseline by means of the index s = ± 1. In 
reality, enumerating the real eigenvectors u{S) (s = ± 1) by 
means of the sign of the eigenvalue s = sgn( - A(S) ) and 
enumerating by means ofthe analytical continuation (2.33) 
lead, generally speaking, to different results. For instance, 
according to (2.33), 

..1.(1) = -,[ji sin 1/1, ..1.( -I) =,[ji sin 1/1. (2.34) 

The ..1.(1) is negative for - 1T12 < 1/1 < 1T12, but it is positive 
for 1T/2 < 1/1 < 31T12. 

III. THE GUIDING CENTER APPROXIMATION 

The complex basis !!!l c of vectors u (I) (/ = ± 1, ± 2) is 
convenient for description of ultrarelativistic particle mo
tion. For describing nonrelativistic or slightly relativistic 
motion another basis is preferable. It will be used along with 
the basis !!!l c' Let us define the real orthonormal basis B" 
constituted by vectors 

ej -uj -u j +u j 
(0) = (3) - (I) (- I), 

e j -uj -u j u j 
(1)= (-3)- (1)- (-I)' 

e j -uj - u j + u j 
(2) = (4) - (2) ( - 2) , 

e(3) =u{ -4) = - i(U{2) - u{ -2»' (3.1) 

(3.2) 

Further, the electromagnetic field is supposed to change 
slightly, i.e., for any field quantity F the following condition 
is fulfilled: 
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(3.3 ) 

where liJo is the gyration frequency. Formally, the electro
magnetic field Fik is supposed to be a function of a slow 
variable X' = EX

i
, E < 1: 

aFik aFik 
Fk =Fk(X) =0(1), -. =E-.=O(E). (3.4) 

I I ax} aX} 

The E is a small formal parameter of the asymptotic expan
sion. 

Let us introduce designations 

ev 2e3 3m3c5 3m3c5 

liJ = -m-c' D = -3m-2c-4' t rad = -4-e-4J.l- = 4e4(A 2 + v) , 
(3.5) 

whereliJ is the invariant gyration frequency in the coordinate 
system, where EIIH, and trad is a characteristic radiation 
damping time. The longitudinal electric field Ell = (E,H) I 
H is supposed to be small as compared with the magnetic 
field H (A < v). The radiation damping is supposed to be 
small in the sense that the change of the gyration magnitude 
in the gyration period is small: 

Alv=E1a(X), a=O(1), EI <I, 

lIliJtrad =Elarad =2EI (1 +~a2)ay, DV=E1ay, (3.6) 

a rad = 0(1), a y = 0(1). 

It follows from Eqs. (2.3), (2.10), and (2.15) that 

a!=a_ 2, a la_ I -la2 1
2 =1. (3.7) 

Let us substitute the (2.10)-(2.12) into Eq. (2.1). One ob
tains 

where 

- Eiaya l L caru{r) 
r= ± I, ±2 

1 a x ---. (.aIv), 1 = ± 1, ± 2, 
vaX} 

. a k 
R(l,r,s) = U(l)kU{r) axj u(s)' 

I,r,s = ± 1, ± 2, ± 3, ± 4, 

A(l) 
a l =--, 1= ± 1, ±2; 

v 

a l = - Elalll!l. 1= ± 1; 

(3.9) 

(3.10) 

(3.11 ) 

aI~ -illl!I. 1= ±2. (3.12) 

It follows from Eqs. (3.11), (2.18), and (3.1) that 
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R(l,r,s) = - R(s,r,I)' R(l,r,1) = 0, 

s,r,1 = ± 1, ± 2, ± 3, ± 4. 

Using the designations 

a =ae- U} -2 g , 

Eqs. (3.9) can be rewritten in the form 

dIn a; 2 
---= - Elwarad (1 + ag ) + E/o, 

d1' 

d1J 
-=W+E!{}, 
d1' 

where 

(3.13) 

(3.14 ) 

(3.15 ) 

(3.16) 

/0= L ad_I !{} =~ L lad_I (3.17) 
1= ±2 la21

2 
' 2 1= ±2 1/IIa21

2 

Let us consider a transformation from variables al to 
variables X I'X 2' 1J: 

el(a(X){}, + x,) 
al = al (X,x,1JI ) = 1 = ± 1, 

~ 1 _ e - a",d(X)1J, - x, 

a2=ag(X,x,1J I )ei{}, a_ 2 =ag(X,x,1JI )e- i{}, (3.18) 

( 3.19) 

It is easy to verify that the relations (3.18) satisfy Eqs. 
(3.7) identically. If the electromagnetic field does not de
pend on X and X = {XI,X2} = const, the relations (3.18) 
and (3.19) realize the general solution of Eqs. (3.8) and 
(3.9). For this reason the substitution of relations (3.18) 
into Eqs. (3.8) and (3.9) leads to equations of the form 

dX = EX(X,X,1JI,1J) + O(c), X = O( 1), 
d1' 

d1J = w(X) + E9'(X,X,1JI,1J) + O(c), 9' = 0(1). 
d1' 

(3.20) 

It follows from (3.19) and (3.20) that X, 1J I are slow 
variables. Substituting Eqs. (2.10) into the first of Eqs. 
(2.1 ), one obtains, for the variable X = EX, 

dX = EC[ L al (X,x,1JI )u(/) (X) 
d1' 1= ± I 

+ I=~ 2 al (X,X,1JI,1J)U(I) (X) ]. (3.21) 

where 1J is the only fast variable among the variables X, X, 
and 1J. Our purpose is to obtain such a transformation of the 
system of Eqs. (3.20) and (3.21) that time derivatives of 
slow variables X, X, and 1J I do not depend on the fast variable 
1J. 

Let us represent X in the form 

X= Y+Xos, (3.22) 

where Yis a regular component of X and Xos is an oscillatory 
one. The decomposition is determined by equations 
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dY { -d =EC L al (Y,x,1J1 )u(/)(Y) 
l' 1= ± I 

+E L X~bal(y,X,1JI,1J)U(/)(y»)} 
1=±2 aYJ 

+ cVg (Y,X,1JI ) + O(c), 

dXos { -d =EC L al (Y,x,1J .. 1J)U(I)(Y) 
l' 1= ± 2 

+E L X~bal(y,X,1JI)U(/)(Y»)} 
I=±I aYJ 

-cVg(Y,x,1J 1 ) +O(c), (3.23) 

which are compatible with Eqs. (3.21) and (3.22). The 
quantity Vg = O( 1) will be determined later from the condi
tion that Eqs. (3.23) realize decomposition of X into regular 
component Yand oscillatory Xos to within E. At Vg = 0 such 
a decomposition is realized only in the zeroth approxima
tion. 

Let the linear operator .!f = .!f X,E, depending on pa
rameters X, E1, and the averaging operation (.) {} be defined 
in the space of quasiperiodical functions Z of 1J, which can be 
represented in the form 

00 

Z(1JI ,1J)= L Zn(1J1)ein{}, 1J=EI1J, EI~l. (3.24) 
n = - 00 

The action of the linear operator .!f = .!f X,E, on Z is defined 
by its action on the Fourier components Zn: 

Z =.!fZ =.!f X,E,Z, 

Zn(X,1JI ) = Lx,E,Zn (1J I ) 

1 - 8110 
---~~--Zn(1JI)' (3.25) 
w(X) (in + EI a la1JI ) 

where the Zn are Fourier components of Z. 
The averaging operation over 1J, 

1 l{}+ 1r 

(Z(X,1J1,1J» () =- Z(X,1J1,1J ')d1J' 
21T {}-1r 

(3.26) 

is the extraction operation of zeroth Fourier component. 
The solution of the second equation (3.23) has the form 

Xos =EC L U(l)(Y).!f y ,E,al (Y,x,1J 1,1J) +O(c). 
1= ±2 

(3.27) 

Substitution of (3.27) into the first ofEqs. (3.23) leads to an 
equation of the type 

(3.28 ) 

U(Y,X,1J1 )=C L al (Y,x,1JI )u(/)(y), 
1= ±I 

U,V= 0(1). (3.29) 
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Substitution of X = Y + Xos, Xos = O(E) transforms the 
system (3.20) into a system of the same type with the func
tion a' of another form. So, one can merely replace X in Eqs. 
(3.20) by Y: 

dX _ ..2 
- - EX( Y,X'~\'~) + O(t: ), 
dr 

d~ 
- = w( Y) + ES( Y,X,~\,~) + O(c). 
dr 

(3.30) 

The functions Z = {v,x,a} are quasi periodical func
tions of the argument ~ in the sense that they can be repre
sented in the form (3.24). The Fourier components Zn 
change slowly with changing ~, because, according to Eq. 
(3.19), ~\ = E~ is a slow variable. 

For removing the fast variable ~ let us make the change 
of variables8 

X = X + E!£' Y.E, X(Y,X,J\,J), 

~ = J + E!£' Y.E, a (y,x,J.,J), 

Y= Y+cv(Y,x,J.,J.). 

The function V is defined by the relations 

V(Y,X,~.,~) 

= !£' Y.E, { V(Y,X'~\'~) 
au --- ----

+ ax (Y'X'~.)!£'Y.E'X( Y,x,~\,~) 

au --- ----+ E\ aJ\ (Y'X'~\)!£'Y.E' a( Y,x,~.,~) 

x + Vg(Y,X,~.)} + O(E), 

EVg(Y,X'~\) = ( L a/(Y'X'~.'~)U(l) (n 
/~ ±2 

Such a determination of Vg (Y,X'~\) leads to 

( dXos) = O(~), 
dr ""J 

(3.31) 

(3.32) 

( dX) = (dXos + dY) = (dY) + O(~). (3.34) 
dr ""J dr dr""J dr""J 

The substitution (3.31) transforms Eqs. (3.28) and 
(3.30) into the form 
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dY --- - ---
-=EU(Y,X'~.) +cV(Y,X'~.) 
dr 

+ cVg(Y,X'~\) + O(~), 
dX - ---
-=EX(Y,X'~.) +O(c), (3.35) 
dr 

d~ - - ---
__ I = E.(W( y) + ES( Y,X'~I») + O(EIC), 
dr 
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where the functions Z = {V,X,e} are obtained from the 
functions Z = {v,x,a} by means of averaging over ~ with 
~ \ being fixed: 

Z(Y,X'~\) = (Z(Y,X,~\,~)h. (3.36) 

Thus the system (3.35) is a system of equations for aver
aged variables Y, X, and ~, which are slow variables. The 
system (3.35) is obtained from the system (3.28) and (3.30) 
by averaging over the variable ~ at fixed slow variable ~ I' 
The system (3.35) is more adequate for numerical integra
tion than (3.28) and (3.30), because it contains only slow 
variables. 

Further, only averaged variables will be used. For bre
vity the overbar over symbols of these variables will be omit
ted. 

Now let us tum from variables Y'XI'X2'~1 to variables 
Y,al,a _ I ,~. Let us change the variables Xby variables al,ag, 
using relations (3.18). Then the second ofEqs. (3.35) trans
forms into some equations for a .,ag • As far as the transfor
mation from XI,X2 to a.,a _ I' ag contains only slow vari
ables; these equations can be obtained by averaging Eqs. 
(3.8) and (3.15) over ~ at fixed ~I' Averaging Eqs. (3.8), 
(3.15), and (3.16), one obtains 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

where angular brackets denote the averaging operation 
(3.26), and!o is determined by Eq. (3.17). 

The variable / = r / E can be treated as a coordinate of 
the guiding center. After calculation the first ofEqs. (3.35) 
can be represented in the form 

+~V~(Y,X'~)+O(C), k=0,1,2,3, (3.41) 
c 

= 21 L u~/) (y) {(1 + a;) (a/!£' Y.E, ~) 
/~ ±2 1 + ag 0 

+ if (a/!£' Y.E, !~)o} + O(E), k = 0,1,2,3. 

(3.42) 

In Eqs. (3.41) and (3.42) the quantities ai' ag , /0, and!~ 
are known functions of the arguments Y, X, ~ I' and ~. They 
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are defined by the relations (3.18), (3.17), and (3.40). The 
variables X should be eliminated by means of relations 
(3.18) after calculating the operator it' action and averag
ing in relation (3.42). 

The relation (3.42) has been obtained as follows. Let us 
substitute relations (3.31) into the second of Eqs. (3.23). 
Let us expand the obtained expression over powers of E and 
use the fact that in (3.31) X and e are E-

1 dX1dr and 
E- 1 (d{) Idr - w), respectively. These derivatives can be ex
pressed through derivatives dalldrby means of (3.18). Us
ingEqs. (3.8) and (3.9) for dalldr and (3.34),oneobtains, 
after calculations, the expression (3.42). 

In the case when E1<E, the derivative J IJ{}I in the oper
ator (3.25) produces the terms ofO(c) in Eq. (3.41). In 
this case the operator (3.25) reduces to the multiplication 
operator, and calculation of (3.41) and (3.42) is simplified. 

In the case when E I = E
1/n 

, and n> 2, the variables X are 
slower variables than al' It can be obtained by comparing 
(3.37) and (3.38) with (3.35). In this case the numerical 
integration of the system (3.37)-(3.40) is less effective than 
that of the system (3.35). 

The mean momentum (pj) of the particle can be de
fined as 

(i) = ( L meu~/)al(Y'X'{}I'{}»)_' 
I~ ± 1,±2 ,'} 

(3.43 ) 

where Y, X, and {} are functions (3.31) of the averaged vari
ables Y, X, and 'J, the functions al being determined by Eq. 
( 3.18 ). The angular brackets denote the averaging (3.26) 
over the averaged variable 'J. Using (3.21) and (3.34), on 
obtains 

P~c=(i)"J=med/ +O(c), i=0,1,2,3 (3.44) 
dr 

where / satisfies Eq. (3.41). It means that the guiding cen
ter can be considered as a particle of the mass 

(3.45 ) 

whose world line is described by Eq. (3.41) and whose mo
mentum is directed along the four-velocity d/ldr. 

It is used to describe the guiding center motion 7 in terms 
of variables M, E, PII' and VI' where M is the magnetic mo
ment of the particle gyration, E is the mean energy of the 
particle, PII is the momentum component along the magnetic 
field H, and V 1 is the guiding center velocity component or
thogonal to H. Let us transform the system (3.37)-(3.39) 
and (3.41) to such a form, where comparison with the con
ventional system of equations for the relativistic guiding cen
ter can be produced. For simplicity, let us take 

a rad = (ElE1)a;ad = O(ElE1). (3.46) 

Such a supposition allows one to substitute the small param
eter E I before a rad by the small parameter E (E < E I ) • 

Let us pass in Eqs. (3.37) from the complex basis 3B c to 
the real orthonormal basis 3B r defined by (3.1) and (3.2). 
One has 
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L alu~/) = L alu~/). 
I~±I 1=±3 

Using the corollary 

L R 1 k J - --u I --lnll. (/,s, -s) - 2 () Jy k r-
s= ±2 

(3.47) 

21T la k· I + EI --;;- II III U UJ ik' = ± 1, 

(3.48) 

of the Maxwell equations 
d 

JkF ik = (41Tlc)i i, JkF ik = 0, i = 0,1,2,3, (3.49) 

one obtains from Eq. (3.37) 

da , [ 1 2 - = E1awa _I - E - wa;ad agal dr 2 

cl 
+-1/1 a_I L asRU,s,_/) 

s= ±3 

I 2 j Jln ll ] 21Talv 
-2T/TeaguU) Jyj -EIE~ 

xa;u~ _I) ik + O(c), 1= ± 3. ( 3.50) 

Here i i is the four-current density generating the electro
magnetic field F ik . 

Let us introduce the generalized magnetic moment 
2 2 2 magC me 2 2 

M =---=--(a3 -a_ 3 -1) 
2Jji 2Jji 

Mo ..2 
~==~:;;:- = Mo + O(t:i), 
~1 + E"ia2 

(3.51 ) 

where Mo is the magnetic moment. It is defined by means of 
relation MrJI = transverse energy in the coordinate system, 
where EIIH and v = H. Combining both of Eqs. (3.50), one 
obtains 

dM 

dr 

x L alu~_/)ik+O(C). 
1= ± 3 

(3.52) 

It follows from Eq. (3.52) that M = const + O(c), if one 
can neglect radiation damping (a rad = 0) and the particle 
moves in vacuum, where i i = 0. The usual magnetic mo
ment Mo conserves only in the case of small Ell [Ell = O(E), 
cf. Ref. 6]. 

If radiation damping is essential, then at t ..... 00 M tends 
to some M min = O(c). The value of M min can be obtained 
from (3.9) in the form 

(3.53 ) 

Yu. A. Rylov 527 



                                                                                                                                    

In order to obtain the result (3.53), it is sufficient to substi
tute a2 = ag exp(icu1') in Eq. (3.9). Supposing ag = O(E) 
and neglecting small terms, the integration of the obtained 
equation for ag yields the result (3.53). 

After transformation Eq. (3.41) is reduced to the form 

1 dyk k (k k) O( ...2) - - = Uif + E WI + w2 + ~-, 
C d1' 

k = 0,1,2,3, 

/ a _Uk 
I 1/1 UP U~ = L alu~/), v~ = L 

1=±3 1=±3 

mcuifj d kj 
w~ = ------ell 

eVE d1' . 

M {Ii (nk . ~ eij _..!.. ekj av), + ev if. ay j .. 11 v· 1I ay j 

k E l amc
2 

{ •• j I j I) a nk 
W 2 = (WifVif+VifUlf --. . .H·I 

ev(1 + 4~a2) ay J 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

where e~ and e'i- are the unit bivectors, describing the J( 

direction and 'li' direction, respectively, 

" 2' s k j = L.. 1-
1
-
1 

u(s)u(_s)' 
s= ±2 S 

S k . = - L 2-
1

-

1 

u(S)ut_S)' 
s= ± I S 

(3.58 ) 

n.k~ and n'i- are the projection operators4 onto the J( direc
tion and the 'li' direction, respectively, 

nkj _ " k ui. _" 1 k J 
"II - - L.. u(s) (s) - L.. -B u(s) u( - S)' 

s=±4 s=±2 s 

k' " k . S ,,1 k . n~ = L.. u(s) ~s) - = L.. - u(s) u{ -s)' 
s=±3 lsi s=±1 Bs 

(3.59) 

The following relations hold: 
k· l' 0 

e.#jel'J'l = , 
nk. n1' 0 

lfj .111 = , 

(3.60) 

(3.61) 

All terms in relations (3.54 )-(3.57) have a covariant form. 
They have the estimation WI = 0(1), W 2 = 0(E1). The first 
term in Eq. (3.56) describes the inertial effects connected 
with the curvature of the baselines. Because of the Maxwell 
equation (3.49), and (3.58), the second term ofEq. (3.56) 
can be represented in the form 
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(3.62) 

where j j is the four-current generating the electromagnetic 
field. Usually j j = 0 in the volume, where the particle 
moves. Then the expression (3.62) is ofO(E1). The lastterm 
in (3.56) depends on the magnetic field magnitude gradient, 
because V is the magnitude ofthe magnetic field in the coor
dinate system, where EIIH. This term is responsible for the 
gradient drift of the particle. It is the only term containing 
derivatives of the electromagnetic field magnitude. Other 
terms depend only on derivatives of the unit bivector e:~, 
which describes the J( direction. For the small longitudinal 
electric field Ell = 0 ( E 1 ), W2 is of the order E I' In this case 
w21w1 = 0(E1 ). But formally the expressions (3.56) and 
(3.57) are valid for any E1• In particular, it is valid in the case 
whenE 2 >H 2,l.lv=E1a> 1. 

Thus expressions (3.54 )-(3.57) can be used in the case 
when Ell = O( 1), H = O( 1), E1 "", 1. But at EI = 1 the 
{}I = E1{}will be a fast variable, and numericalintegration of 
the system (3.35) will not be as effective as in the case E 1 < 1. 

One concludes from Eqs. (3.45), (3.44), (3.51), and 
(3.54) that the "mass of the guiding center" 

moe =m 

Let us consider the case of a weak electromagnetic field 
when the radiation damping can be neglected (arad = 0) 
and the four-current, generating the electromagnetic field, 
vanishes in the volume, where the particle moves: 

jj = 0, H = 0(1), Ell = (E,H)/IHI = O(E), 

El = E - HEIlIH = 0(1), EI = E. (3.64) 

Using the designations 

El H 
eE = IE11' eH =JHI' 

and definitions (2.13) and (2.15), one obtains, for the vec
tot s (3.1) of the basis !!lJ r 
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u/3 ) = {~, ~ eD } + O(C), 
eg Hg 

u/4 ) = {~, ~ eD } + O(C), 
eHg g 

u/ _ 3) = {O,SleH + m! eE } + O(C), 

u/ -4) = {o,eE - € ~ aeH } + O(C). (3.66) 

Let us transform the system of equations (3.50), (3.52), and 
(3.54) to the variables M, PII ' and v l' which are defined by 
the relation (3.51) and by the relations 

PII = (eH , ~~)me=mea_3 +O(€), 

dY1 = V1 = _1_ (dY _ eH (e
H

, dY)). 
dr Yoc dT dT 

Here Yoc is tne Lorentz factor of the guiding center, 

dyo 
Yoc =YO+€YI +O(c) =-

dr 

dt a3 0 2 =-=-+€YI + (t-), 
dr g 

and t = yO is the time. 

(3.67) 

(3.68) 

Integration ofEq. (3.52) (at € = €I) leads to the result 

M = const + O(c). (3.69) 

In terms ofthe variables in (3.67), Eqs. (3.50) and (3.54) 
take the form 

Here the following designations are used: 

529 

E PII ea_ 3 
U D =-eD , vII =--=--g, 

H myo a3 

1 
Yo=

g 
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(3.70) 

(3.71 ) 

(3.72) 

Let us compare the obtained equations (3.69)-(3.71) with 
the corresponding equations presented in the book by Nor
throp.7 Equations (3.69) and (3.70) coincide with the cor
responding equations (1.78) and (1.77) of Ref. 7. But Eq. 
(3.71), as compared with the corresponding Eq. (1.76) of 
Ref. 7, has an extra term - €UD Y lifo. This term vanishes in 
the coordinate system where E1 = 0. Then Eq. (3.71) coin
cides with the corresponding equation (1.68) of Ref. 7. Ap
parently, the loss of the extra term in Northrop's paper is 
connected with the fact that the Lorentz transformation 
from the system, where E1 = 0, is produced only to within 
~, whereas in our case it is produced to within €. 

IV. STRONG SELF-CONSISTENT ELECTROMAGNETIC 
FIELD. MASSLESS APPROXIMATION 

Let the electromagnetic field be strong and the radiation 
damping be essential in the sense that 

L ( me
2 )2 e

2 

ytrad ~ - or -- ~ - , 
e e,[jiL EL 

(4.1 ) 

where L is the space scale, T = Lie is the time scale, and E is 
the particle energy. If the condition (4.1) is fulfilled, then 
the particle magnetic moment M quickly approaches its 
asymptotic value Mmin = O(c), determined by Eq. (3.53). 
In this case the magnetic moment M can be considered to 
have its asymptotic value Mmin = O(c). Formally, the 
terms containing M can be omitted in Eqs. (3.50) and 
(3.54) as the terms of the order C. 

Let us introduce variables E and PII by means of 

E = me3a3u~3) = me2a3 ~uIIJ.L, 

PII = meat -3) ID( -3) 1= mea_ 3, 

E = e2pO + O(€). (4.2) 

The variable E is the particle energy in the zeroth approxima
tion, and PII is the momentum component along the direc
tion defined by the unit spacelike vector u~ _ 3)' If 
Ell = O(€) [A Iv = O(€) 1, then according to (3.66) PII dis
tinguishes slightly from the momentum projection 
PH = (eH,p) on the direction eH = HIH, 

PII - (p,eH ) = O(c), Ell = O(€). (4.3) 

Let us transform Eqs. (3.50) and (3.54) to the depen
dent variables E, PII ' and Y and to the independent variable 
yO = tinstead of T. SettingM = ° in Eqs. (3.50) and (3.54), 
one obtains 

-=- - e/l,e 1-€- -EU(3)V -U(_3)k dE PII efjl [ .1 ( YI) k' a ] 
dt E J.L Yo ay' 

,al~I' 0 2 
-EV -, n --Erad + (~-), 

ay J.L 
(4.4) 

dPIl = fi.[eA (1 _ EYI ) 
dt 'J U I Yo 

E k ,a ]. PII 2 
- - U(3) V -, U( _ 3)k - E rad - + O(~-), 

e ~ E 
(4.5) 
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dyk = (1 _ E YI) Vk - ~ Vi !!.... e~:V 
dt Yo eve dt 

EV-1,1 
+ -----::------=-

ee(v + 4,1 2) 

X { - vv (vjeil + viej/ )~l1k' . 
I if if Jyj JI, 

+ U(viv j + eil eiq 
V V )~ ek ' .} 

if if I q Jyj .. 11, 

+ O(~), k = 0,1,2,3, 

2~e2ev 1 12 = 2 I R(2,s,/) asal , 
(U trad I,s = ± 3 

(4.6) 

(4.7) 

(4,8) 

and the Lorentz factor Yo + EYI is determined from Eq. 
(4.6) for k = 0, dyo/dt = 1, Yo = E/me2

• Equations (4.4)
(4.6) depend on the particle mass only through Erad' which 
is formally of O(~), 

If A. # ° and the electromagnetic field is strong, then as a 
result of e,1L > me2

, the particle is ultrarelativistic, generally 
speaking, because it is accelerated by the longitudinal elec
tric field Ell' In terms of a3 and a_ 3, relation (3.7) can be 
represented in the form, 

a_ 3 = sa3~1 - [1 + (a; ) min ]/aL s = sgn(a_ 3 ). (4.9) 

In the ultrarelativistic case, a3 > 1, but (a;) min cannot be too 
large, because if (a;)min > 1, then according to (4.4) and 
( 4. 8) the characteristic damping time of energy is 

t = _E_ = ytrad L 
c. ---~ytrad ~ -

Erad (a; )min e 
(4.10) 

and the particle energy decreases very rapidly until the 
(a; )min becomes small. If (a; )min ~a~ and a3 > 1, then it 
follows from (4.9) that 

(4.11 ) 

Relation (4.11) is an approximate one. It is valid a
symptotically at a3 > 1. Let us consider relation (4.11) as an 
exact one. It follows from (4.11), (4.2), and (3.45) that 

PII = S(E/c)~fl/O'I> s = sgn(PII)' 

mGC = (1/c2)~E2fl/O'I - p~C2 = O(E). 

( 4.12) 

(4.13 ) 

The guiding center mass mGC is zero to within EO. We shall 
reference the approximation (4.11) or (4.12) as the mass
less approximation. It is adequate for a strong electromag
netic field, where the particles are relativistic, and the term 
me2 can be neglected as compared with the particle energy E. 

At the condition (4.12) Eqs. (4.4) and (4.5) stop to be 
independent ones. In the massless approximation Eqs. 
(4.4 )-( 4.6) take the form, 
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dPIl '~$:(1 YI) k j J -= e/l. - - E- -SPIIU(3)V(s) -. U(_3)k 
dt 0'1 Yo Jy' 

_ ~ ~ e2

fl $: siR 12(2PII )4 + O(~) 
3 

(2,s,s) , 
V 0'1 me 

(4.14 ) 

where v7s) (s = ± 1) are the tensor p k eigenvectors, de
fined by 

v7s) = 2e fi- uZS ) , Vs = 2e fi- us, \j 0'1 \j 0'1 

S = ± 1, (v"vs') = e28ss" s,s' = ± 1, (4.16 ) 

and 

YI sP11 ~I 1 i j 
E-=- -.2 4~2V(S)V(s) 

Yo e fl v- + /l. 

J [" ~ 110' 0· ] X -. .£.AS .lIi - ve .. lli • 

Jy' 

Equation (4.15) does not contain the real mass m of the 
particle. Equation (4.14) contains m only through the last 
term, which describes the radiation deceleration. Formally it 
is of the order~, when (a; )min = O(~). But it is the only 
dissipative term that prevents PII from the strong increase. 
According to Eq. (4.15) the particle moves along the base
lineL(s) with the speed oflight (in the zeroth-order approxi
mation). 

If A. = ° [ (E,H) = ° and E2 < H2] in some region, then 
two eigenvalues of F ik coincide, A. ( I) = A. ( _ I) = A. = 0, and 
a degeneration arises. At A. = ° Eqs. (4.4 )-( 4.5) have an 
additional solution E = PII e = 0. This solution corresponds 
to an indefinite velocity component (PII e2

/ E) 0 _ 3' which 
corresponds to arbitrary motion along the direction 

0_ 3 = vH/~O'IJ.l. For this reason Eq. (4.6) is not trans
formed into Eq. (4.15). Instead one obtains 

dy 1 (?OVI + e-xOLI) + O(~), 
dt 2 coshXo 

Plle~1 E=O, PII =0, tanhxo =- -, 
E fl 

( 4.17) 

where Xo is an arbitrary parameter. 
The case where (E,H) = 0, E2 < H2 inside some region 

of the event space is a common occurrence if the electromag
netic field generated by moving charged particles is taken 
into account. For instance, let the external elecromagnetic 
field Fik be stationary and (E,H) = ° at some two-dimen
sional surface r 1 of the configurational space. Then the po
tential <I> along the magnetic line L has an extremum at the 
point P of intersection of Land r I' If for certain, there is a 
maximum of <I> at P, then the projection of the base trajector
ies 1(1) onto the plane l:2 orthogonal to the vector VI + V_I 

has the form represented in Fig. 1. 
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r l 
r 2 

- ~ ....... ~ ~ ~ 

~ - ..;....- ~ ~ ~ 

~ ~ ~ .- -- ---
~ ~ - - --.. ~ 
---,.. -- ...- -- --- ~ 

U_ 1 

r l 
r 2 

.-.E-- .- ~ ~ ~ .J..-

~ ~ ~ ~ - ~ 

--- ~ ~ -- <-- ~ 

~ ~ --;,- ~ - ~ 

-0(:-- ~ ~ ~ -4- ~ 

FIG. 1. The structure of the base vector field before the formation of capture 
regions. The negative charges are captured near r I and the positive charges 
are captured near r 2 • 

The massless particles move for most part in such a way 
that sgn(p) = sgn(dp/dt) = sgn(e). Then, according to 
Eq. (4.15), the positively charged particles move essentially 
in the direction of the vector v 1 and the negative ones move in 
the direction v _ I' In the case shown in Fig. 1, electrons accu
mulate in vicinity of r I' and positrons accumulate in the 
vicinity of r 2' Accumulation (capture) of charged particles 
lasts until the field generated by captured particles changes 
the direction of the base vectors VI in such a way that they 
would be directed similarly in the vicinity of r I' In other 
words, (E,H) does not change the sign on the base trajec
tory. 

Inside the capture region the captured particles are 
placed in such a way that (E,H) = 0, because the Lorentz 
force can vanish only in this case. The parameter X 0 describ
ing the particle motion inside the capture region is deter
mined by the motion of the capture region boundaries and by 
the manner of the particle accumulation. 

In addition to the captured massless particles of PI! = 0 
inside the capture region there may be particles withPIl ,i0, 
whose motion is described by Eqs. (4.14) and (4.15) with 
A. =0. 

Further, the motion of particles in the strong self-consis
tent electromagnetic field F ik will be considered. It means 
that the F ik consists of the external electromagnetic field 
and of the field generated by moving particles. The particle 
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motion is supposed to be collisionless. The massless approxi
mation seems to be most convenient for the description of 
such a motion, because in the zeroth approximation, the par
ticle velocity (4.15) and the electrical four-current genera
ted by particles depend on the momentum PII through the 
parameter s = sgn(PIl ) = ± 1 only. In some cases, when 
the particles are only accelerated, the sign of PII does not 
change, and the velocity dy / dt does not depend on PII . In this 
case, Eq. (4.14) can be ignored in the calculation of the self
consistent electromagnetic field, and the equations of the 
particle motion are reduced to the equation 

dy 
- = Vs + O(E), s = sgn(e), A. ,i0, 
dt 

dy = 1 (eXov1 +e-x,'V_1) +O(E), 
dt 2coshXo 

A. = 0, 

(4.18 ) 

where Xo is determined from the Maxwell equations and the 
condition A. = O . 

Further, for describing the particle motion one uses the 
zeroth approximation ( 4.18). The next approximation 
( 4.15) and (4.17) should be used only thereafter, when the 
self-consistent electromagnetic field will be calculated in the 
zeroth approximation. In the massless approximation the 
particles of £ > 0 and those of £ = 0 should be considered as 
different phases. 

Thus in the massless approximation there are two 
phases of each species: (1) the dynamical phase (DP) of 
electrons (or positrons) moving with the speed oflight, and 
(2) the statical phase (SP) of electrons (or positrons) mov
ing with speed less than that of light. The dynamical phase 
and the static one can tum into one another. The conversion 
DP --+ SP takes place when an external electric field stopping 
DP appears on the path of the DP. Part of the DP stops, and 
its electric field neutralizes the external electric field, which 
prevents the DP motion. The capture region with 
(E,H) = 0 arises. The remaining part of the DP continues to 
move. The conversion SP--+DP takes place when the exter
nal electric field, which forms the capture region, becomes 
weak. A smaller amount of the SP is necessary for its neutral
ization. Hence part of the SP converts into the DP and es
capes from the capture region. A description of the conver
sions SP __ DP needs a consideration of moving charged 
particles in the self-consistent electromagnetic field. 

v. THE PROPERTIES OF THE PHASES INSIDE AND AT 
THE BOUNDARY OF THE CAPTURE REGION 

The motion of the charged particles in the given electro
magnetic field is considered established inside some spatial 
region Vif (E,H) does not change the sign along each parti
cle trajectory. For the established motion the event space is 
separated into regions of different kinds: (1) DP regions 
(the regions filled with DP only), (2) capture regions (re
gions filled with DP and SP), and (3) vacuum regions, 
where there are neither DP nor SP. 

The capture regions can be separated into SP regions, 
where there is only SP, and leaky capture regions, where the 
DP moves through SP. 
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Let 0. be a four-dimensional capture region in the event 
space, r be its three-dimensional spacelike boundary, and n j 
be the external normal vector to r, i.e., the normal directed 
outside from 0.. Then 

n j = {nO,n}, njnj = - 1. (5.1) 

At the boundary r the Maxwell equations (3.49) take 
the form 

(5.2) 

where the square brackets denote the jump at the boundary 
r, 
[Fikndr=(Fiklr+ _FikiL )nk, i=0,1,2,3, (5.3) 

where r + denotes the external side of rand r _ denotes the 
internal one, and j ~ur is the surface four-current on the 
boundary r. The r is defined by the equation 

air 
r: r(x) = 0, ni = ± (5.4) 

~Iakr akrj 

The sign is chosen so that the normal will be external. The 
volume currentj i on r is expressed throughj ~ur by means of 

(5.5) 

where {j denotes Dirac's {j function. 
Convoluting the first ofEqs. (5.2) with ni , one obtains 

(5.6) 

Let there be two charged species numbered by the index 
s = sgn(e) = ± 1, where eis the charge of the particle of the 
given species. Let, for instance, s = - 1 represent electrons 
and s = 1 represent positrons. 

If r satisfies the condition 

niV~S) Ir #0, s = ± 1, (5.7) 

then the surface current vanishes: 

j~ur Ir = 0, i = 0,1,2,3. (5.8) 

This is connected with the fact that, in the massless approxi
mation, 

jk=PIV71) +p-Iv7_IP k=0,1,2,3. (5.9) 

When condition (5.7) holds, the relation (5.6) can be ful
filled, if only PI = P_I = 0, i.e., under condition (5.8). Thus 
if the baselines L(s) (s = ± 1) cross r, then the surface 
charge and the surface current vanish on r, because they are 
destroyed by the repulsion of particles that can move across 
r. 

If the r is formed from the baselines and 

niv~S) Ir = 0, for s = lor s = - 1, (5.10) 

then the surface four-currentj:ur does not vanish, generally 
speaking. 

Let us assume condition (5.7) to be fulfilled and the F ik 
to be continuous on r. In this case the tangential derivatives 
of Fik are continuous on r. Only normal derivatives 

i,k = 0,1,2,3, 

(5.11 ) 
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can be discontinuous. Substituting (5.9) into (3.49) and 
taking into account the continuity ofF ik , vis) (s = ± 1) on 
r, one obtains 

[ 
aFjk] 41T . . 

nk a;;- r =~([ptlrv(1) + [P_I]rv(_I)' 

[ 
d 1 aFjk 

nk -- =0, j=0,1,2,3. 
an r 

(5.12) 

(5.13 ) 

In the coordinate system Ko, where the boundary r is at 
rest (no = 0, n2 = 1), and the gauge (2.15) is used, (5.12) 
and (5.13) take the form 

[
aE t ] _ -- -0, 
an r 

[aHt] = 
an r 

41T { - H2 [PI -P_I]rslv(nxH) 

+ [PI + P-tlr (ERn - HEn)' 

[PI +P_tlr(ExH,n) + [PI -P_tlrslvH~ =0, (5.14) 

where indices nand t denote, respectively, the normal com
ponent and the tangential one: 

En = (E,n), E t = E - n(n,E). (5.15 ) 

In particular, it follows from (5.14) that 

[..!...... (H2 - E2)] = 0. 
an r 

(5.16 ) 

It results from (2.31), (5.16), and the continuity of (E,H) 
on r that 

[ ap,] = 0. 
an r 

(5.17) 

Thus the invariants H2 - E2 and p, and their first derivatives 
are continuous on r. 

Let there be two species: positrons (s = 1) and electrons 
(s = - 1). Let us consider an established flow of charged 
particles. The term "established" means, first, that (E,H) 
does not change its sign along the basic line and, second, that 
each particle moves in such a way that the electric field does 
not decelerate the particles. In this case the particle motion 
equation has the form (4.18) with s = sgn (e) being a num
ber of the species. Thus, for established flow inside the DP 
region (A. #0), the positrons move only along L(I) and the 
electrons move only along L( _ I)' In the common case of 
Eqs. (4.14) and (4.15) it is not so, generally speaking. 

For the established motion the outflow condition of the 
species s from 0. through r has the form 

(5.18 ) 

The condition of no outflow of the species s from 0. through 
r (Le., inflow of sin 0., or resting in 0.) has the form 

(5.19) 
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For brevity one will say that r is unstable with respect to the 
species s if there is outflow of s through r [ (5.18) ], and that 
r is stable with respect to species s, ifthere is no outflow of s 
through r [(5.19)]. The conditions (5.18) and (5.19) are 
invariant with respect to-the gauge transformation (2.27). 

Now let us consider the case where there is only one 
species (for instance, s = - 1). Let P D and P R be, respec
tively, charge density DP and SP. Then one can see from 
(5.9) that in the coordinate system Ko, 

(5.20) 

Let us consider different cases. 

(I) (n,H) = 0, (EXH,n) = O. (5.21 ) 

Then according to (2.15) and (2.16) the condition (5.10) is 
fulfilled and the surface four-currentj!ur on r does not van
ish, generally speaking. Also the components H, and En are 
usually discontinuous. 

(II) (n,H) #0, (ExH,n) = O. 

Then it follows from the last of Eqs. (5.14) and Eq. (5.20) 
that 

(5.22) 

By definition, PR = 0 outside the capture region fl; ;thus, 
from (5.14), (5.20), and (5.22), 

s= -1. (5.23) 

(lIa) Let r be unstable with respect to electrons 
(s = - 1); then, as a result of (2.15) and (2.16), condition 
(5.18) takes the form 

[ aEn ] -- ,.;;0. an r 
(5.24) 

Conditions (5.23) and (5.24) are compatible in the only 
case where 

(5.25 ) 

and the quantities F ik , E2 - H2, (E,H), /-t, and t/! with their 
first derivatives are continuous on r, and 

Fj~ I r = 0, akFj~ I r = 0, k,j,l = 0,1,2,3. 

(lib) Let r be stable with respect to the electrons 
(s = - I). Then, as a result of (2.15) and (2.16), condition 
(5.19) takes the form (5.23) and 

[aHI] 41T ---at r = - H2 [PR h (ERn - HEn) . (5.26 ) 

(III) (n,H) = 0, (ExH,n) #0. 

It follows from the last of Eqs. (5.14) that 
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[~(EH)] = _ 41T[PD]r VS!(n,EXH) 
an ' r H 2 ' 

[at/!] 41T[PD] r vs! (n,ExH) 
Tn r = - /-tH2 (5.28) 

(IV) (n,H) = 0, (EXH,n) #0. 

Here one has the common case (5.14). It can be reduced to 
case (II), if H~ < E~, or to case (III), if H~ > E~, by means 
of a proper Lorentz transformation, which keeps the bound
ary at rest. 

According to the capture region fl definition the equa
tion 

Fikl = 0, i = 0,1,2,3, (5.29) 

is satisfied inside fl. As long as/ is a real vector, then A = 0, 
and the electric bivector F~ vanishes. Let 52,53 number the 
baselines L( 1), L( _ !) , i.e., 

u~s) ai5t = 0, s = ± 1, 1=2,3. (5.30) 

Then the expression 

F = a(l.- ,I.- ) a(52,53) 
,k !>2!>3 a(xi,xk ) 

_ 1 I.- I.- a52 a53 
=-a(!>2'!>3)Eiktm---

2 aXt aXm 

i,k = 0,1,2,3, (5.31 ) 

where a (52,53 ) is an arbitrary function, satisfies identically 
the last of Eqs. (3.49) and Eq. (5.29) with / defined by 
(5.9). Equations (5.9), (5.29), and (5.30) are invariant
with respect to the transformation 5s --ts (52,53)' s = 2,3. 
For this reason one can set, without loss of generality, 

(5.32) 

VI. THE CAPTURE REGION OF THE MAGNETIZED 
ROTATING SPHERE 

Let us consider a collisionless cold flow of massless elec
trons, which are ejected with zero energy from the surface of 
a conducting sphere. The sphere of the radius R * rotates 
with the angular velocity flo and has the magnetic dipole 
moment f.Lo [flolif.Lo, (flo,f.Lo) > 0]. The sphere rotation gen
erates a quadrupole electric field of the order E - PH, where 

(6.1 ) 

and H is the magnetic field. The electrons move in this elec
tromagnetic field. The electron flow is supposed to be steady 
state, established, and axially symmetric. The total electric 
charge Q tot is a parameter of the system. 

Such a system is a simple model of the pulsar magneto
sphere! with the sphere playing the role of the neutron star. 
The flow of collision less, massless, cold electrons forms a 
capture region. Inside the capture region the electromagnet
ic field Fik has the form (5.32) and does not depend on t, <p 
(t,r,tJ,<p are spherical coordinates concentric to the sphere). 
Then at proper choice of 53 one has 
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F = !l(5 ) a(53,t) a(53,q;) 
lk 3 a(Xi,Xk) a(Xi,Xk) 

i,k = 0,1,2,3, 

a(53,5 i) 
a(xi,xk ) , 

(6.3) 

where 0, 5 i, and 53 are arbitrary functions of their argu
ments. 

It is easy to verify that the first term of (6.3) describes 
the electric field, the second one the poloidal magnetic field, 
and the last one the toroidal magnetic field. 

Let Vo, VI' and V2 be three-volumes of the configura
tional space, where Vo is the volume ofthe sphere, VI is that 
of the capture region, and V2 is that of the rest space. Let 
r ik = r ki (i,k = 0,1,2) be the two-dimensional boundaries 
between Vi and Vk . Inside Vo the condition (5.29) takes 
place, and therefore Vo is essentially a capture region. 

Let us use the following suppositions. 
(a) There is only one species: electrons 

s = sgn (e) = - 1. 
(b) The electron motion is collisionless and established. 
(c) The capture region VI adjoins to the sphere region 

(d) Each baseline L( _I) crosses the capture region VI 
not more than two times. 

(e) All physical quantities do not depend on t, q;. 
(f) The toroidal component Hf{J of the magnetic field is 

neglected: 

5 i (r,3) = 0. (6.4) 

The statement of the problem is described by the equa
tions 

A.(x) =A *(x) _ _ ~l~· --
1 f J (x')dx' 

I I C V,uv, Ix-x'i 

- ~i J(02)i(X') d '-0123 S, l- , , , , 
C r", Ix - x'i 

(6.5) 

where Ai is the total four-potential in the Cartesian coordi
nate system, A ~(x) is the four-potential generated by the 
volume Vo, J i is the four-current of the electrons, and J(02)i 
is the surface four-current on the sphere surface r 02' The 
J(02)i is constituted by the positive charge that cannot be 
ejected from the sphere. Equations (6.5) are a corollary of 
the Maxwell equations (3.49) if Ai has the Lorentz gauge 
aiA i = O. In addition, relation (6.5) includes the absence of 
the surface charge on the boundary r 12 of the capture region 
VI' The surface charge absence on r 12 permits one to deter
mine the shape of r 12' The four-current J i is determined by 
(5.9), i.e., Ji is expressed through Fik and PI' P_I' Thus 
(6.5) expresses Ai through A ~, the quantities PI' P_I' and 
J(02)i' and the shape of the boundary r 12' 

Let E(r,3) = const describe the shape of the line 
lp( _ I)' which is a projection of the base trajectory 1(_1) 

onto the meridional plane q; = const. Then 5 satisfies the 
equation 

(E sin.,p + H cos .,p,VE) = 0, 

where .,p is defined by (2.31). 
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(6.6) 

Let iT' it?, and if{J be unit vectors tangent to coordinate 
lines of the spherical coordinate system r,3,q; with the polar 
axis along flo. The physical components Ii of the vector J i 

can be represented in the form 

(r,3)EVI, 

{
O~ r sin 3 2_ 
--=---V.::., 

A 41TC 

Jip = _ F(E~ IVEI I H2 - JL cos2 .,p , 

rsm 3 " JL 

J F(E) V-X' ---- - I 
p - r sin 3 - f{J' 

(6.7) 

(r,3)EVI, 

(r,3)EV2, 

(6.8) 

(6.9) 

where Jp and Jf{J are, respectively, the poloidal component 
of.t and the toroidal one,JL and .,pare defined by (2.31), Fis 
a function determined from the continuity condition of 
( 6. 7) on the unstable part r; 2 of the boundary r 12' and .t , 
determined by (6.7 )-( 6.9), satisfies the continuity equation 
identically. 

Using the supposition (c) one can consider the volume 
VoU VI as a united capture region. Comparing Eq. (6.3) 
with Fik obtained from (6.5) inside VoU VI' one concludes 

0(53) = 0 0, 53 = -Af{J = - E, 

Ao = - (l/c)«1>(53) = - (Oolc)(E + «1>0)' (6.10) 

Let us substitute (6.7)-(6.9) into (6.5), transform the 
obtained equations into the spherical coordinate system, and 
use d!!.nensio~le~s variables 5,7], ao, af{J,jo, andjf{J instead of 
E, r, Ao, Af{J' Jo, Jip: 

E=JL05 IR *, 
r A· lie 

'Yl- A - ...-0 Q a ., - R*' 0 - (R *)2 P' 0' 
(6.11 ) 

1. = -.l!:sL /3.,' I = ---!!:st...- p 2 • 
o (R *)4 flo, ip (R .)2 lip' 

Let us suppose that the boundary r 12 can be described by 

r 12 : 7] = 7]0(3), 3<30, 7]0(30) = 1. (6.12) 

Then after calculation one obtains the following statement of 
the problem: 

ao( 7],3) = a~( 7],3) - 1'T12 sin 3' d3' 

X ioo 

Go( 7],3;7]',3 ')jo( 7]',3 ')7]'2 d7]' 

_ (" Go(7],3;1,3')u(3')sin3'd3', 
Joo 
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i
l712 

a",(1/,{f) = a: (1/,{f) _{32 0 d{f' 

X LX> G",(1/,{f;1/'{f')j", (1/',{f')1/' d1/' 

1
17/2 

_{32 G",(1/,{f;I,{f')u({f')sin{f'd{f', 
,'}" 

andjo,j", are defined by the expressions 

jo(1/,{f) = - V
2
S 9(1/o({f) -1/) + FI(s~IVs I 

41T 1/ sm {f 

x 

x 

h 2 + III sin
2 

rp 9(1/-1/o({f»), 
III 

V- {~~~ _1_~} 
- a1/' 1/ a{f' 1/ sin {f a'1' , 

III = ~(h2 - {32e2)2 + 4{3 2(e,h)2 , 

(6.18 ) 

( 6.19) 

(6.20) 

(6.21 ) 

cos(2rp) = (h2 - {32e2)IIlI' sin(2rp) = 2{3( e,h) III I . 
(6.22) 

The function 9 is defined by 

9(x)={I, x>O, 
0, x<O, 

and S is the solution of the equation 

({3e sin rp + h cos rp,VS) = 0 

determined by the boundary condition 

(6.23 ) 

(6.24) 

S I '7 ~ I = a: I '7 ~ I . (6.25) 

The S is defined inside the region 1/ > 1 of the plane (1/,{f) 

with the cut along the stable part r;'2 of the boundary r 12' 

The r;'2 is determined by 

1/ = 1/0 ( {f), [(n,V)(n,e)] r" > 0, 
12 

n = C {I _ ~ a1/o o} C = (1 + ~(a1/0)2) -1/2 
, 1/ a{f' , 1/2 a{f , 

(6.26) 
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a",(1/,{f) =S, ao(1/,{f) = - (S+'1'o), 

1<1/<1/0({f), '1'0 = const, 

where Go and G", are defined by 

(6.14 ) 

(6.15 ) 

(6.16 ) 

( 6.17) 

where FI (S) is determined from continuity ofjo on the un
stable part r;2 of r 12' If r;2 vanishes, then FI = O. The u is 
the dimensionless charge density on r 02' The functions 
u( {f) >0, 1/0 ( {f), S( 1/,{f), ao( 1/,{f), a", (1/,{f), and the con
stant {fo are to be determined. The {fo is determined from the 
condition 

(6.27) 

The constant '1'0 is to be given. The '1'0 determines the total 
charge Q tot ofthe system. 

The at and a: are determined by the expressions 

at = - ~(~ - _1_(2 - 3 sin2 {f»), 
1/ 3 51/2 

a: = (sin2 {f)I1/ , 

From (6.1), 

a", <:::.a: (1/,{f) = (sin2 {f)I1/ 

(6.28) 

(6.29) 

is an approximate solution of Eq. (6.14). This approxima
tion is valid in the region 1/ sin {f < 1 I {3. If '1'0 > 0 and '1'0 is 
large enough (Q tot > 0 and Q tot is large enough), then the 
whole r 12 is stable with respect to electrons, FI = 0, and 
(6.29) is a good approximation. This case has been investi
gated in Ref. 9 for electrons, and in Ref. 10 for two species: 
electrons and positrons. In Refs. 3 and 11, the case Q tot = 0 
('1'0 = 0) has been investigated with approximation (6.29) 
and with an additional supposition about stability of the 
whole r l2 [F1(S) =0]. All investigations show that the 
electric charge Q2 of region V2 is much smaller than the 
charge QI of region VI' The influence of Q2 upon the total 
magnetosphere structure is small. The region V; filled with 
trajectories l( _ I) crossing unstable r;2 is small relative to 
the whole VI' But the V; (the electron outflow channel) is 
the active part of the magnetosphere. The V; is interesting 
from this standpoint. 

The full solution of the system (6.13 )-( 6.25) is a rather 
complicated problem. Here only some qualitative features of 
VI and r 12' which can be obtained without solving the sys
tem (6.13)-(6.25), will be considered. The expected shape 
of r 12 is shown schematically in Fig. 2 in the case of rather 
small Qtot > O. One can see a cusp ofr 12 ats = SP, where Pis 
the branch point of the function S = S(1/,{f). At least one 
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V' I 

(a) 

r., 
r., 

(b) 

FIG. 2. The magnetosphere scheme of a rotating magnetized sphere in the 
massless approximation. (a) The branch point P lies on the capture region 
VI boundary. (b) The branch point P lies in the DP region V,. Here Vo is the 
sphere, V. is the leaky capture region with the unstable boundary 
r." and V;' is the leaky capture region with the stable boundary r;',. 

branch point must exist if there is an unstable part r;2 ofr 12' 
At the value 5 = 5p the r;2 passes into the stable part r;'2 of 
r 12' Indeed. due to the charge conservation law in the 
steady-state established case, each base trajectory, crossing 
r;2 (5 <5p ),mustreturnandcross r;'2 (5 <5p on r;'2)' On 
the other hand, according to (6.15) and (6.29), the 5 de
pends on {} monotonically inside Vo (and 5> 5 p on r;'2)' 
Thus the function 5 is multi valued. Thus to make the 5 sin
gle-valued the cut along r;'2 and along the base trajectory 
intercept (5 = 5p) up to where the point P is used. 

The cusp of r 12 at 5 = 5p arises, because one has inside 
the capture region VI' 
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\pl>\PD\ = I HF(5) I. 5 <5p. 
~ 1 - (O~r sin2 {})/e2 

P , 1/,v)E I' (. ) \ \ = I ({lo.H) I (.<1 V 6 30 
21Tc( 1 - O~r sin2 

{} /e2) 

whereF(5) is the same as in (6.7). An investigation ofrela
tions (6.30) shows that, in the case 5 > 5 p, r sin {} can be 
indefinitely close to RL = c/Oo• whereas, in the case 5 <5p, 
r sin {} cannot be larger than 0.8RL -O.9RL . In other words, 
the r;2 cannot approach closely to r sin {} = RL due to the 
instability of r;2' 
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The motion of the Schrodinger charged particle in a homogeneous, rotating magnetic field 
represents an exactly soluble model of the Schrodinger quantum dynamics. The Heisenberg 
motion trajectories are found and classified. It turns out that the rotating magnetic field of not 
too high intensity/frequency ratio forms a kind of trap, confining the nonrelativistic charged 
particle into a quasiperiodic motion. As the intensity/frequency ratio crosses a stability 
threshold, a sudden qualitative change of the Heisenberg trajectory occurs and the particle is 
expulsed out ofthe trap. It is shown that for some values of physical parameters our exact 
model simulates the behavior of the Schrodinger electron in the laser beam traps. 

I. INTRODUCTION 

In the mathematical theory of dynamical systems I the 
time evolution is viewed as a sequence of simple evolution 
acts represented by the iterations of a certain given mapping 
g: <I> --> <I> of an abstract space of states <1>. This simple image 
has exhibited a number of unexpected features (such as cy
clic orbits, instability thresholds, strange attractors, etc.), 
shedding some new light onto the mechanism of the dynami
cal processes. 

In quantum theories the space of states is an infinite
dimensional projective sphere in a Hilbert space. A typical 
scenario where the iterations of a mapping might playa simi
lar role is that of an evolution process induced by periodical
ly varying external fields. If the variation period of the exter
nal forces is 7', then the dynamical operation of special 
interest is U( 7') = U(O,7'), its repetitions permitting detec
tion of the basic tendencies of the system. In the literature 
the general problem of evolution in time-dependent fields is 
seldom visited because of the complication of the continuous 
Baker-Campbell-Hausdorff composition formula.2

--6 How
ever, if the external fields are quadratic electric potentials 
and homogeneous magnetic fields (the Hamiltonians qua
dratic in q,p), then it is known from Wigner theory7 that the 
quantum mechanical evolution in the Heisenberg frame is 
exactly reducible to the corresponding classical evolution. 
Some deep consequences of this fact have been derived by 
Lewis and Riesenfield8 and further generalized by Malkin, 
Manko, and Trifonow. 9,10 They all deal with the Heisenberg 
motion equations in the form of finite-dimensional matrix 
equations, some of which could have been effectively solved. 
On the other hand, a more complete study of the quadratic 
Hamiltonians was carried out by Moshinsky and Winter
nitz. II Recently, details of the behavior of the Schrodinger 
particle in time-dependent fields were investigated by one of 
us, 12.13 yielding special solutions in the form of closed trajec
tories ("evolution loops"), which might be essential for the 
techniques of generating arbitrary unitary operations. 12 In 
particular, it has been found that a sequence of space-homo
geneous magnetic pulses in three mutually perpendicular di-

rections can confine a charged particle into a periodic mo
tion, in fact providing a nons pin analog of the spin echo. 13 

This has directed our attention toward the general trapping 
and focusing possibilities of the time-dependent magnetic 
fields. Our purpose below is to examine the behavior of the 
SchrOdinger electron in three sequencies of sinusoidal, mu
tually orthogonal magnetic pulses arriving with a phase dif
ference of21T/3. Such a field is a kind of continuous analog of 
the pulse pattern of Ref. 13, and simultaneously a not too 
distant relative of the magnetic trapsl4,IS and "standing 
wave traps." 16-18 As the magnetic field in question we take 

B(t) = b sin wt + b sin(wt + 21T/3)K 

+ b sin(wt + 41T/3 )1, (1.1 ) 

where J, K, 1 are three fixed orthogonal unit vectors in R3. 
The field (1.1) can be approximately created by an un

complicated experimental arrangement consisting of three 
electromagnets fed by the ordinary three-phase electric cur
rent (Fig. 1). The magnetic vector ( 1.1 ) has to be accompa
nied by a certain circular electric field. In nonrelativistic ap
proximation, and assuming that the electromagnets possess 
a cylindrical symmetry, both can be represented by a vector 
potential 

x 
A(.x,t) = - ~rXB(t), r= y ( 1.2) 

z 

At first sightthe time dependence ofB(t) in (1.1) might 
seem involved, but one can easily see that in fact 
IB(t) I = const, and thatB(t) is just rotating in a fixed plane 
with a constant angular velocity w. After choosing adequate
ly three mutually orthogonal unit vectors m, ii, s (Fig. 2), 
the time-dependent B(t) can be represented as 

B(t) = Bii(t), 
(1.3 ) 

ii(t) = cos wtii + sin wtm. 

So our arrangement is a magnetic alternative of the widely 
used "rotating field model." 19.20 Yet we are going to show 
that it possesses quite different physical properties. 
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,j,-,k'-",-l 
jk -Ji-'ki-o 

bSlnlwt+4n/311 

--+--.... ~~- - - -.",., - - .. 1[1 " ... : 
I .. bSinwtJ 

------...... bSinlwt+2nl3l~ ... 

FIG. 1. The sinusoidal pulses of the magnetic field in three mutually orthog
onal directions. (The cylindrical symmetry of the electromagnets is essen
tial.) 

II. THE ROTATING FRAME 

The evolution of the charged Schrodinger particle in the 
field (1.2) is given by the unitary operator U(t), 

d~~t) = _ iH{t)U(t), U(O) = 1, (2.1) 

where H(t) is the time-dependent Hamiltonian 

H(t) =! [p - A]2 =! [p + ~rXB(t) ]2. (2.2) 

(We put for simplicity m = fz = e/c = 1. The return to the 
general system of units will be carried out in Sec. III A. ) 
Executing squares and putting a = B /2 one obtains 

H(t) = !p2 - an(t)M +! a2r1 (t)2, (2.3) 

where Mis the angular momentum, M = rXp, and r1 (t) is 
the projection ofr onto the subspace orthogonal to n (t): 

r1(t) =r- [rn(t)]ii(t). (2.4) 

As is easily noticed, the time dependence of the Hamil
tonian (2.3) can be generated with the help ofthe rotation 
operator exp iwM s. Indeed 

n (t)M = eiwtM'nMe - iwMS, 

n(t)r = eiwtM'nre - iwtMs. 

(2.5) 

(2.6) 

FIG. 2. An alternative arrangement to produce the rotating electromagnet
ic field (1.2). 
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Hence 

H (t) = eiwtMs [~p2 - anM + !a~ ] e - iwtMs, (2.7) 

r1 = r1 (0) = r - (nr)n. (2.8) 

This suggests that the evolution problem (2.1), (2.2) 
can be simplified by making the transition to a "rotating 
frame." Indeed, write down (2.1) as 

d~~t) = _ ieiwtMS[+p2 - aiiM + Ta~ ]e-iwtMSU(t). 

(2.9) 

Then put 

U(t) = eiwtMsW(t). (2.10) 

The operator W( t) represent the evolution "as seen 
from the rotating frame." Because of (2.9), 

d~~t) = _ iGW(t) , (2.11) 

where G turns out to be a time-independent generator: 

G = p2/2 + !a~ - anM + wsM. (2.12) 

Choosing-for simplicity-the x, y, and z axes in the 
directions ii, m, and s, respectively, one can represent Gas 

G = p2/2 + a2(yl + r)/2 - aM", + wMz • (2.13 ) 

Since G is a quadratic form in r,p, (2.11) can be reduced 
to a 6 X 6-matrix equation and solved on computers with any 
desired accuracy. Since, however, G is time independent, 
(2.11) admits also an exact solution. Its form depends on the 
parameters a,w involved in (2.13). 

Since the operator W( t) yields only a part ofthe evolu
tion, the true evolution trajectories in the initial frame will be 
obtained by superposing the trajectories of W( t) with a con
tinuous circular motion around s. Note, however, that in the 
infinite sequence of time moments t = ± nT, l' = 21T/W 
(n = 0,1,2, ... ) the rotations reduce to the identity, and W(t) 
coincides with the full evolution operator. Hence in the cor
responding sequence of time intervals [nT, (n + 1) 1'] G be
comes an "effective Hamiltonian," and the repeated applica
tion of W( 1') = e - i-rG defines the asymptotic behavior of the 
Heisenberg trajectories, visible equally well for the rotating 
and for the initial observer. 

III. EVOLUTION MATRIX AND EVOLUTION 
TRAJECTORIES 

The structure of the evolution operator exp itG might 
now be determined in agreement with the formalism of Ref. 
11 by examining the quadratic form (2.13). The operator iG 
is defined (with accuracy to an additive constant) by the real 
6 X 6 matrix A representing the commutation operation 
AdiG applied to the six canonical observables 
q = {qj}j= 1 ..... 6 = {x,y,z,P""Py,Pz}: 

(3.1 ) 

The corresponding operator Wet) is therefore repre
sented by the following transformation of x and p variables 
(interpretable as the Heisenberg trajectory in the rotating 
frame): 
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(3.2) 

Using the expression (2.13) for iG and executing the 
commutations in (3.1) one finds 

0 -(t) 0 
(t) 0 a 

0 -a 0 
(3.3 ) A= 

0 0 -w 
_a2 

W 0 a 
_a2 0 -a 0 

(The unoccupied places mean zeros.) The motions genera
ted by (3.2) depend on the spectral decomposition of the 
matrix A, which in turn depends on the characteristic poly
nomial 

as 

D(,1.) = Det(,1. - A) = A. 6 + 2(w2 + 2a2 ),1. 4 

+ (w4 + 3w2a2 ),1. 2 + a2w4. 
(3.4) 

Introducing the new variable U = A. 2/ w2 one can write it 

I::.a (u) = D(,1.)w- 6 = cr + 2( 1 + 2a2)u2 

+ (1 + 3a2)u + a 2
, (3.5) 

where a = a/w = ar/21T. Hence the algebraic types of A 
(and the corresponding types of the motion trajectories) can 
be classified according to the roots of the third-order polyno
miall::.a (u) (see Fig. 3). They reveal three different beha
viors with an instability threshold at lal = aerO where the 
Cardan discriminant changes the sign: 

a er ~0.579 982 655 598 .... (3.6) 

[Curiously, the value of a er is within 0.5% of Euler's con
stant. (We owe this observation to the referee of this pa
per.) ] 

FIG. 3. The shapes of ~a (u). 
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If 0# lal <aerO the function I::.a (u) has three negative 
real roots:::::} the characteristic polynomial D(,1.) has six dif
ferent purely imaginary roots :::::} the matrix exp A defines 
circulating (confined) Heisenberg trajectories in the space 
of the canonical variables x,p. If lal = aer , two roots of 
I::.a (u) coincide (I::.a degenerate). If lal > aerO the function 
I::.a (u) has one real and two conjugated complex 
roots :::::} D(,1.) has two imaginary and four complex roots [;, 
- [;, [; *, - [; *, with Re [; # 0 causing an exponential explo

sion and implosion in the dynamical problem (2.11 ). Hence 
the resulting motion trajectories fall into three different 
classes A, B, C, which we shall discuss below. 

A. 0 < I a I < a cr : Weak fields and quick rotations 

The polynomial I::.a (u) has three different real roots 
Uo <u, <U2 <0 given by Cardan formulas2

': 

Uk = 2p'/3 cos [ (0 + 2k1T)/3] - j a 2 - j 

(k = 0,1,2), 
(3.7) 

p = 2-'3- 3 [K(a)2 + Q(a) p/2, 

0= tan-'{Q(a)'12/K(a)}, (3.8) 

K(a) = 2 - 33a2 - 84a4 - 27a 6
, 

Q(a) = 33a 2(8 + a 2 - 36a4 - 112a6
). 

(3.9) 

The characteristic polynomial D(,1.) thus yields six dif-
ferent imaginary eigenvalues: 

+= iwo, += iw" += iw2; 

Wk = w~. 
(3.10) 

Consistently, the evolution matrix exp tA [generating 
the Heisenberg trajectory (3.2)] has bounded time-depen
dent entries and defines "circular phenomena." On the clas
sicallevel it means the bounded phase-space trajectories. In 
the original rest frame these trajectories are affected by an 
extra rotational drift around sbut always remain limited. To 
find out explicitly the time-dependent operators x(t), p(t), 
the spectral decomposition of A is relevant. Since A is non
Hermitian, its spectral form can be most simply obtained in 
terms of the right and left eigenvectors (eigenvectors and 
eigenforms) uj , uj, ej> ej (j = 0,1,2), 

AUj = - iwjuj , ejA = - iwjej , 

Auj = iwjuj, ejA = iwjej, 

normalized to be a dual system: 

(ejUk) = (ejut) = 8ik , 

(ejut) = (ej*uk ) = o. 

(3.11 ) 

(3.12) 

[Here (eu) means the number output of the matrix multipli
cation of the row vector e by the column vector u.] After 
calculation one arrives at the following dual bases of forms 
ej = e(uj ), ej = e(uj )* (j = 0,1,2) and vectors uj 
= u(uj ), uj = u(uj )* (j= 0,1,2): 

e(u) = K(u) 111, - iv'lUf, a(2U
u
+ 1) , 
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i(1 + 3u) 2u 

aNTOT (u + 1)' w(u + 1) , 

-i(u+l)11 
waM 

u(u) = N(u) 

' and c.c., 

(1 + 3u) /2uM 

i 

- (u + 1) 2/2auM 

- iw(u + 1)/2u 

- w(u + 1 )/2M 

- iwa(u + 1 )(2u + 1)/2~ 
and c.c. 

(3.13 ) 

(3.14) 

HereK(u) and N(u) are numerical factors, bound only 
by the normalization condition 

(e(u)u(u») = 1 ~ K(u)N(u) 

= - ~vfc7f/(4cr + 2~ + 3u + 1), 

and the desired forms ej and vectors uj are obtained just by 
feeding the triple of Cardan's roots u = U O'U"U2 into the 
functions (3.13), (3.14). [In Sec. IV we shall additionally 
fix the normalization function K ( u) so as to obtain the most 
convenient description of the "effective Hamiltonian" G and 
Heisenberg time-dependent operators. ] 

On account of (3.12), the tensor products uj ® ej , 

uj®ej (the u®e generalizing Dirac's luXel) are projec
tors, and they yield the spectral decomposition of the unit 
matrix 1: 

2 

1 = L (uj ®ej + uj ®e}*). 
j~O 

The corresponding decomposition of A is 
2 

A = Al = L (- iwjuj ®ej + iwjuj ®ej). 
j~O 

Consistently, 
2 

eth =" [e-itwiu.®e.+e+itwiu*®e*]. £.. } J }} 
j~O 

(3.15 ) 

(3.16 ) 

( 3.17) 

The spectral representation (3.17) provides immediate
ly the evolution trajectories in either quantum or classical 
cases. In fact, let q denote a column of the six (classical and/ 
or quantum) canonical variables: 

q= 

q6 
Introducing (3.18) to (3.2) one has 

q(t) = eitGqe- itG = ethq 

2. . 
- " [ -'Wl A + +/Wl *A*] - £.. e uj j e uj j , 
j~O 

(3.18 ) 

(3.19) 

where A j and A j are scalar coefficients defined with the help 
of the eigenforms 

Aj = (ejq), A j = (ejq). (3.20) 

The formula (3.19) decomposes the time dependence of 
the Heisenberg variables x(t),p(t) into the simplest "circu-
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lar modes" along three pairs of distinguished six-vectors Uk' 

ur (k = 0,1,2). This decomposition is valid in classical, as 
well as in quantum, cases, but to see the physical sense of 
(3.19) it is worthwhile to consider the picture of the classical 
phase-space trajectories. 

In classical mechanics the scalars (3.20) are just 
numbers and represent the initial conditions defining the 
motion. In order to express (3.12) in,terms of real coordi-

nates, putAj = !Cj/'P i and introduce in each two-dimension
al subspace of uj , uj as an alternative basis consisting oftwo 
real vectors, 

aj = (l/2i)(uj - uj), bj = !(uj + uj). (3.21) 

Then (3.19) becomes 
2 

q(t) = L Cj [sin(w/ - tPj )aj + cos(Wjt - tPj )bj ]. 
j~O 

(3.22) 

Henceforth (3.19) splits into three elementary circular 
motions taking place in three distinguished two-dimensional 
subspaces of the real six-dimensional phase space, with fre
quencies Wj defined by the Cardan roots (3.10). In order to 
obtain the trajectories in the three-dimensional configura
tion space, it is enough to make the transition from the six
vectors aj , bj (j = 0,1,2) to the three-vectors proportional 
to their upper triples of coordinates: 

(1 + 3u)/2uM 

o 
- (u + 1 )2/2auvfc7f U=Uj 

(3.23) 

One thus obtains the family of the configuration space 
trajectories labeled by six integration constants Dj' tPj 
(Dj = CjNj ), (j = 0,1,2): 

2 

x(t) = L Dj [sin(wjt - tPj )aj + cos(Wjt - tP)bj ]. 
j~O 

(3.24) 

As one can see, for special initial conditions (Dj = Dojjo ) 

they degenerate to three simple "circular modes" represent
ed by families of concentric elliptic trajectories on the excep
tional two-dimensional planes P [ uj ] spanned by the vec
tors aj , bj , (see Fig. 4). These planes are defined by the 
physical parameters of the system; they possess a common 
intersection along the vector m (like three pages of an open 
book), and their anglespj with the rotation axis s are deter
mined by the three Cardan roots (3.7): 

tan Pj = - (1 + 3uj )a/(l + U j )2. (3.25) 

The semiaxes of the corresponding elliptical motions are 
proportional to the norms of the vectors aj' b/ 

aj = lajl = 1, 

bj = Ibjl 
(3.26) 

= 11+_1_+~+...!.-+_1_1 
\j 2u 4~ cr 4u4 u~ UJ 

The positions of the exceptional planes P [uj ] are listed 
on Fig. 5. (The three angles Po, P ,,/32 are plotted against the 
field parameter a = a/ w.) As one can see, for small a> 0 
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P[OiJ 

z 

FIG. 4. Three exceptional planes P [uj 1 (case A) associated with the Car
dan roots uo, U,' u, and hosting the elliptic trajectories (view from the rotat
ingframe). 

there is one special plane P [0'2], nearly orthogonal to ii, on 
which the circulation is relatively slow (cu2 = cuJlQiT ~cua) 
and the motion trajectories have the form of extreme elon
gated ellipses (b2 ~ 1I2u2), whereas two other planes P[ u. ] , 
P[uo] stick almost to ii and host almost circular orbits. As a 
grows, P[u2 ] and P[u.] tend to coincide for the critical val
ue a = aer (at the angle p. = 0.032 472 671T), whereas 
P[uo] conserves its character even for a> aerO bearing ap
proximately circular trajectories and adopting a position or
thogonal to the magnetic field as a -+ + 00. The orbits on the 
root planesP[uo], P[u.], P[u2 ] are shown on Fig. 4, where
as Fig. 6 represents some exceptional trajectories seen from 
the original (nonrotating) frame. The general trajectory in 
R3 is the superpositioll of the three elliptic circulations 
(3.24) (of frequencies cuj = cu![OJ) and the standard rota
tion with frequency cu. An intriguing question is whether for 

FIG. 5. The angles /3o(a), /3, (a), /3,(a) between the root planes P [Uj 1 
and the rotation axis z. 
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Z I 
(a) ,/\ (b) (e) 

t . 
J 

FIG. 6. Three exceptIOnal trapped trajectories in the original frame (com
puter pictures). (a) The case of a",,0.530 33008589 and U 2 = -!. The 
orbits associated with the root u, are ellipses in the rotating frame, and they 
remain ellipses in the original one. (The computer was asked to show a 
slightly deformed and precessing variant of one of these orbits seen in per
spective.) (b) An exceptional trajectory that occurs for 
a",,0.350 150487 262 and is associated with theCardan root U 2 = -~. (c) 

One of closed orbits that occur out of the proper confinement domain 
(a"" 1.390 282671 27, u" = - 9). 

some values of a the four frequencies cu and cuj can become 
commensurable (![OJ rational for j = 0,1,2), thus produc
ing the phenomenon of an evolution loop (all the phase
space trajectories simultaneously closed). To check this we 
have assumed 0'0 = - r = - (mln)2 to be a rational root 
of the equation t:.a (0'0) = 0, and determined two other roots 
using the quadratic equation derived from Vieta formulas: 

u2+ 3r
4
-3r+2 0'+ (r-l)2 =0. (3.27) 

4r4 
- 3r + 1 4r4 

- 3r + 1 
The computer was asked to insert a rational r into 

(3.27) and to check whether its two roots have the form 
u. = - ri, 0'2 = -~, where r., r2 are rational. For r = ml 
nE[0,1.6218182] with denominators n running from 
1, ... ,35, the answer turns out negative. Thus we did not de
tect the loop phenomenon. [Perhaps the special motions 
(3.22) provide yet another "physical construction" of non
commensurable quantities.] The absence of rational rela
tions determines the character of the motion (3.24). The 
resulting trajectory, in general, is dense in a certain domain 
in R\ and so is the sequence of points obtained by iterations 
of U( 7) = W( 7). In Fig. 7 we have plotted the computer 
picture of a typical motion trajectory departing from x = 0 
and with Po chosen at random. The resulting cloud illustrates 
a curious phenomenon of trapping: a charged particle unable 
to leave a limited space domain because of the rotating mag
netic field (an effect that has not so simple an analog in 
magnetostatics). The space volume that comprises the tra
jectory may be estimated by remembering that the link be
tween the initial conditions and the coefficients Dj of (3.20) 
[Dj = D(u) Iu~ u

j
] involves the products of the normaliza

tion constants ~Kj = N(u)K(u) Iu~ u' One has 
J 

IxCt) 1< L ID(u) I l,il(u) I, (3.28) 

where ,u(u) = max {l,lb(u) I}, and 

ID(u) 1= IN(u)C(u) I = IN(u) I 21(e(u)qo)l. (3.29) 
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FIG. 7. One of the evolution trajectories for a = 0.25, (J) = 21r (case A) in 
the rotating frame, departing from the initial condition Xo = 0, 
POx = Poy = POz = 1. The graphic, computed in dimensionless coordinates, 
corresponds to 20 rotation periods ofB( t) and is simultaneously confined in 
three coordinate intervals [ - 1.42, + 1.49J X [ - 1.39, 1.38) X [ - 0.81, 
0.81). 

A short calculation henceforth shows that the configu
ration space radius of a general trajectory admits the limit 

Ix(t) I <F(a) IXol + (1/m)$(a) lPol, (3.30) 

where 

(3.31) 

·1403 + 2cr + 3u+ 11-1 

X~4u4 + (u+ 1)2(4(12 + 3u+ 1) - u(1 + 3U)2. 

(3.32) 

The computer pictures of F( a) and ~ (a) are plotted in 
Fig. 8. As can be noticed, the limitation (3.30) works differ
ently for the orbits with Po = 0 (the "x orbits") and the 
orbits with Xo = 0 (the ''p orbits"). For the x orbits the trap 
is most efficient for a < 0.56 [~ F( a) < 4], while for the p 
orbit it is the best for 0.36 <a <0.56 [~ ~(a) < 8]. For an 
unspecified trajectory the interval 0.36 < a < 0.56 represents 
the "optimal efficiency region" in which 

Ix(t) I <4lxol + (8/m)lpol· (3.33) 

As can be seen, the rotating confinement occurs for not 
too strong fields and has a certain natural efficiency limit. If 
m = const, the ratio of the confinement radius to the initial 
moment lPol for a typical trajectory cannot be reduced more 
than to (1/m)~ min~6.2/m, no matter the value ofB em-
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FIG. 8. The functionsF(a) and <J>(a) providing an estimate of the trapped 
trajectories. 

ployed. IfB is too strong, the confining effect is "overdone" 
and the trajectories explode (see the discussion in Secs. III B 
and III C). The physical orders of magnitude in cgs units 
can be recovered by putting 

m = 21T"IT, a = eB 12mc, (3.34) 

where Tis the rotation period ofB(t) in seconds and elm is 
the charge/mass ratio of the trapped particle. Out of curios
ity we have collected some optimal confinement radii achie
vable for B rotating with typical electromagnetic frequencies 
(Table I). 

As can be noticed, the magnetic fields rotating with the 
standard frequency of the variable electric current (v = 1/ 
T = 6O/sec) can sustain the electrons only on very large tra
jectories, which might suggest an image of a relatively cold 
and dispersed cloud of charged particles kept in vacuum by 
very weak rotating fields (IB 1< 4.14x 10-7 G). For the fre
quencies ~ 106/sec, the "cold" 3 OK electron is kept on the 
orbit of the radius ~ 6 mm by IB(t) I of the order of magni
tude ~ 10- 1 G, creating a shallow alternative of the ion 
traps.14.J5 The confinement becomes tighter above v> 1061 
sec, the frequencies not difficult to achieve for the rotating 
fields produced by systems of core-free electromagnets. 
Moreover, there are also different physical mechanisms pro
ducing the same fields. 

We refer to the behavior ofthe fields in some points of 
standing waves. Consider the electromagnetic standing 
wave described by the vector potential Am (sx,mt) consis
tently with both Coulomb and Lorentz gauges: 

Am (sx,mt) = Am sin(msxlc) sin mt (AeR), (3.35) 

where ii,m;s are three arbitrary orthogonal unit vectors. By 
crossing two perpendicular standing waves of the form 
(3.35) one defines the field 

Am;s(x,mt) 

= i [Am (sx,mt) - As (mx,mt)] (3.36) 

=~A [msin(msxlc) -ssin(mmxlc)]sinmt, 
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TABLE I. The size of classical trapped trajectories. 

Frequency 
(in rotation/sec) 

Intensity of the 
optimally confining 
field li(t) (in 0) 

l/see 
6O/sec 
103/sec 
106/sec 
107/sec 

3.61 X 10-7 

2.16x 10-5 

3.61 X 10-4 

3.61 X 10- 1 

3.61 

which in the vicinity ofx = 0 (i.e., for Ixl.(A = 211'e/w) be
haves approximately like one of the oscillation modes of our 
rotating potential (1.2): 

Am.s(x,wt) ~~ (Aw/c)[in(sx) - s(inx) ] sin wt 

= ! r(Aw/ e) X Ii sin wt. ( 3.37) 

Hence by superposing two fields Am,s and As,n with the 
phase shift 11'/2 (equivalent to four standing waves) one ob
tains the time-dependent periodic field 

A (X,t) = An.s (X,wt) + Am.s (X,wt - 11'/2) 

A [(
- . wsx _. WinX) -! m sm-

e
- - ssm-

e
- cos wt 

(_. wnx _. ws x) . ] (3 38) - ssm-
e
- - n sm-

e
- smwt, . 

which near to x = 0 imitates our rotating trap (1.2): 

A (x,t) ~ - ! r(Aw/e) X [Ii cos wt + in sin wt ] 

= - PXB(t) (B = Aw/e) , (3.39) 

It is furthermore essential that the point x = 0 is not 
unique; the same situation occurs around the lattice of the 
nodal points 

where the standing wave (3.38) approximates the field 
(1.2). [Besidesf, the field (3.38) has also a subset of nodal 
points of different structure, to be treated elsewhere.] Since 
the oscillating forces in between the nodal points create a 
repulsive effect, .4-.7 the whole standing wave (3.38) be
haves like a "radiation-made crystal," with the lattice of 
nodal centers (some of which are "little copies" of our rotat
ing trap) is encrusted into a repulsive field medium. This 
analogy resembles the approach of Letokhov and Minogin· 6 

with one slight diference. 
In the standard description of the electron in the stand

ing waves, the attention is focused on the oscillating electric 
field E(x,t) = E(x)sin wt [which is assumed to create an 
"effective potential" (e/2w)2IE 12], while the role of the 
magnetic component is neglected. 14 However, once the elec
tron is caught near a point in f, the exact sine functions of 
space coordinates in (3.38) become of secondary impor
tance, whereas there is no good reason to neglect the fluctu
ating magnetic field. Henceforth it seems that our exact 
model might give a better insight into what truly happens in 
the vicinity of each attraction center. As far as the classical p 
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The optimal confinement 
radius for 3 oK electron 

departing from the center 

6 km 
100 m 

6 m 
6 mm 
0.6 mm 

The threshold value of the 
magnetic field marking the 
instability domain (in 0) 

4.14x 10-7 

2.48x 10-5 

4.14XIO- 4 

4.14 X 10- 1 

4.14 

trajectories are concerned, this requires that the confine
ment radius (3.30) be a small fraction of the wavelength A / 
211' = e/w. After introducing the cgs units this yields 

(l/mw) /Pol ct>(a) .(e/w, 

i.e., the following dimensionless parameter ought to be 
small: 

(3.40) 

where IVol is the initial velocity ofthe p trajectory, and 

e B 1 eA 
a=--=---. 

me 2m 2 me2 

Thus for £ < to- 4 one can replace (3.38) by (3.39) with the 
relative error < (E - sin E)/E~6-· X to-8

• If the param
eter a of the standing wave (3.39) is near to the optimal 
value 0.505 182 51 => ct> (a) ~ 6.2, this still imposes a fairly 
tolerant condition on the particle velocity: IVol < (c/ 
6.2) to- 4 ~4 km/sec. Provided that this holds, all our 
graphics in Figs. 4, 6, and 7 become interpretable as the elec
tron trajectories near to one of the lattice centers. [For the 
trajectories which start near, but not exactly in, one of the 
attraction centers, the evaluations are not essentially worse; 
see the function F( a) in Fig. 8.] It thus seems that the con
finement of a relatively cold cloud of electrons in the lattice 
of zero points of a standing radio wave is not unreal, and that 
it might have to do with an ensemble of our rotating systems. 
(An interrelation with the laser beam traps is also immi
nent.) 

B. <Ial =acr ): The threshold 

We return to our principal subject. 
If a -+ ± a cr ' the two roots of aa coincide; the resulting 

aa
e

, has one single root at 0-0 = - 2.630 294 and a double 
root at 0-1 = - 0.3576126. The matrix A has four linearly 
independent eigenvectors only and is nondiagonalizable. Its 
canonical form is of Jordan type and can be best expressed 
with the help of the eigenvectors and eigenforms uo, u~, u., 
uf, eo, e~, el, ef, 

(A - iWj)uj = 0 = ej(A - iWj) (j = 0,1), 

as well as the generalized eigenvectors (eigenforms) VI' vf, 
1.,/f representing the nontrivial Jordan structure: 

(A + iWI)v. = u., f.(A + iw.) = e., 

(A - iwl)vf = uf, If(A - iw.) = ef, 
(3.42) 
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where CUo = cuJTl7J, cu I = cuJTOJ. Note an immediate conse
quence of (3.41), (3.42): 

(3.43) 

The Jordan vectors and forms of a nondiagonalizable 
matrix, in general, are not dual. However, uj,vI and ej / I 
admit now the freedom of the gauge transformations, 

U; = ~Uj' e; = Kjej , 

vi = NVI + /lUI' Ii = KII + 1]e l , 

and by fixing uj ' VI' ej,/1 so that 

(3.44) 

(eouo) = (elv l ) = (/Iu I ) = 1, (/IvI ) = 0, (3.45) 

one achieves the duality of the systems, with e l dual to VI and 
II dual to U I' The unit matrix then becomes 

I = Uo ® eo + u~ ® e~ + U I ® II 

+ uT ®IT + VI ®e l + vT ®eT, 

and owing to (3.41 )-(3.43), 

(3.46) 

+ e- ;aJ,tUI ® (II + tel) + e;aJ,tuT ® (IT + tef). 

(3.47) 

The Heisenberg trajectory for the canonical variables 
q = Ilqjllj= 1 ..... 6 can now be written as 

q(t) = etAq = (e - ;aJ"IAouo + e;aJ"tA ~U~) 

+ (e - ;aJ,tBv l + e;aJ,tB *vf) 

+ [e - ;aJ,t(A I + tB)u I + c.c.], (3.48) 

where Ao, AI' B are the operators and/or c-number scalars 

( 3.49) 

As one can observe, the trajectory (3.48) has a spirally 
expanding part as t -+ + 00, associated with the scalar B. 
Introducing the basis of six real vectors, 

aj=lmuj , bj=Reuj (j=0,1), 

a = 1m VI' b = Re VI' 

(3.50) 

one can decompose the (six-dimensional) real phase space 
9 into three two-dimensional subspaces 9 0, 9 1, and r 
spanned by {ao,bo}, {al,bl}, and {a,b}, and hosting the sim
plest forms of the motion. These turn out to be elliptic circu
lations (with frequencies CUo and CUI) in 9 0 and r, and a 
family of diverging Archimedes spirals on 9 1, The sub
spaces 9 0, 9 I' r correspond to three special planes Po, PI' 
V in the configuration space R3 that host the "configuration 
space shadows" of the above trajectories. These planes inter
sect again along the y axis of the rotating frame. The plane Po 
is the limiting case of P[O'o] for 0'0 = iTo, and its angle with s 
is,80~0.313 193617'. The PI plane is the result of the coinci
dence of P[O'd and P[0'2] for the critical values 
0'1 = 0'2 = iT l and lies at the angular distance 
,81 ~0.032 472 6717' from s. The V plane, in turn, is an extra 
plane appearing in the critical case alone, forming with s the 
angle ,8~0.480 393317'. Note that the motions on Po, PI' V 
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are linked. In the absence of the component in V the motion 
in PI is circular; however, if there is a nontrivial component 
in V, the motion in PI starts to diverge (as if the elliptic 
circulation in V were a kind of clock mechanism measuring 
the spiral development in PI)' Since the components in Vor 
in PI are missing only for very special initial conditions (of 
measure zero), one thus sees that for a attaining a cr the 
global picture of motions is radically changed: the confine
ment is broken and almost all trajectories escape to infinity 
(see Fig. 9). Before discussing the consequences of this fact, 
the next case is worth examining. 

c. <Ial >acr ): Strong fields and slow rotations 

As lal > acr the algebraic type of the matrix A once 
more changes. The polynomial Aa (0') now has one real and 
two complex conjugate roots: 0'0 and 0'1 = 01, where 0'1.2 are 
determined in terms of 0'0 as the roots of the quadratic equa
tion 

(4~ + 30'0 + 1)~ + (3~ + 30'0 + 2)0'+ (0'0 + 1)2 = O. 
(3.51) 

The characteristic polynomial D(A.) has therefore two 
purely imaginary and four different complex roots, 

± icuJ[UJ, ± cut, ± cut *, (3.52) 

where t = [O'd 1/2 = 1] + iK, with 1] = Re t> 0, K 

= 1m t # O. The matrix A is diagonalizable and defines the 
dual systems of the eigenvectors and eigenforms, 

Auo = - icuouo, Au ± = ± cutu ± ' 

eoA = - icuoeo, e ± A = ± cute ±' and c.c., 

which turn out to be Uo = as in formula (3.14), 

u 

(1 + 3t2)/2C 

1 

- (1 + t 2)2/2at 3 

- cu(1 + t 2)2t 2 

- cu(1 + t2)/2t 

(3.53) 

- cua(1 + t 2
)( 1 + 2t2)/2t4 

u+ = C(t) 

- (1 + 3t2)/2t3 

1 

(1 + t 2)2/2at 3 

- cu(1 + t2)/2t 2 

cu(1 + t2)/2t 

- cua(1 + t 2)(1 + 2t2)/2t4 

(3.54) 

withC(t) = t 5/(4t 6 + 2t4 + 3t 2 + l);andeo = as in for
mula (3.13), 

e = 111 - t a(1 + 2t2) _ (1 + 3t2) 
, , t 2 ' cut(1 + t 2) , 

2t2 (1 +t2) II 
cu(1 + t 2

)' cuat ' (3.55) 
= 111 !- a(1 + 2t 2) (1 + 3t 2) 

e + ,~" t2 ' cut(1 + t 2) , 

2t2 (1 +t2) II 
cu(1 + t 2 ) ,- cuat . 
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FIG. 9. A slowly expanding trajectory of the critical case 
a = ac< a.0.579 982 655 598 seen in the rotating frame [computer picture 
corresponding to the 30 rotations ofB(t)]. 

The spectral form of A becomes 

A = - iaJo (uo ® eo - u~ ® e~) 

-aJ(tu_ ®e_ +t*u~ ®e~) 

+aJ(tu+ ®e+ +t*u~ ®e~), 

and so 

+ e - At (e - iptu _ ® e _ + eiplu~ ® e~ ) 

(3.56) 

+e>'t(eiP1u+ ®e+ +e-iPlu~ ®e~), (3.57) 

where A = aJ'TJ and p = aJK. By introducing f!jJ 0' f!jJ _ , f!jJ + 
as the real sections of the two-dimensional complex sub
spaces ofR6 spanned by the pairs of vectors {eo, e~}, {e_, 
e~ }, and {e+, e~ }, one sees that the evolution matrix 
(3.57) generates the elliptic circulation in f!jJ 0' exponentially 
shrinking spirals in f!jJ _, and exponentially expanding spir
als in f!jJ +. In the configuration space R3 the faithful sha
dows of these motions will take place on the three "root 
planes" Po, P _, P + defined as the configuration space pro
jections of f!jJ 0' f!jJ _, f!jJ +. It turns out that the P _ and P + 

are transformed into each other by the reflection y-+ - y, 
intersect along the vector 

a = 1m {[ (1 + 3t2)/2t3]ii - [(1 + t 2)2/2t 2]s}, 

and form the angle ()( - , + ), which varies between 0 and 1T 

as ae( - oo,acr )' (Thus P _ and P + tend to coincide twice, 
for a-+ - 00 and a-+acr ') 

Since almost all initial conditions possess a non vanish
ing part in f!jJ +' all but exceptional trajectories "explode" as 
t-+ + 00 (see Fig. 10). A question about the physical sense 

'-'" ~ .............. . .. " .. '" 
(".... _ ... -....................... '" .... '" 

'" . c... c: ~3"~) ............. , ........ '. ". . ............. ~~~.~:= .. ~~ .. ~~ ................ ) ..... 

.. ) ..' ". '. -, ........... .... ..... . .... 

FIG. 10. An exponentially expanding trajectory for a = 0.6, {r} = 217' (case 
C) integrated within 20 rotation periods, in the rotating frame. It is seen 
that one of the evolution modes has quickly disappeared (the dark center of 
the graphic), giving place to an almost spiral expansion. 
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of this effect arises: Does it mean that the particle passively 
"evaporates" to infinity Uust since B(t) does not rotate 
quickly enough to block all the escape routes], or is the parti
cle actively expulsed? Since the particle momentum expo
nentially diverges, it seems that the "deconfinement" repre
sents a new kind of "semiclassical resonance" depending not 
on the frequency alone but on the ratio al aJ, and affecting 
otherwise free particles in pulsating coherent fields (tenta
tively interpretable as the "cyclotronic resonance without 
cyclotron.") If our argument is right, this phenomenon 
might be no less important than the "confinement." Thus 
one can imagine physical situations where a rotating mag
netic field B(t) works as a particle filter (if two kinds of 
particles with different charge/mass ratios define the param
eter a below and above the threshold a cr ). Interrelation with 
the models of quantum friction22 is imminent. Finally, some 
critical phenomena concerning the standing wave traps of 
Sec. III A may be expected. 

Consider again the "wave crystal" (3.38) composed of a 
lattice of "vibrating traps" (3.39). When this structure is 
described in agreement with the traditional high-frequency 
approximation 14,16 the existence of a critical parameter is not 
clear. The situation is different within our rotating model. In 
fact, when the parameter a = eB 12maJc = ! eA 1 mc2 crosses 
the threshold value (3.6), i.e., for 

A> 1.159 965 3112(mc2/e), (3.58) 

all the attractive nodal points of the standing wave (3.38) 
should undergo a metamorphosis into repulsive centers, 
thus affecting the global properties of the whole standing 
wave trap. To obtain a more detailed picture of this phenom
enon the electron wave functions are essential. 

IV. STRUCTURE OF THE GENERATOR: "DRIFTING 
STATES" 

The solution of the evolution problem (2.1), (2.2) in 
terms of the Heisenberg trajectory q(t), p (t) is most natural; 
yet it leaves implicit the behavior of the Schr6dinger wave 
functions. To recover this last aspect it is useful to split the 
generator (2.13) into commuting "irreducible parts" relat
ed to the simplest modes of behavior ofthe Schr6dinger wave 
packets. It turns out that the desired decomposition is most 
easily derived from the matrix A. Below, we shall limit our 
considerations to the case A (0 < I a I < a cr ). Consider again 
the operators Aj' A j* defined by the eigenforms ej , ej [see 
(3.13 )-(3.20)]. By definition they obey a special commuta
tion relation with G: 

[G,Aj] = -i[iG,(ejq» = -i(ej[iG,q]) 

= - i(ejAq) = - aJj (ejq) = - aJjAj' (4.1) 

[G,A1"] = aJjA;' 

Simultaneously, Aj , A t commute to 

[Ak,Aj] = [At,Aj"] =0, (4.2) 

(4.3) 

The commutation rules (4.2), (4.3) may be straightfor-
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wardly checked using (3.20), but they are in fact a conse
quence of a certain general lemma. 

Lemma 1: If A, B, G are three operators in a Hilbert 
space JY, and 

[A,B ] = c number, [G,A] = A.A, 

[G,B] = pB, A."ueC, 

then (A. + p) #0 ~ [A,B] = O. 
Proof" 

(A. + p )[A,B ] 

= [A.A,B ] + [A,pB ][ [G,A ] ,B ] + [A, [G,B ]] 

= [B, [A,G]] + [A, [G,B ]] 

= - [G, [A,B ]] = - [G,c number] = O. 

(4.4) 

(Note: A refinement of this lemma to the case when A, 
B, G and their products are defined not on the whole of JY 
but on a certain common dense domain g; C JY is easily 
obtained.) 

Notice that none of the Yk in (4.3) may vanish. Indeed, 
if any of the Yk'S were zero, the corresponding Ak would 
commute with every Aj and A j (j = 0,1,2). As the eigen
forms ej , ej are a basis among the forms 5 = 1151>"",5611, Ak 
would commute with any linear combination 
(5q) = 51ql + ... + 56q6' Hence it should commute with 
every canonical observable qj,j = 1, ... ,6, which is impossible 
since ek #0. 

We shall show that A t, Ak (k = 0,1,2) play the role of 
generalized creation and annihilation operators, and provide 
the decomposition of G into three commuting canonical 
parts. 

Lemma 2: G is representable as 

2 uh • 
G= L -A kAk + go' 

k=O Yk 

where goER. 
Proof Denote 

2 (Wk) go= G- L - AtAk· 
k=O Yk 

(4.5) 

(4.6) 

Because of (4.1), (4.2), and (4.5), go commutes with 
every Aj and A j: 

[go,Aj] = [G,Aj] - (w/Yj) [A j,Aj ]Aj 

= - wjAj - (wj/Yj) ( - Yj )Aj = 0, (4.7) 

[go,Aj] =0, j=0,1,2. 

Thus go commutes with all qj'S, and goER. 
Observation 1: A more detailed argument shows that 

go = ~(wo + WI + ( 2 ) (cf. also Refs. 9 and 10). 
Observation 2: In the expressions (4.3), (4.6) the abso

lute values of the Yk'S are, in fact, superfluous. By redefining 

ej = e/Jir;T and uj =.JlYJ uj one might easily achieve 
Yk = ± 1, k = 0,1,2. In contrast, the signs of Yk contain 
essential information about the structure of G and cannot be 
affected by any redefinition of constants. In our case, taking 
A (u) = (e(u)q) one finds 

y(u) = [A(u),A(u)*] = IK(u)1 2(2/w)lul- 3/2 (u+ 1)-1 

X[4~+2~+3u+ 1]. (4.8) 
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The function on the right-hand side changes the sign at 
u = - 1 and atu = ul : it is positive in (UO, - 1), negative in 
( - l,ul ), and positive again in (ul,O). (The critical values 
u = uo, - l,u l ,Odonotbelong to case A.) The required nor
malization of the A j'S can therefore be obtained by fixing 

IK(u)1 = (W/2)1/2IuI3/4Iu+ 111/2/~4(? + 2Q2 + 3u+ 1, 
(4.9) 

which yields Yo = Y2 = + 1, YI = - 1, and brings the for
mulas (4.3) and (4.5) into 

[Ao,A~] = 1, [AI,A n = - 1, [A2,A n = 1. (4.10) 

Henceforth 

(4.11 ) 

The representation (4.11) reveals a curious fact: the 
generator G is not positively defined. Though the parts of G 
are equivalent to the Hamiltonians of linear oscillators, the 
signs are alternating. Since we are on the ground of the tradi
tional quantum mechanics, the attempts to get rid of this 
property by maneuvers similar to the Gupta formalism 
would be pointless. Departing from (4.11) one can con
struct the stationary wave packets in the rotating frame. The 
simplest one (the "ground state"), t/Jo, can be defined by 

Aot/Jo = A Tt/Jo = A2t/JO = o. (4.12) 

The integrability of Eqs. (4.12) and the existence of a 
square integrable solution t/Jo is a consequence of some gen
eral facts. Let C 2 (Rn 

) be the space of twice differentiable 
complex functions ifJ = {ifJ(x)} of the argument x 
= IIXj Ilj= 1, ... ,n eRn. Let now BI, .. ·,Bn be a system of n differ-

ential operators on C 2 (Rn
), each Bk (k = 1, ... ,n) being a 

linear combination of the 2n canonical operators x j , 

Pj = (1/i) (a /axj ), and let B T, ... ,B! denote their Hermi
tian conjugates. 

Lemma 3: If the operators BI, ... ,Bn obey the commuta
tion relations in C 2 (Rn

), 

[Bj,Bk] = 0, 

[Bj,Bt] =8jk (j,k= 1, ... ,n), 

then the system of n differential equations 

Bjt/Jo(x) = 0, j = 1, ... ,n, 
has a square-integrable solution 

(4.13 ) 

(4.14 ) 

(4.15 ) 

t/Jo(x) = ce- (1/2),p(X), (4.16) 

where ifJ(x) is a complex quadratic form ofx with a positive
ly defined real part. 

Note: This lemma is almost immediate in the Hilbert 
space formalism of quantum mechanics. [Owing to the com
mutation relations (4.13), (4.14), theBI, ... ,Bn are unitarily 
equivalent to the annihilation operators of the n-dimensional 
oscillator; hence the solution t/Jo(x) arises as a unitary image 
of the oscillator ground state.] However, for the sake of an 
explicit expression, an independent, "constructive proof" 
might be of interest. 

Constructive proof of Lemma 3: According to our as
sumption, the operators Bj and B j are of the form 

Bj = «jV + f3jX, Bj = - «jV + f3jx (j= 1, ... ,n), 
( 4.17) 

B. Mielnik and D. J. Fernandez C. 546 



                                                                                                                                    

where aj' flj (j = 1, ... ,n) are certain n-component complex 
vectors, V is the gradient operator, and the "products" aV, 
flx have the usual Euclidean geometry sense. Note that in 
view of ( 4.13) the vectors a j must be linearly independent. 
Indeed, assume cI"",cn are complex numbers such that 
clal + ... + cnan = 0; then the operators B = c,B, 
+ ... + cnBn andB * = cfBf + .. , + c:B: do not contain 

differentiations ~ 
n 

[B,B*] =0 ~ L cjcr[Bj,Br] 
i.k= I 

n 

= L Icj l
2 = 0 ~ CI = ... = Cn = O. 

j=1 

Quite similarly, fl" ... ,fln are independent. 
In view of the commutativity (4.13) the system of equa

tions (4.15) is integrable, and since Bj are linear in x, the 
solution "'0 has to be of the form 

.1. ( ) _ - (l/2Ja''''''''k _ - (1I2)(xaxJ 
'/'0 X - ce - ce , (4.18) 

where a = lIa ik " is a symmetric complex coefficient matrix. 
By feeding ( 4.18) into (4.15) one obtains the following nec
essary and sufficient set of conditions: 

aUj = flj (j= 1, ... ,n). (4.19) 

In view of the linear independence of the vector systems 
{uj } and {flj}, (4.19) provides a unique and noncontradic
tory definition of a nonsingular matrix a. Moreover, 
(4.13) ~ Ujflk = ukflj ; hence the symmetry of the matrix 
elements (UkaUj) is granted. 

To obtain an explicit expression for a, define a basis 
SI""'Sn dual to UI, ... ,Un: 

SkUj = 8kj = sraj. (4.20) 

Since the tensor products sr ® Sj span the whole n X n 
matrix space, one may seek a in the form 

a = akjSr ® Sj (summation convention), (4.21) 

where akj is another matrix of coefficients. By forming now 
the scalar products of ( 4.21) with ur and uj one finds 

a kj = (urauj) = utflj , (4.22) 

and by using (4.14) one sees that 

a kj + ajk = uUJj + ujflr = 8kj . (4.23) 

Hence the decomposition of (4.21) into the Hermitian 
and anti-Hermitian parts yields 

a = S + ifi, ( 4.24) 

where 

fi = [( utflj - ujflr )/2i] sr ® Sj' 

The expression (4.18) henceforth becomes 

"'o(X) = c exp - - L ISjxl2 - ..!...- (xfix) , [
In . ] 

4 j= I 2 

where (xfix) is real. 

(4.25) 

(4.26) 

(4.27) 

Corollary; As a by-product the following expressions for 
Bj and B j are obtained: 
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(4.28) 

where -! ~ is the exponent in (4.18). 
In our case B, = Ao, B2 = A f, B3 = A 2, and Lemma 3 

yields the following expression for the "basic" Schrodinger 
packet (where the quadratic form! l:]=01i;xI2 is already 
reduced to the three orthogonal main axes along the unit 
vectors 1110, ml, m2): 

Here 1110, ml, m2 are defined in terms of So, SI' S2 as the 
eigenvectors of the 3 X 3 matrix (4.25). The ml coincides 
with in and does not depend on a. The remaining two vectors 
1110 and m2 lie in the plane spanned by the magnetic field B 
and by the rotation axis S (viewed in the rotating frame), 
forming with S the a-dependent angles t/11(a) and 
t/12(a) = (17/2) + t/11 (a) [see Fig. 11 (a)]. In turn, the 
numbers Ao(a), Al (a), A2(a) > 0 are the roots of the char
acteristic equation of the matrix (4.25), their dependence on 
q being plotted in Fig. 11 (b). The asymptotic values for 
a-+O and a-acr are of some interest. As a-+O, the Aj(a) 
behave as 

A/a) - aAj , Ao = Al = 1I..ji, A2 = 1. 
a-O 

( 4.30) 

Note that the limit a - 0 can be approached in two ways: 
as a-+O and/or Cd- + 00. If a-+O, the confinement disap
pears and the Gaussian packet (4.29) dissolves. A more in-

(8) f 

0.8 

-f 

(b) 

1/2 

0..1 0.2 

FIG. 11. The parameters characterizing the ground state (4.29) plotted 
versus the variable a: (a) the angles po(a). P2(a) between the vectors 
mo{a), m2(a) and the rotation axis z; (b) the eigenvalUes of the real qua
draticform (XSX). 
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teresting phenomenon occurs if a = const and W - + 00 

(the "high-frequency confinement"). In that case 

WAj (a) = WAj (a/w) w(a/w)Aj = aAj , 
(iJ-- + 00 

and the ground state (4.29) acquires the asymptotic shape 
checking the high-frequency approximationI4.15.16: 

(4.31 ) 

On the other extreme, for lal-acr the main axes of the 
quadratic exponent in (4.29) stick to mo, m I' m2, where 
ml = m, and mo, m2 are two orthogonal unit vectors in the 
xz plane forming with Sthe angles rPo ~ - 0.467 527 HIT and 
~2 = 1T/2 + ~0~0.032 472 671T, respectively. Thus m and 
m2 define the critical plane already described in Sec. III B as 
PI =P[uI ]. In turn, thecoefficientsAI(a) andA2 (a) van
ish as lal-acr and A2 (a)/ Al (a) -0.35761268, whereas 

Ao(a) - 3.243619 .... 

Henceforth, as a-aCT> the Gaussian wave packet (4.29) 
spills anisotropically all over the critical plane PI = P[ U I] in 
a good accordance with the classical case. 

The aforementioned ground state (4.29) is an analog of 
the classical "rest state" (the point particle at rest in the 
coordinate center) and, simultaneously, one of the familiar 
"squeezed states.'m,24 The analogs of other special orbits 
described in Sec. III can now be easily constructed by apply
ing powers of A ~, A I' and A T to the basic state (4.29). This 
leads to the triple sequence of eigenvectors 

tPn,m,r =A ~nA '('A TrtPo (n,m,r = 0,1,2, ... ), 

expressible as 

tPn,m,r (x) = CnmrtPO(x) [eS(X) (a 3a '('a ~)e - S(X)], 

where 

Sex) = (xSx), 

(4.32) 

(4.33 ) 

(4.34) 

a 3 1 a '1 13/2 a ( 1)2 -I a 0= ( 0"0 + ) - - 21 0"0 - - 0"0 + a -, ax ay az 
a 3 1 a 2'1 13/2 a ( 1)2 -I a I = - ( 0"1 + ) - - 1 0"1 - + 0"1 + a -, ax ay az 

a '1 13/2 a 1 2 -I a a2 = (30"2 + 1) - - 21 0"2 - - (0"2 + ) a -, ax ay az 
(4.35) 

and, corresponding to the triple sequence of eigenvalues, 

An,m.r = nwo - mW I + rW2 (n,m,r = 0,1,2, ... ). (4.36) 

Since the frequencies Wo, WI' W2 (as far as we have 
checked) are not commensurable, the resulting set of eigen
values is dense on the real axis R. Thus the spectrum of G 
coincides with R, though it is not continuous. 

A. Absence of energy interpretation 

The eigenstates (4.32) are worth separate discussion. 
While stationary in the rotating frame, in the original one 
they are afflicted by an extra rotational drift with a constant 
angular velocity w. This is by no means unexpected. Since 
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the external field B(t) is time dependent, the motion prob
lem (2.1) in the original inertial frame has no stationary 
solutions. Our "drifting waves" are precisely "as stationary 
as possible," which in this case means periodic behavior. An 
intriguing question, however, arises. What happens to the 
above periodic patterns of motion if they are allowed to in
teract with an external radiation field? In the case of the 
conventional oscillator the answer is simple: after radiating 
some quanta the system has a tendency to settle down in its 
ground state. An analogous answer in the case of our drifting 
waves might remain true, though the argument is no longer 
so simple. Here, in contrast to the harmonic oscillator, it is 
not granted that the observable G serving as the evolution 
generator (in the rotating frame) is involved in any conser
vative balance (so that if the system changes the G eigen
state, it must simultaneously omit or receive some "G quan
ta.") In fact, such an interpretation would be wrong, since 
then the system could become an infinite "G source" at the 
cost of pushing the electron down into the G negative states. 
Henceforth our rotating arrangement is an example of a new 
physical situation, where the (effective) evolution generator 
has no energy interpretation and the interaction with the 
outside world has to be separately treated. This might be 
relevant for the general problem of the quantum Hamilto
nians in the noninertial frames (see, e.g., Ref. 25). (While 
permitting one to find stationary states of motion, these 
"Hamiltonians" do not, however, enter into the universal 
conservative balance, and so their spectrum is not interpre
table as a radiation spectrum "in eyes of a noninertial observ
er.") 

B. Corrections to the high-frequency approximation 

In spite of lacking the sense of energy, the generator G 
permits one to improve the high-frequency approximation 
commonly used to determine the effects of quickly oscillat
ing fields. 14-17 Given an electromagnetic field 

E = wE(x)sin(wt + 15 1 ), H = wH(x)sin(wt + 152 ), 

the average motion of an electric charge e within this approx
imation is described in terms of a noncovariant effective po
tential Ver(x) = (e/2m)2[E(x) ]2. For our rotating field 
( 1.2) it leads to the effective Hamiltonian: 

H r =-+- r+-+-. p2 a2 [ x2 y2] 
e 2 2 2 2 

(4.37) 

As can be seen, our exact solution (4.29) for w - + 00 

tends indeed to the ground state of the oscillator Hamilto
nian Her, thus confirming the high-frequency approxima
tion for the SchrOdinger wave packets. However, if w is large 
but not infinite (or if both wand a are large), our G theory 
yields different results. In fact, for a # 0, the ground state 
tPo(x,t) (seen from the original frame) leads to the variable 
probability density in R3. Its time average is 

p(X) = J.. (ItPo(x,t) 12 dt, 
T Jo (4.38) 

where tPo(x,t) is the function (4.29) with mo, ml , m2 substi
tuted by their rotating variants mo(t), m1(t), m2 (t). The 
function (4.38) is stationary but not Gaussian. If lal >0, 
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R 

FIG. 12. The surfaces p(x)lp(O) = const for a = rt, and varying llI: (a) 

llI",,316.07 => a",,0.316 38 (the shape predicted by the high-frequency ap
proximation); (b) llI"" 17.69, a",,0.5653 (the dissention from the high-fre
quency approximation predicted by our exact model); (c) III "" 17.2495; (d) 
III "" 17.2428 (the anisotropic expansion ofthe probability density in the sub
critical cases). 

p(x) starts to deviate from the ground state density of the 
effective Hamiltonian Her, and as a - ± a er it extends tenta
cles along the z axis [see the surfaces p(x) = const in Fig. 
12]. This deformation might prove decisive for the proper
ties of the standing wave traps of the particular structure 
(3.38). 

C. The structure of the "radiation-made crystals" 

The physical conditions met by the Schrodinger elec
tron near the nodal points of the standing wave (3.38) are 
determined by two parameters: the wavelength A = 21TC/W, 
and the "average radius" Po of the wave packet (4.29) (de
fined as the quadratic deviation of the Gaussian probability 
distribution Po = (x2> 1/2). In the traditional cgs units, 

1 [1 1 1 ]1I2(fz)1I2 
Po = J2W Ao(a) + AI (a) + A2 (a) -;;;: 

~ _1_ (1 + ~)1I2 (~)1I2 
a-O ~2aw 2 me 

(4.39) 

Depending on the relation between these two quantities, 
four different physical situations are predictable. 

(10) If a is small (a S 1O- 19Ysec), the confinement is 
weak (Po>A /1(0) and the localization of the ground state 
.,po around the nodal point is insufficient to justify the use of 
our rotating model. (The high-frequency approximation is 
most exact in this area.) 

(2°) As a grows (10-19y sec S as a er - 2 X 10-37 

y2 sec2
) the confinement becomes tighter (Po <A /1(0). [In 

fact, we have checked that if y < 1014/sec, then for most of 
the a values in this interval 99% of the Gaussian packet 
( 4.29) is compressed within the sphere of the radius of 10 - 3 

of the standing wavelength.] The electrons in the fundamen
tal state of motion (represented by the wave packet .,po) are 
therefore trapped around the single nodal points, and our 
rotating model is good for describing the nature of this trap. 

(3°) If a er - 2X 1O- 37y2 sec2 SaSaer> the situation 
changes once more. For lal-aer the rotating packet .,po(x,t) 
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expands, and our rotating model is no longer globally appli
cable; yet it gives a hint about the phenomenon of anisotrop
ic subcritical conductivity, which should follow the design of 
the surfaces in Fig. 12. 

(4°) Finally, as lal crosses a er , the attractive nodal 
points of the standing wave undergo a sudden phase transi
tion into repulsive centers, and the whole nodal lattice ff 
tends to expel the electrons anisotropically with a preference 
for a certain cone of directions around the axis z. 

D. The question of positivity 

The indefinite character of G might also mark some nat
ural applicability limits of the positivity axiom in quantum 
theories. This axiom seems firmly established whenever the 
evolution generator describes a continuous flux of evolution 
and has an interpretation of a conservative quantity. How
ever, if G is just an average or effective generator, describing 
a summary effect of some unperceived microfluctuations 
and concerning only a discrete sequence of time moments, 
then our example shows that the positivity cannot be de
manded. 
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ERRATUM 

Erratum: Evolution loops [J. Math. Phys. 27, 2290 (1986)] 
Bogdan Mielnik 
Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico 
Nacional, Apdo. Postal 14-740, Mexico, D.P., Mexico 

(Received 24 August 1988; accepted for publication 21 September 1988) 

The values of the parameter a defining the confined 
and/orloop motions [p. 2296, below (4.19)] are incorrect. 
The correct values are for the first confinement interval, 
lal:S: 17.92; for the three simplest loop generating values, 

Sea) = - 1 ~ a~ ± 15.489, 

Sea) = 0 ~ a~ ± 12.619, 

sea) = + 1 ~ a~ ± 8.904; 

and for the second confinement interval, 148.413 
:s: lal :s: 149.617. 

In formula (6.29), the second matrix should be squared. 
Consistently, (6.31) should read 

rea) = 2 cos 2a - a sin 2a = 2 cos (21Tl In). (6.31) 

When writing this paper the author was not aware of the 
theory of ion traps; hence a part of literature is missing. In 
particular, the following references should be added. 

IE. D. Toschek, "Atomicpartic1es in traps," in New Trends in Atomic Phys
ics, edited by O. Grynberg and R. Stora (North-Holland, Amsterdam, 
1984). 

2L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986). 
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